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Abstract: Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] is a bacterial derived
biopolymer widely known for its unique physical and mechanical properties to be used in biomedical
application. In this study, antimicrobial agent silver sulfadiazine (SSD) coat/collagen peptide coat-
P(3HB-co-4HB) (SCCC) and SSD blend/collagen peptide coat-P(3HB-co-4HB) scaffolds (SBCC) were
fabricated using a green salt leaching technique combined with freeze-drying. This was then followed
by the incorporation of collagen peptides at various concentrations (2.5–12.5 wt.%) to P(3HB-co-4HB)
using collagen-coating. As a result, two types of P(3HB-co-4HB) scaffolds were fabricated, including
SCCC and SBCC scaffolds. The increasing concentrations of collagen peptides from 2.5 wt.% to
12.5 wt.% exhibited a decline in their porosity. The wettability and hydrophilicity increased as
the concentration of collagen peptides in the scaffolds increased. In terms of the cytotoxic results,
MTS assay demonstrated the L929 fibroblast scaffolds adhered well to the fabricated scaffolds. The
10 wt.% collagen peptides coated SCCC and SBCC scaffolds displayed highest cell proliferation rate.
The antimicrobial analysis of the fabricated scaffolds exhibited 100% inhibition towards various
pathogenic microorganisms. However, the SCCC scaffold exhibited 100% inhibition between 12 and
24 h, but the SBCC scaffolds with SSD impregnated in the scaffold had controlled release of the
antimicrobial agent. Thus, this study will elucidate the surface interface-cell interactions of the
SSD-P(3HB-co-4HB)-collagen peptide scaffolds and controlled release of SSD, antimicrobial agent.

Keywords: P(3HB-co-4HB); silver sulfadiazine; collagen peptide; infection-resistance scaffolds

1. Introduction

Biomaterial scaffolds are materials which have been engineered to interact with our
biological system in providing three-dimensional structure and mimicking an extracellular
matrix (ECM). Therefore, it is crucial to design biologically active scaffolds with well
interconnected configuration and surface chemistry to enhance the cellular interactions
on the scaffold interface [1,2]. The scaffold interface would enhance and facilitate the cell
infiltration, proliferation and differentiation of cell lines, and eventually contribute to the
tissue regeneration.
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Polyhydroxyalkonates (PHAs) are insoluble granules accumulated in cell cytoplasm
as carbon and energy storage compounds under stress conditions [3–5]. PHAs are a
biodegradable thermoplastic which exhibit similar thermo-mechanical properties to syn-
thetic polymers [6]. Among the variety of PHAs, copolymer P(3HB-co-4HB) is widely used
in biomedical applications due to the non-toxic biodegradation products, wide range of
physical and mechanical properties, non-carcinogenic effects and biocompatibility [7]. It
possesses exceptional properties for medical and pharmaceutical fields [8,9]. Moreover,
P(3HB-co-4HB) has Food and Drug Administration (FDA) clearance for clinical usages
among all the other PHAs available [3]. The P(3HB-co-4HB) was biosynthesized by bac-
terium Cupriavidus necator (formally Ralstonia eutropha) from structurally related sources
such as 4-hydroxybutyric acid (4HBA), 4-chlorobutyric and γ-butyrolactone [7].

However, P(3HB-co-4HB) lacks active functional sites for cell attachment which limits
the applications for regenerative medicine. Many studies have been carried out in this
direction to overcome this limitation. Therefore, surface modification is carried out by incor-
porating natural polymers, such as collagen, gelatin, pullulan and chitosan, in enhancing
the hydrophilicity of the scaffolds [10]. Nevertheless, the desirability and wide applicability
of collagen is often attributed to its abundance in the human body as the key structural
fibrous protein of the ECM [11]. Hence, collagen peptide was used as the biomolecules to
enhance the hydrophilicity of the scaffolds fabricated in our study. Collagen peptide is a
biomolecule which not only has the ability to improve the hydrophilicity of the scaffold
but has the natural ability to interact with host cells [12,13].

