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Abstract: Many studies have shown that b values tend to decrease prior to large earthquakes. To
evaluate the forecast information in b value variations, we conduct a systematic assessment in Yunnan
Province, China, where the seismicity is intense and moderate–large earthquakes occur frequently.
The catalog in the past two decades is divided into four time periods (January 2000–December 2004,
January 2005–December 2009, January 2010–December 2014, and January 2015–December 2019). The
spatial b values are calculated for each 5-year span and then are used to forecast moderate-large
earthquakes (M≥ 5.0) in the subsequent period. As the fault systems in Yunnan Province are complex,
to avoid possible biases in b value computation caused by different faulting regimes when using the
grid search, the hierarchical space–time point-process models (HIST-PPM) proposed by Ogata are
utilized to estimate spatial b values in this study. The forecast performance is tested by Molchan error
diagram (MED) and the efficiency is quantified by probability gain (PG) and probability difference
(PD). It is found that moderate–large earthquakes are more likely to occur in low b regions. The MED
analysis shows that there is considerable precursory information in spatial b values and the forecast
efficiency increases with magnitude in the Yunnan Province. These results suggest that the b value
might be useful in middle- and long-term earthquake forecasts in the study area.

Keywords: b value; molchan error diagram; earthquake forecast; Yunnan; China

1. Introduction

The Gutenberg–Richter (G–R) law describes the magnitude–frequency relationship of
earthquakes, which is lgN = a− bM [1,2]. In the formula, constant a reflects the seismicity
of the region, and constant b indicates the relative ration of small to large earthquakes. The
b value has been proved to be inversely related to the underground stress by laboratory
experiments and seismic studies [3–7]. Low b values are likely to correspond to high stress
states and a decrease in the b value may indicate an increase in stress. Hence the b value
could be an indicator of the stress level underground and may have potential value in
earthquake risk assessments. Due to the self-similarity of the earthquake source, recently,
it has been documented in several publications of natural time analysis of earthquake
catalogues that the entropy concept is of key importance in order to achieve an earthquake
risk assessment [8–10] since it was revealed that a decrease in the b value before large
earthquakes reflects an increase in the order parameter fluctuations upon approaching
the critical point (mainshock) stemming from both origins of self-similarity [11], i.e., the
process increments infinite variance and/or process memory [12]. Until now, the b value
has been widely applied in natural seismic research and recently extended to activity
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analysis of induced earthquakes [7,13–37]. It was reported that large earthquakes tend to
occur in areas with low b values [25,26], and the temporal variations of b values in epicenter
regions show a decrease trend before major earthquakes [24–26,32], such as the 2011 Mw9.0
Tohoku earthquake, the 2004 Mw9.0 Sumatra earthquake, and the 2008 Mw7.9 Wenchuan
earthquake [36,38,39]. Although precursory b value changes have been claimed in many
case studies, systematic assessment of forecast performance based on b value is still rare. To
verify the feasibility of b values for earthquake forecasting and regional risk assessment, we
apply statistical investigation, using the Molchan error diagram (MED) in Yunnan Province
of China, where the fault system is complex and the seismicity is intense.

The conventional method to calculate the spatial b value is the grid search, us-
ing the set of seismic events closest to the grid points with a fixed number, a fixed
radius [14,24,25,31,32,40–44], or an adaptive window, changing its size and shape to
take into account the differences in the statistical estimates of b values in adjacent grid
nodes [45,46]. As a statistical method, to ensure the reliability of results, the calculation of
the b value requires complete samples with appropriate numbers [26,47], and it is suggested
that there should be at least two orders of both earthquake numbers and magnitudes to
obtain a robust b value estimation [48]. In practice, to obtain higher spatial resolution, there
would be an overlap of the seismic events used to calculate the b value of adjacent grid
points [47,49]. On the other hand, the b value in different faulting regimes may vary a
lot [16,17,25], which can cause large biases when earthquakes on different faults are allotted
in the same dataset for b value computation.

Ogata proposed the hierarchical space–time point-process models (HIST-PPM), cubic
B-spline expansions and the Bayesian method for estimation and interpolation of b values
in space [33–35,50–53]. As it does not require allocation of an earthquake sample, it may
have advantages in computing spatial b values, particularly in highly fractured regions
with complex fault systems, such as Yunnan Province, China. Therefore, in this study,
we apply the HIST-PPM method to earthquake catalogs during 2000–2020 in Yunnan to
evaluate whether the b value is useful in mid- and long-term earthquake forecasts in
the region.

2. Data and Methods
2.1. Data

Due to the relative motion of the Indian Ocean plate to the Eurasian plate, earthquakes
occur frequently in the Yunnan region. In history, several devastating earthquakes have
occurred, and the seismic risk is currently very high [54,55]. It is important to conduct
mid- and long-term earthquake forecasts in this area for disaster mitigation and relief
supplies preparation.

The catalog in this study is provided by Earthquake Administration of Yunnan
Province China. The research area covers 97◦ E–106.5◦ E and 21◦ N–30◦ N, including
the whole Yunnan Province bound by a light blue line, as shown in Figure 1a. We chose
the catalog from the year 2000 because the seismic network was upgraded then [56]. The
spatial distributions of the earthquakes during 2000–2019 are shown in Figure 1a, and the
temporal variation is given in Figure 1b.

Early studies suggested that the b value dropped to a relatively lower level about
3–5 years before the mainshock [36,38]. As our attempt, we divide the catalog during
2000–2019 into four time periods (January 2000–December 2004, January 2005–December
2009, January 2010–December 2014, and January 2015–December 2019). Each period
includes 5 years. To evaluate the magnitude of completeness (Mc) in space, we divide
the study region into 0.1◦ × 0.1◦ grids. Several approaches for Mc estimation have been
proposed, such as the entire magnitude range (EMR) method [50,58], maximum curvature
(MAXC) method [59–61], goodness-of-fit test (GFT) method [59], Mc by b-value stability
(MBS) method [62], and median based analysis of the segment slope (MBASS) method [63].
Woessner and Wiemer (2005) compared the EMR method with GFT, MBS and MAXC,
finding that EMR showed a superior performance when applied to synthetic test cases or
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real data from regional and global earthquake catalogues [58]. The EMR method, however,
is also the most computationally intensive.

Figure 1. The spatial and temporal distribution of earthquakes in Yunnan from 2000 to 2019. (a) Map
of Yunnan and earthquake distributions. The light blue line is the provincial boundary, and the dark
blue circles are earthquakes. The red dots present the events in Yunnan province with 5.0 ≤ M < 5.5
and the red stars show M ≥ 5.5 events. The size of the symbol is scaled to magnitude. The black
lines indicate main faults [57]. (b) Temporal distribution of the earthquakes shown in Figure 1a.

In this study, we use the MAXC method in combination with the bootstrap. Earth-
quake events within a distance r from the grid center is selected first and then a bootstrap
is applied to the selected sample. We repeat 1000 times the bootstrap and obtain 1000 Mcs
for each grid. The Mc of the grid is determined by the mean value. In practice, a small r
can reduce overlap events between adjacent grid points and increase spatial resolution.
However, there might be not enough earthquake samples when r is too small, which may
reduce the stability of Mc. To make a tradeoff between stability and spatial resolution, we
set r = 50 km.

Taking the catalog from January 2000 to December 2004 as an example, the seismicity
is shown in Figure 2a and the Mc distribution is shown in Figure 2b. If the number of
events for a grid is less than 100, the Mc of the grid is set as not available. The grids
with available Mc results cover most of Yunnan province, with maximum Mc = 2.6 and
maximum standard deviation = 0.4 (Figure 2c). As the seismic network keeps upgrading
and the detectability improves with time, the Mc has decreased since 2000 [64]. Therefore,
we set Mc = 3.0 and it can ensure that the earthquake with a magnitude above Mc is
complete throughout the entire analyzed period in Yunnan Province. Next, we use the
earthquakes above Mc to compute the b value.
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Figure 2. Cont.
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Figure 2. (a) Earthquake distribution during January 2000–December 2004. The size of the circle is
scaled to the magnitude; (b) spatial distribution of Mc during January 2000–December 2004; (c) spatial
distribution of standard deviation of Mc during January 2000–December 2004; (d) Delaunay triangle
tessellation connecting the epicenters of M ≥ 3.0 events during January 2000–December 2004.