Biomaterial scaffold-affiliated microbial infections are an emerging threat in clinical
practices, which cause serious infection and impact healing. Therefore, designing scaf-
folds with antimicrobial efficacy have extensively gained priority in resolving biomaterial-
associated infections [14]. Silver sulfadiazine (SSD) is an antibacterial agent that exhibits
broad-spectrum antibacterial activity against Gram-positive and Gram-negative bacteria,
as well as fungi, even at very low concentrations [15–17]. SSD is a much preferred antibacte-
rial agent of choice due to the ability of SSD to reduce early infections at low concentration.
However, currently available formulations of antimicrobial agents lack the ability to control
the release of antimicrobial properties [18,19]. There are many scaffolds developed with
antimicrobial properties and Table 1 lists common examples of antimicrobial biopolymer
incorporated with SSD.

Table 1. List of common examples of various antimicrobial scaffolds incorporated with SSD.

Biopolymer/Materials Fabrication of Scaffolds Applications References

Collagen/SSD Facile blending Wound dressings [19]

Collagen/SSD Electrospinning Wound healing applications [15]

Collagen/SSD Blending with SSD-loaded
alginate microspheres

Conventional burn dressings in
second-degree burns [16]

Polycaprolactone (PCL)/SSD Electrospinning Antibacterial scaffold [20]

P(3HB-co-4HB)/collagen
peptide/SSD Aminolysis Potential wound healing [9]

Polycaprolactone (PCL) and
Polyvinyl alcohol (PVA)/SSD Electrospinning Antimicrobial wound dressing [21]

Poly(lactic acid) (PLA)/SSD Electrospinning,
structural reconstruction Antimicrobial wound dressing [22]

Following the aforementioned background, in the present work, the surface archi-
tecture of P(3HB-co-4HB) was enhanced by incorporating collagen peptides and silver
sulfadiazine (SSD) as the antimicrobial mechanism agent. Two different scaffolds, namely
SSD coat/collagen peptide coat-P(3HB-co-4HB) [SSCC] and SSD blend/collagen peptides
coat-P(3HB-co-4HB) [SBCC] scaffold, were fabricated by the combination of salt leaching
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and freeze-drying techniques which are low cost and apply green technology to fabri-
cate the scaffolds. The study provides evidence for increased hydrophilicity due to the
incorporation of collagen peptide. This elucidates surface interface-cell interactions of
the modified P(3HB-co-4HB) scaffolds and release mechanism of the antimicrobial agent
from the scaffolds, thus driving the research effort forward for emerging infection-resisting
biomaterials in tissue engineering and regenerative medicine in the future.

2. Materials and Methods
2.1. Biosynthesis of P(3HB-co-95 mol% 4HB) Copolymer

The bacteria strains used in this study were Cupriavidus malaysiensis USMAA1020
transformant harbouring additional PHA synthase gene from Cupriavidus malaysiensis
USMAA2–4 to produce P(3HB-co-95 mol% 4HB) copolymer. The biosynthesis was carried
out as previously described [23]. A preculture of 5% (v/v) of the working volume was
transferred into 20 L fermenter (Biostat® C plus, Sartorius Stedim, German) containing
mineral salts medium (MSM) with carbon precursors (1,4-butanediol and 1,6-hexanediol in
the 1:5 ratio). The fermentation was carried out at 30 ◦C with an agitation speed of 200 rpm,
the aeration rate of 1 vvm and controlled pH of 7 for 108 h. Sampling was done at intervals
of every 12 h. The composition of PHA produced was determined by gas chromatography
(GC) using Shimadzu Gas Chromatography GC-2014 according to methods previously
described [24]. Endotoxin removal was carried out on extracted P(3HB-co-95 mol% 4HB)
copolymer as previously described. The extracted polymer was characterized based on the
molecular weight using Shimadzu GPC-2014 and tensile test using tensile testing machine
(GoTech Al-3000, Shimadzu, Japan) [24].

2.2. Surface Functionalization of SSD/Collagen Peptide-P(3HB-co-4HB) Scaffolds

Surface functionalization of P(3HB-co-4HB) was carried out by salt leaching and sol-
vent casting technique followed by freeze-drying method. Briefly, P(3HB-co-4HB) copoly-
mer was dissolved in chloroform (5.5% w/v) and sodium bicarbonate (NaHCO3) parti-
cles sieved with known mesh sizes (200 µm) were added as porogen with mass ratio of
salt:polymer at 6:1. The resulting polymer matrix was washed with deionized water to
leach out the porogens. The scaffolds were freeze-dried for 24 h and later vacuum-dried
for 48 h (BINDER GmbH, Tuttlingen, Germany) to remove any remaining solvent.