2.2. b Value Estimation

Gutenberg and Richter revealed the magnitude–frequency relationship (G–R law)
as follows:

lgN = a − bM (M ≥Mc) (1)

where N is the number of events with M ≥ Mc, a and b are constant.
Based on the G–R law, the number of earthquakes is defined in terms of the conditional

intensity function as follows:

N(M) = 10a−b(M−Mc) = Ae−β(M−Mc) (2)

where β = bln10. The probability density distribution of magnitude can be derived as the
following:

f (M) =
N(M)∫ ∞

Mc
N(M)dM

= βe−β(M−Mc) (3)

The likelihood function to a set of earthquakes events with independent magnitudes
(M1, M2, . . . . . . , Mn) is as follows [40]:

L(β) =
n

∏
i=1

fβ(Mi) =
n

∏
i=1

βe−β(Mi−Mc) (4)

Ogata considered that the β value depended on location or/and time and proposed
the hierarchical space–time point-process models (HIST-PPM) [34,35,65]. In this study, it
is assumed that β is a function of epicenter (xi, yi) in a way such way that the following
is true:

β = β(xi, yi) (5)

Since the b value is positive, the parametrization of the function β(xi, yi) is carried out
by the following:

β(x, y) = eφθ(x,y) (6)

where the φθ is the 2D B-spline function, and θ is the coefficient of function φθ [35]. In this
way, β is represented by a flexible function of location [34,35,50–52,66].
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In HIST-PPM, Ogata tessellated the study space by the Delaunay triangle apexing at
epicenters of seismic events, then estimated the parameter θ by maximizing the penalized
log-likelihood as follows [35,65]:

R(θ|w) = lnL(θ)−Q(θ|w) (7)

The Q(θ|w) is the penalty term, defined as the following:

Q(θ|w) = w
x
{(

∂φθ(x, y)
∂x

)2
+

(
∂φθ(x, y)

∂y

)2
}

dxdy (8)

where w is the weight to be optimized by Akaike’s Bayesian Information Criterion (ABIC) [35,67].
Based on the entropy maximization principle [67,68], Akaike (1980) developed Good’s
method and defined the ABIC as follows [69]:

ABIC = −2max(log L) + 2(number o f hyperparameters) (9)

The hyperparameters with a smaller ABIC value provides a better fit to data [35].
More details about the model fitting are given in the manual of HIST-PPM [65].

After obtaining b values on the mesh points, the values in each triangle can be com-
puted by linear interpolation of the b values at the triangle vertices. By this method, we get
the spatial b value with 0.1

◦ × 0.1
◦

resolution in this study.

3. Results
3.1. Spatial b Value and Forecast Performance in Each 5-Year Time Period

The HIST-PPM method is applied to earthquake catalog with M ≥ 3.0 in each 5-year
period in Yunnan Province. The results of the spatial b values during January 2000–
December 2004, January 2005–December 2009, January 2010–December 2014, and January
2015–December 2019 are shown in Figures 3a, 4a, 5a and 6b, respectively. The moderate–
large earthquakes in the subsequent period are also plotted in Figures 3a, 4a and 5a for
comparison. Earthquakes with M ≥ 5.5 are presented with red stars, and earthquakes with
5.0 ≤M < 5.5 are shown by red dots. It can be found that the spatial b value changes in
different time periods and moderate–large earthquakes are more likely to occur in areas
with low b values, particularly for earthquakes with M ≥ 5.5. To quantify the precursory
information in the spatial b values, the MED is employed to test the forecast performance.

Figure 3. Cont.
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Figure 3. (a) Spatial distribution of b values in January 2000–December 2004. Black circles present the
earthquake events with M ≥Mc during January 2000–December 2004. Red dots show locations of
events with 5.0 ≤ M < 5.5 and red stars show locations of events with M ≥ 5.5 in Yunnan province
during January 2005–December 2009. The size of symbol is scaled to the magnitude. (b) MED of
forecast performance using the b values in (a). The earthquake number NM≥5.0 = 18 and NM≥5.5 = 3.
The blue line gives the result for M ≥ 5.0 events and the red line shows the result for M ≥ 5.5. (c) The
PG variations of the predictions in (b).