There were two types of scaffolds prepared using the various functionalization com-
bination methods by incorporating different concentration of collagen peptide (2.5 wt.%,
5 wt.%, 7.5 wt.%, 10 wt.%, 12.5 wt.%) and 0.04% (w/v) of SSD. Collagen peptide powder
from Tilapia fish skin with high purity (95%) and molecular weight of less than 3000 Da
was used (Hainan Zhongxin Chemical Co. Ltd., Haikou, China).

The SSD coat/collagen peptide coat-P(3HB-co-4HB) scaffold (SCCC) was prepared
by coating different concentration of collagen peptide in the silver (I) sulfadiazine (Sigma
Aldrich) dispersed in hydrochloric acid solution (1.0 mM, pH 3.0).

The preparation of SSD blend/collagen peptide coat-P(3HB-co-4HB) scaffold (SBCC)
was prepared with SSD added into the dissolved P(3HB-co-4HB) with NaHCO3 porogen
and then solvent cast, as mentioned above.

Cross-linking was carried out using GA vapor-phase technique where the scaffolds
were placed in an airtight desiccator containing 25% aqueous GA solution heated to 100 ◦C.
Subsequently, the samples were washed for 24 h to remove GA, and then dried in vacuum
for 24 h [8,25]. The scaffolds will be known as SCCC and SBCC from here on.

2.3. Characterization of Scaffolds

The functional group present in the scaffolds fabricated were determined and analyzed
using FTIR-ATR spectrophotometer (Model RX1, PerkinElmer, Buckinghamshire, UK). The
spectra of the samples were obtained in the range of wave number between 650 cm−1 and
4000 cm−1. The spectrum of the FTIR was recorded in transmittance mode as function of
wave number and the results were computed after 4 automated scans [24]. The surface
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morphology of the scaffolds coated with gold were mounted on aluminium stump and
was observed using scanning electron microscopy (SEM) (Leo Supra 50 VP Field Mission
SEM, Carl-Ziess SMT, Oberkochen, Germany). The scaffolds were cut into 1 cm × 1 cm.
The dry weight before immersion (mo) was used as the initial weight of the scaffolds. The
scaffolds were immersed in distilled water for 24 h. In order to obtain the wet weights
(mf), the immersed scaffolds were removed from the solution, gently wiped with absorbent
paper and air-died for 15 s before weighing. Water uptake was calculated using the
formula below:

Water uptake =
(

mo − m f

)
/ mo × 100% (1)

The contact angle of the fabricated scaffolds was conducted by using sessile drop
method (KSV CM200 Contact Angle) to determine their wettability properties. The scaffolds
were cut into 1 cm × 1 cm pieces. The scaffolds were placed on the instrument and the
droplet of water was then deposited on the polymer surface by a specialized microsyringe.
The water droplet was observed from the computer screen and the contact angle was
calculated. The porosity of the scaffolds was calculated using Image Analyser Software
(Olympus Co. Ltd., Tokyo, Japan). The values of 100 different spots were analyzed and
averaged [8].

2.4. Antimicrobial Activity

Four bacterial strains, which include Bacillus licheniformis, Staphylococcus aureus ATCC
12600, Escherichia coli ATCC 11303 and Pseudomonas aeruginosa ATCC 17588, were used.
Briefly, the tested bacterial suspensions (1.5 × 106 CFU/mL) were transferred in sterilized
nutrient broth. Then, 20 µL of the bacteria suspension (7.5 × 105 CFU/mL) was added to
each antimicrobial coated porous scaffold. The incubation is done under suitable conditions
for varied time intervals (0, 6, 12 and 24 h). In every 6 h interval, the scaffold with bacteria
adhesion was dissolved in 10 mL of distilled water and vortexed. After that, 100 µL of the
bacterial suspension was spread on nutrient agar to observe the colonization of bacteria.
The percentage of dead cells is calculated relatively to the growth control by determining
the number of living cells (CFU/mL) of each scaffold using the agar plate count method.
The percentages of inhibition were calculated using following Equation:

C% = (Co − Ce) / Co × 100% (2)

where C% is percentage of inhibition, Ce is CFU after incubation period and Co is initial
CFU before incubation period.