MED is designed for estimating the ability of earthquake forecasting and presenting
relationship between the rate of space tagged as alarming earthquake and the rate of
earthquakes’ failure to alarm [70–72]. Taking Figure 3a as an example, firstly we choose
a threshold of b value (bthr), and then we alarm the grids with b value < bthr. If an
earthquake in the subsequent period (i.e., January 2005–December 2009) occurs in the
alarmed grid, it is counted as a precited event. Otherwise, it is counted as a missed event.
Define N = the number o f total grids in Yunnan, N1 = the number o f alarmed grids, and
the alarming rate can be given as τ = N1/N. Define n = the number o f total events,
n1 = the number o f predicted events, and the earthquake detecting rate can be given as
ν = n1/n. The earthquake missing rate is 1− ν = 1− n1/n. With the threshold bthr
increasing from the minimum to maximum value in Figure 2a, the alarming rate changes
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from 0 to 1 and the earthquake missing rate decreases from 1 to 0. The MED plots the
missing rate versus the alarming rate, as shown in Figure 2b. The diagonal line on which
the missing rate equals the alarming rate indicates a complete random guess. If the
prediction curve is under the diagonal line, the missing rate is less than the alarming rate
and the prediction is better than a random guess. Otherwise, if above the diagonal line, the
prediction is worse than a random guess [70,71].

For the probability gain (PG), computing the ratio of gain (detecting rate) to cost
(alarming rate) is as follows [70,73,74]:

PG =
ν

τ
(10)

which is utilized to further quantify the forecasting efficiency. PG = 1 indicates the predic-
tion efficiency is the same as a random guess. PG > 1 implies that the prediction strategy is
better than a random guess. The higher the PG, the better the prediction performance.

Figure 4. Cont.



Entropy 2021, 23, 730 9 of 18

Figure 4. (a) Spatial distribution of b values in January 2005–December 2009. Black circles present
the earthquake events with M ≥Mc during January 2005–December 2009. Red dots show locations
of events with 5.0 ≤ M < 5.5 and red stars show locations of events with M ≥ 5.5 in Yunnan
province during January 2010–December 2014. The size of the symbol is scaled to the magnitude.
(b) MED of forecast performance using the b values in (a). The earthquake number NM≥5.0 = 40 and
NM≥5.5 = 19. The blue line gives the result for M ≥ 5.0 events and the red line shows the result for
M ≥ 5.5. (c) The PG variations of the predictions in (b).

Figure 3a shows the spatial b value during January 2000–December 2004. Figure 3b
presents the MED results using the b values in Figure 3a to predict the earthquakes during
2005–2009. The corresponding PG value is given in Figure 3c. The number of earthquake
events with M ≥ 5.0 and M ≥ 5.5 are 18 and 3, respectively. It is evident that the prediction
curves of both M ≥ 5.0 events (blue line) and M ≥ 5.5 events (red line) are under the
diagonal, suggesting that the forecast performance is better than a random guess. Almost
all the PG values are larger than 1. The Max PG for M ≥ 5.0 events and M ≥ 5.5 events are
190.72 and 572.17, respectively.

Figure 5. Cont.
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Figure 5. (a) Spatial distribution of b values in January 2010–December 2014. Black circles present the
earthquake events with M ≥Mc during January 2010–December 2014. Red dots show locations of
events with 5.0 ≤ M < 5.5 and red stars show locations of events with M ≥ 5.5 in Yunnan province
during January 2015–December 2019. The size of the symbol is scaled to the magnitude. (b) MED of
forecast performance using the b values in (a). The earthquake number NM≥5.0 = 18 and NM≥5.5 = 4.
The blue line gives the result for M ≥ 5.0 events and the red line shows the result for M ≥ 5.5. (c) The
PG variations of the predictions in (b).

Figure 4a shows the spatial b value during January 2005–December 2009. Figure 4b
presents the MED results using the b values in Figure 4a to predict the earthquakes during
2010–2014. The corresponding PG value is given in Figure 4c. The number of earthquake
events with M ≥ 5.0 and M ≥ 5.5 are 40 and 19, respectively. All the prediction curves are
under the diagonal line and the PG value is above 1 except one point with an alarming rate
around 0.9 on the blue line. The Max PG for M ≥ 5.0 events and M ≥ 5.5 events are 4.77
and 3.69, respectively.

Figure 5a shows the spatial b value during January 2010–December 2014. Figure 4b
presents the MED results using the b values in Figure 5a to predict the earthquakes during
2015–2019. The corresponding PG value is given in Figure 5c. The number of earthquake
events with M ≥ 5.0 and M ≥ 5.5 are 18 and 4, respectively. The prediction curves are
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under the diagonal line when the alarming rate is less than 0.5. As the alarming rate rises
above 0.5, the prediction becomes close to a random guess. The Max PG for M ≥ 5.0 events
and M ≥ 5.5 events are 15.26 and 39.01, respectively.

Figure 6. (a) MED of comprehensive forecast performance during January 2005–December 2019. The
earthquake number NM≥5.0 = 76 and NM≥5.5 = 26. The blue line gives the result for M ≥ 5.0 events
and the red line shows the result for M ≥ 5.5. (b) The PG variations of the predictions in (a). (c) The
PD variations of the predictions in (a).
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From the above results it can be found that low b values in space can be a possible
indicator of forthcoming moderate–large earthquakes in Yunnan Province, China. The
prediction curves based on b values in the MED are under the diagonal line in general
and most PG values are above 1. These imply that the spatial b value contains precursory
information. However, due to the number of earthquakes samples being relatively small,
the results in each testing period may lack robustness. Therefore, next we perform a
comprehensive analysis by integrating the three test periods.

3.2. Comprehensive Forecast Performance during 2005–2019

To obtain comprehensive results, a time–space alarm model is utilized [75]. In the
model, the number of time–space cells is 3433 grids × 3 time periods = 10299. Same
as the process in Section 3.1, firstly we choose a bthr, and then we alarm the cells with
b value < bthr. If an earthquake in the subsequent period occurs in the alarmed cell, it
is counted as an alarmed event. Otherwise, it is counted as a missed event. In the same
manner, we can compute the earthquake detecting rate, missing rate, and alarming rate.

Figure 6 show the comprehensive forecast performances of b value during January
2005–December 2019. The number of earthquake events with M ≥ 5.0 and M ≥ 5.5 are 76
and 26, respectively. The prediction curves of both M ≥ 5.0 and M ≥ 5.5 are under the
random prediction line in Figure 6a. The PG values in Figure 6b are all above 1. The Max
PG for M ≥ 5.0 events and M ≥ 5.5 events are 135.51 and 198.06, respectively.

In Figure 6b, although the Max PG is high, in practice, it is not a good choice to
issue forecasts based on the corresponding bthr because the missing rate will be extremely
high, and most earthquakes will not be predicted. In fact, as shown in the MED, a higher
alarming rate will probably lead to predicting more earthquakes and can reduce the missing
rate. Meanwhile, a higher alarming rate will cause more false alarms. Thus, it is important
to make a trade-off between cost (false alarm) and gain (detecting rate). To find out a more
applicable solution, we employ the probability difference (PD):

PD = ν− τ (11)

which measures the difference between the detecting rate and alarming rate [73]. For a
random prediction, the PD is expected to be 0. PD > 0 which indicates that the prediction
is better than random. Figure 6c shows the PD variations of the two prediction curves in
Figure 6a. Both are clearly above 0, indicating that the comprehensive forecast performance
of the b value during January 2005–December 2019 is obviously better than a random guess.
The Max PD for M ≥ 5.0 events and M ≥ 5.5 events are 0.28 and 0.40, respectively.

It is noticed that in Figure 6a, the red line is mostly under the blue line, implying that
at a given alarming rate, the missing rate for M ≥ 5.5 events are lower than that of M ≥ 5.0.
Similar results could be found in Figure 6b,c, suggesting a possible magnitude dependence
of the forecasting performance.

4. Discussion
4.1. The Advantage of HIST-PPM Method

The conventional grid search method is widely used for b value estimation. It utilizes
the set of seismic events close to the grid points with a fixed number or a fixed radius,
which brings an inevitable overlap of the seismic events on adjacent faults. For Yunnan
province, which is crisscrossed by active faults, a radius of few tens of kilometers may cover
multiple tectonic units. Because different types of faults (normal, reverse, and strike-slip)
may have different b values [16,17,25], if earthquakes on multiple faults are mixed in the
computation, the b values would be mis-estimated. The HIST-PPM method applies the
triangulation of earthquake points and estimates the b value by the Bayesian method. It
does not require allocation of earthquake samples and can provide a higher space coverage,
even if the earthquake events are relatively rare. Thus, the HIST-PPM method may have
advantages in computing spatial b values in the study area.
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4.2. The Influence of Mc