2.5. Biocompatibility and Cell Proliferation Evaluation

Mouse fibroblast cell culture (L929, ATCC) was cultured in cell culture flasks con-
taining Modified Eagle Medium (MEM) supplemented with 2 mM L-glutamine, 1.5 g/L
sodium bicarbonate, 1 mM of sodium pyruvate, 1000 U/mL penicillin-streptomycin and
10% (v/v) of bovine calf serum, which were incubated at 37 ◦C in 5% (v/v) CO2 for 2–3 days.
The various scaffolds fabricated and its positive control (P(3HB-co-4HB) without collagen
were cut in size (6 mm in diameter) fitting the 96-well flat bottom culture plate and steril-
ized under UV cross-linker (Spectrolinker™, XL-1000 UV Cross-linker, Westbury, NY, USA)
at 1200 µJ/cm2 for 30 min [8,9]. The scaffolds were then placed in the 96-well flat bottom
culture plate. Suspension of the mouse fibroblast cell lines (L929) [2.5 × 104 cells/mL]
were directly cultivated onto the scaffolds and film. The seeded scaffolds and film were
incubated in a 5% (v/v) CO2 incubator at 37 ◦C for 96 h. The cells viability and proliferation
were assayed with MTS[3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-
sulfophenyl)-2H-tetrazolium/PMS (phenazinmethosulfate). MTS and PMS solution were
used to evaluate the biocompatibility of the fabricated of scaffolds. Standard curve was
plot based on the cell density from the range of 1 × 103 to 5 × 105 cells/mL. The media was
used as the positive control and scaffolds without any incorporation of collagen peptide
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were used as negative control. The absorbance values were plotted against the counted cell
numbers, and thus a standard curve was established [9].

2.6. Statistical Analysis

The qualitative results were presented as means and standard deviation (s.d). The
qualitative data were analyzed using ANOVA and Tukey’s HSD test with SPSS 20.0 soft-
ware. All p values < 0.05 were considered significant.

3. Results and Discussion
3.1. Biosynthesis of P(3HB-co-4HB) via Batch Fermentation

The biosynthesis of P(3HB-co-4HB) copolymer was carried out using Cupriavidus
malaysianesis USMAA1020 transformant, which possessed an excess copy of the phaC
gene. This cultivation regulated 4HB molar fraction to achieve 95 mol% of P(3HB-co-
4HB) with PHA content of 78 wt.% and its concentration at 17.3 g/L in 20 L bioreactor,
the mixed substrates of 1,6-hexanediol and 1,4-butanediol at 1:5 ratio. The high 4HB
monomers are favored for implantable medical products. This was in agreement with the
previous study [23], the 1,6-hexanediol and 1,4-butanediol were utilized as carbon sources
as 4-hydroxybutyryl-CoA was initially formed and converted to 4-hydroxybutyrate. The
copolymer was recovered by the chloroform extraction method and subjected to physical
properties. Based on the results obtained, as summarized Table 2, the average molecular
weight (MW) of the polymer was 585 kDa while the polydispersity index was in the range
3.2. Besides, the tensile strength of the polymer was recorded at about 23 MPa with the
elongation at break around 611%.

Table 2. Physical and mechanical properties of P(3HB-co-4HB).

Copolymer
Tensile Strength Elongation at Break Young Modulus Mw Mn

PDI b

(MPa) a (%) a (Mpa) a (kDa) b (kDa) b

P(3HB-co-95
mol% 4HB) 23.2 ± 4 611.8 ± 1 226.6 ± 20 585 ± 8 132 ± 11 3.2 ± 0.5

Values are mean ± SD of three replicates; a Determined using Gotech Al-3000 tensile Machine; b Calculated from GPC analysis, Mn:
number-average molecular weight; Mw: weight average molecular weight; Mw/Mn: polydispersity index.