Mc is the key parameter in seismicity analysis. Different Mc may give different b
values [36,60]. As shown in Figure 2b, the Max Mc is 2.6 in the Yunnan region during
January 2000–December 2004. The seismic network is gradually improved after 2000. In
general, the Mc decreases with time. For a fair comparison, we set Mc using the data
in the first test period January 2000–December 2004. Considering that the MAXC might
underestimate the Mc, we use Mc = 3.0 in this study. To test the influence of Mc, we
compute the b values during 2015–2019, using Mc = 2.8, 3.0, and 3.2, respectively. The
results are shown in Figure 7. It is found that the results in Figure 7a,b are quite similar.
The b values in Figure 7c show considerable differences from those in Figure 7a,b. This
may be due to the fact that the number of events with M ≥ 3.2 are small. However, the low
b value areas show good consistency in the three figures.

4.3. The Uncertainties of b Value

The HIST-PPM method applies the triangulation of earthquake locations and estimates
the b value at epicenters by the Bayesian method. The results of the b value depend on
the location and magnitude of earthquake events. In practice, the magnitude and location
have a certain degree of error. Therefore, it is necessary to evaluate the uncertainty of the
b-value.

Figure 7. Cont.
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Figure 7. Spatial distribution of b values in January 2015–December 2019 with different Mc.
(a) Mc = 2.8; (b) Mc = 3.0; (c) Mc = 3.2.

According to the newly issued general ruler for earthquake magnitude (GB 17740—
2017) in China, the earthquake catalog reports local magnitude (ML) if ML < 4.5, and reports
surface wave magnitude (MS) (shallow earthquake) or body wave magnitude mb (deep-
focus earthquakes) otherwise [76]. The catalog used in this study mainly contains two
types of magnitudes, i.e., ML and MS, as most earthquakes in Yunnan Province are shallow.
On the other hand, the magnitude calibrating function may have errors, and the magnitude
determined by different stations can be quite different. The reported magnitude is an
average of the magnitudes at several seismic stations. These uncertainties of magnitude
can affect the estimated b values. The errors of the earthquake location depend on the
seismic wave velocity model, the onset time picking of seismic waves, and the number
of seismic stations. Unfortunately, to the best of our knowledge, there is no systematical
study available to provide an error estimation of the earthquake magnitude and location in
the Yunnan region at present.

For future study, it would be worthwhile to collect information on the uncertainties of
earthquake magnitude and location so that new synthetic catalogs can be generated. Ap-
plying the HIST-PPM to the synthetic catalogs and then computing the standard deviation
might be a possible way to estimate the error of the b value.

4.4. Implications and Applications

As mentioned in Section 3.2, in practical application, it is important to make a trade-
off between cost and gain. Therefore, we use the PD parameter to find out an applicable
solution to the earthquake forecast in January 2020–December 2024. As our attempt, we
choose the bthr corresponding to Max PD of M ≥ 5.5 as the threshold of the b value to
issue alarms. The forecast results based on the b values in Figure 7b with bthr = 0.91 are
shown in Figure 8. The red squares indicate the alarmed areas for the period January 2020–
December 2024. According to the comprehensive forecast performance during January
2005–December 2019, it is expected that around 50% of M ≥ 5.0 earthquakes and 60% of
M ≥ 5.5 earthquakes during January 2020–December 2024 will occur in the red squares.
These areas include the northwest of Dali city and Chuxiong city, west of Yuxi city, and
east of Puer city.
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Figure 8. Forecast results based on the b values in Figure 7b with bthr = 0.91. The red squares indicate
the alarmed areas for the period January 2020–December 2024.

5. Conclusions

The HIST-PPM method is applied to the earthquake catalogs during the past two
decades to reveal the spatial–temporal distributions of the b value in Yunnan Province,
China. The spatial b values are calculated in each 5-year period and then are used to
forecast moderate–large earthquakes (M ≥ 5.0) in the subsequent period. The forecast
performance is tested by MED and the efficiency is quantified by PG and PD parameters.
It is found that moderate–large earthquakes in Yunnan are more likely to occur in low b
regions. The MED analysis suggests that there is considerable precursory information in
spatial b values and the forecast efficiency increases with magnitude. It is concluded that
the b value might be useful in middle- and long-term earthquake forecasts in the study area.
Based on the latest five-year catalog data and the comprehensive forecast performance
during 2005–2019, we provide an estimation of future earthquake locations during January
2020–December 2024.
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