3.2. Fabrication of SBCC and SCCC Scaffolds

In this study a three-dimensional, porous scaffold was successfully engineered with
the use of a combination of techniques, namely particle leaching and freeze-drying. Figure 1
shows a schematic of the fabrication of porous antimicrobial SSD-P(3HB-co-4HB)-collagen
peptide scaffolds termed as SBCC and SCCC scaffolds. The system contained two phases
in developing a highly porous, well interconnected pore structure of the scaffold. The
first phase involved the particle leaching using NaHCO3 (200 µm), followed by the freeze-
drying technique. The combination of methods has shown many advantages over other
methods as it is easier to control pore structures. This will produce porous scaffolds
with open surface pores and interconnected bulk pores which will facilitate cell seeding
and homogeneous cell distribution and promote tissue regeneration [26,27]. Despite the
homogenous pores’ structures, the surface properties of these polymers are hydrophobic
which will possibly inhibit the infiltration of cell suspension into the scaffolds preventing
smooth cell seeding.

Therefore, it is crucial to modify the surface characteristic from hydrophobic to hy-
drophilic to facilitate cell seeding. In this case, the surface of the porous P(3HB-co-4HB)
scaffolds was coated with hydrophilic collagen peptide to increase the hydrophilicity of
the surface, thus improving cell interaction [28–30]. In this study, apart from the surface
modification of P(3HB-co-4HB) scaffold with collagen layer, incorporation of antimicrobial
agent, SSD was carried out. This was executed by introducing the SSD either through
blending (SBCC) or coating of the scaffolds (SCCC). Fabrication of scaffolds that release
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the antimicrobial agents or respond to infections is crucial in developing biomaterials in
tissue engineering [31–33].
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Besides, surface morphology is crucial in developing biomaterials as this determines
the cell-matrix interface interactions. As seen in Figure 2, the SEM micrographs reveal
the formation of the three-dimensional interconnected porous structure of SBCC and
SCCC scaffolds. Interestingly, the pore sizes observed using SEM were much smaller
than the range of porogen sizes (NaHCO3) used to create them. This could be attributed
to the combination of techniques used, mainly freeze-drying. Hence, combining salt
leaching with freeze-drying may enhance pore interconnectivity and assist the formation
of homogenous pores ranging from 100 to 200 µm [34]. However, SCCC scaffolds exhibited
rougher appearance with less interconnection and possessed numerous macropores as
compared to SBCC. Basically, the porous-based connectivity surface is favored to enhance
the ECM architecture and provide a larger space to induce cell-material interactions [35–39].
Additionally, both the scaffolds created similar morphology with generally amorphous
pores with smooth edge.

The fabricated scaffolds differed in terms of their construction. SSD coated onto
the porous SCCC scaffolds showed solubility in aqueous medium in contrast to the im-
pregnated collagen in SBCC. Hence, the collagen peptide coated P(3HB-co-4HB) porous
scaffold were then cross-linked via GA vapor phase. The dissolution analysis on scaffolds
of cross-linking and uncross-linking scaffolds were shown in Figure 3. The percentage of
dissolutions was significantly higher for uncross-linked SCCC scaffolds with the amount
retained only between 15% and 45%. On the contrary, the crosslinked SSD/collagen
peptide-coated P(3HB-co-4HB) scaffold exhibited collagen retain percentage from up to 80%
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to 90%. This demonstrates that cross-linking with GA enhanced the scaffolds resistance
to dissolution. After GA vapor cross-linking, the membranes became visibly yellowish
and shrunk dimensionally. The aldimine linkages (CH=N) between the free amine groups
of protein and GA attributes to the color change, whereas the covalent bond formed be-
tween the aldehyde groups of GA caused shrinkage [40,41]. The aldimine linkage was a
reflection of Schiff base reaction, whereby the carbon in the aldehyde group of GA was
attacked by nucleophilic nitrogen in the amino group of collagen peptides, and hence re-
placed the oxygen in the aldehyde group and eliminated water molecule [30]. Nonetheless,
GA cross-linking with vapor phase methodology showed low or no detectable cytotoxic
effects [25,42]. As described by Teixera et al. (2021), this will enable a sustainable approach
in achieving green methodology and the lowest environment impact possible at all stages
of fabrication for biomedical application [43].
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and (k) SBCC 12 wt.%.
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3.3. Functional Group Identification Using FTIR Analysis

FTIR analysis shown in Figure 4 was carried as an evidential analysis to determine and
analyze the characteristic bands that correlate to functional groups of the fabricated scaf-
folds. The FTIR spectrum for collagen (a) showed symmetric and unsymmetric stretching
of the primary amine (NH2) bands at 3275 cm−1 and 3150 cm−1, respectively. The hydroxyl
(OH) from carboxylic acid portion also is expected to be overlapped with the symmetric
amine at 3275 cm−1. The moderate peaks at 2937 cm−1 represent CH3 (bend) and CH2
(stretch) of the alkanes’ substructure. A strong band at 1633 cm−1 represents (C=O) from
the amide moiety. Another strong peak can be seen at 1531 cm−1 and represents NH2
bending [44–48]. The peaks of the (C=C) bands of the aromatic portion also can be clearly
observed between the peaks of 1531 cm−1 to 1449 cm−1. In addition, a moderate peak at
920.89 cm−1 would represent a C-H (out-of-plane) band from the aromatics.

In the case of P(3HB-co-4HB) polymer (b), moderate peaks at 2963 cm−1 and 2899 cm1

represent CH3 (bend), CH2 (stretch) and CH of the alkanes’ substructure. A strong band
at 1633 cm−1 represents (C=O) and another strong band at 1161 cm−1 exhibits the (C-O)
band [8,49].

Comparatively, the FTIR spectra of SBCC (c) and SCCC (d) are rather comparable to
each other as they exhibit all the expected bands and peaks of the designated collagen,
P(3HB-co-4HB) polymer and pure SSD. The major characteristic absorption peaks in both
FTIR spectra of SBCC (c) and SCCC (d) ca. 3283, 3150, 2900, 1719, 1630, 1540, 1450 and
1164 cm−1. The absorption peak at 3283 and 3150 cm−1 are assigned to NH2 symmetric
and asymmetric stretching, respectively. A distinctive peak at 2900 cm−1 represents CH3
(bend) and CH2 (stretch) of the alkanes’ substructure. Whilst the strong peak at 1719 cm−1

represents (C=O) peak. The absorption peak at 1630 cm−1 corresponds to NH2 bending.
The peaks at 1540 cm−1, 1450 cm−1 belong to the peaks of the (C=C) bands of the aromatic
portion. The peaks of asymmetric stretching vibration of (SO2) group cannot be resolved
in these spectra as the band of (C-O) can be dominantly seen in this fingerprint region at
1164 cm−1 [50].
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It was observed that the prominent characteristic peaks of SBCC (c) and SCCC (d)
with a few bands shift in comparison to each other with the dominant characteristics are
from the P(3HB-co-4HB) polymer (b) which are indicative of the reservation of the chemical
aspect of these blends production. It can be concluded that the SSD did not engage with
its active groups in any chemical interaction with any of the components of SBCC (c)
and SCCC (d) built up. From the FTIR spectra of the two, there is also no evidence of
electrostatic interaction nor chemical reaction have taken place between all the materials
that made up the blend due to very little shift of all the vibrational wavenumbers (i.e., less
than 5 cm−1) throughout the major bands of interest.

3.4. Porosity Analysis

The pores in scaffolds are imperative as they provide an ideal framework for cells to
bind, proliferate and form extracellular matrix. As such, here the porosity was determined
with six different collagen concentrations of the scaffolds. The fabricated scaffolds exhibited
a gradual drop of the pore size from 145 to 53 µm with increasing collagen concentrations
(Figure 5). Similarly, the porosity of the SBCC declined by 50% from the control scaffold.
This decrease in porosity could have been due to the larger collagen layer deposits on the
surface of scaffolds [51–55]. Based on various studies, pore sizes above 100 µm are ideal
for cell infiltration and migration. Interestingly, 10 wt.% scaffolds resulted in a desirable
pore size despite the higher concentration of collagen peptide. In developing biomaterial,
pore structures of scaffolds play a crucial role in facilitating cell seeding, cell penetration
and distribution in the scaffolds. Thus, the adhesion of cells and formation of new tissues
and organs occurs [56–58]. It is emphasized that an ideal scaffold depends on biomaterial
source, fabrication technique and the pore geometry. As such, it is vital to develop a
scaffold with specific porosity properties for potential application in tissue engineering
and regenerative medicine [59,60].
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3.5. Hydrophilicity of Fabricated Scaffolds

The hydrophilicity of the SCCC and SBCC scaffolds was determined using water con-
tact angle analysis (Table 3). The graph clearly showed a decline in the contact angle as the
concentration of collagen peptide increases, thus indicating the increase of hydrophilicity.
Ideally, a contact angle of less than 90◦ indicates that the surface is wet-prone, hence being
categorized as a hydrophilic surface [61–63]. Whole wetting was observed with the water
droplet becoming a flat puddle with 0◦ contact angle on SBCC and SCCC with 10 wt.%
and 12.5 wt.% collagen peptides. Additionally, the collagen peptide coating enhanced the
surface wettability of sample scaffolds. The significant hydrophilicity enhancing effect of
collagen peptide could be associated with the amino groups in collagen [64,65].

The wettability analysis of different sample collagen concentrations is demonstrated in
Figure 6. A steady rise of water uptake percentage with the increment of collagen peptide
concentrations can be observed. Water uptake ability elucidates the hydrophilicity of fabri-
cated scaffolds which will increase the efficiency of absorption of essential supplements
required for cell attachment. Overall, the collagen peptide coated P(3HB-co-4HB) scaffold
absorbed a larger amount of water, exceeding 100% (v/v) of the total volume of the scaffold
even at the low concentrations of collagen peptide (2.5 wt.%). As anticipated, the results
pointed out that the hydrophilicity of both SCCC and SBCC scaffolds have similar water
uptake ability. The water uptake ability properties of scaffolds are crucial in order to en-
hance the proliferation of a cell. The optimal design of a scaffold strongly depends on both
materials and the surface treatment in modulating cell seeding and proliferation [60,66].

3.6. Evaluation of Cell Proliferation of Fibroblast Cells on Scaffolds

In general, a functional scaffold requires the ability to support attachment and pro-
mote proliferation of cultured cells [67]. In line with it, the L929 fibroblasts cells behavior
towards SCCC and SBCC scaffolds with different collagen concentrations was investigated
as shown in Figure 7. Cells adhered well with progressive growth and by day three, the
scaffold surfaces supported high cell density. The cell proliferation was spotted to increase
significantly on scaffold coated with 2.5 wt.% until it reaches 10 wt.% as compared to the col-
lagen free scaffold. However, the number of fibroblast cells decreased (10.6 × 105 cells/mL)
at the highest collagen peptide concentration (12.5 wt.%). This may be attributed to the
reduction of pore size, which caused less pore accessibility and proliferation [8,30,68,69].
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In the current study, 10 wt.% collagen coated scaffold with pore size around 108.6 ± 8.7 µm
demonstrated highest proliferation rate (12.4 × 105 cells/ mL), as shown in Figure 8, in
comparison to control, as well as 2.5 wt.%, 5 wt.% and 7.5 wt.% collagen coated scaffolds.
In short, scaffolds fabricated using combined techniques displayed the highest cell prolif-
eration. These findings clearly implied the enhancement of cell proliferation attributes to
the effects of collagen on cell viability. In short, these findings clearly demonstrated the
process of incorporating collagen layer on the scaffold is an efficient way to initiate cell
attachment and supports cell growth [63,64].

Table 3. Water contact angle of scaffolds with various collagen peptide concentration.

Collagen Peptide (wt.%)
Types of Scaffolds

Coat/Coat Blend/Coat

0
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Figure 8. Micrograph of proliferation of L929 cells on (a) control-P(3HB-co-4HB), SCCC scaffolds (b) SCCC 10 wt.%. Data
represent means ± SD (n = 5).

3.7. Antimicrobial Analysis of SCCC and SBCC Scaffolds

Antimicrobial analysis was carried out using the colonization test as summarised
in Table 4. Antimicrobial substance, silver sulfadiazine (SSD), was incorporated in the
scaffolds. Silver compounds, especially (SSD), has been widely used as an antibacterial
agent in various biomedical applications [69,70]. Based on the results obtained, both SCCC
and SBCC scaffolds revealed desirable antimicrobial effects. However, SBCC scaffolds
required 48 h to inhibit certain pathogenic microorganisms which was due to the elution of
silver sulfurdiazine impregnated with SSD possessed, whereby Ag ions were physically
entrapped in the scaffolds where controlled release of antimicrobial agent occurred [70].
Meanwhile, the results revealed that in SCCC with scaffolds, the silver ion was continuously
released directly leading to almost 100% inhibition for most of the microorganism within
12 h. Both scaffolds showed different functionality according to the releasing rate of silver
ion. The schematic of the antimicrobial release of both the scaffolds is illustrated in Figure 9.
The SCCC scaffolds, which rapidly release SSD, are thus appropriate for further work
towards dermal application, especially skin damage to the epidermis and the upper dermis
that can be regenerated spontaneously and healed in relatively shorter periods [71–74]. On
the condition of chronic wounds, such as diabetic ulcers, long-term release of antimicrobials
is highly suggested since regeneration occurs at the edges of injuries [75]. Therefore, the
SBCC scaffold can be beneficial for such cases. The antimicrobial effect of SBCC scaffold
is effective by the significantly prolonged release of silver ion, which continues to kill
microbes after the release system is exhausted. The release of silver ions is accompanied
by the contact killing of the layer that contains silver ion gradually released by diffusion
and scaffold degradation [69]. Furthermore, according to Heo and coworkers [73], silver
sulfadiazine binds with microbial DNA and releases the sulfonamide, interfering with the
intermediary metabolic pathway [76].
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Table 4. Antimicrobial test of SCCC and SBCC scaffolds against various microorganisms.

Time (h)
Inhibition of Microorganisms (%)

6 12 24 48

SCCC SBCC SCCC SBCC SCCC SBCC SCCC SBCC

Staphylococus aerus
ATCC 12600 65 ± 5 13 ± 1 85 ± 3 36 ± 5 100 ± 0 83 ± 8 NA 100 ± 0

Escherichia coli
ATCC 11303 79 ± 8 34 ± 5 100 ± 0 51 ± 9 100 ± 0 92 ± 6 NA 100 ± 0

Pseudomonas aeruginosa
ATCC 17588 85 ± 7 43 ± 9 100 ± 0 45 ± 5 100 ± 0 87 ± 12 NA 100 ± 0

Bacillus licheniformis 98 ± 2 65 ± 10 100 ± 0 95 ± 5 100 ± 0 100 ± 0 NA 100 ± 0

Candida albicans 93 ± 7 33 ± 6 100 ± 0 71 ± 10 100 ± 0 94 ± 6 NA 100 ± 0

Values are mean ± SD of three replicates; NA denotes not applicable.
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4. Conclusions

In this study, we demonstrated that a combination of a simple and green approach
to fabricate collagen and SSD incorporated P(3HB-co-4HB) scaffolds using porogen leach-
ing and freeze-drying techniques. In comparing the SCCC and SBCC scaffolds, both the
scaffolds differed in the incorporation of antimicrobial agent. Biomaterial based microbial
infections pose serious concerns in the biomedical field. This study focuses on the develop-
ment of highly efficient potential biomaterials that release the antimicrobial agents. This is
in response to the limitations caused by some biomaterials with antimicrobial properties
that inhibit microbial infections but slow down the cell seeding and tissue integration.
Here, both the SCCC and SBCC scaffolds enhanced cell seeding and proliferation of L929
cells. Nonetheless, SCCC has higher antibacterial efficiency within the first 24 h, whereby
the antibiotic is rapidly released as compared to the controlled release of the antimicrobial
properties in SBCC scaffolds. Entrapment of SSD in P(3HB-co-4HB), as in SBCC, resulted
in a reduced burst release of SSD as compared to SCCC. Nonetheless, both the SCCC and
SBCC scaffolds could be an excellent candidate to inhibit microbial colonization based on
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the biomaterial application without causing antibiotic resistance. The study provides evi-
dence and elucidates the surface interface-cell interactions of the modified P(3HB-co-4HB)
scaffolds and release of the antimicrobial agent from the scaffolds, thus paving the way in
developing infection-resistance biomaterials in the biomedical field in the future.
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