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The chromatin environment plays a central role in regulating developmental gene expression in metazoans. Yet, the ances-

tral regulatory landscape of metazoan embryogenesis is unknown. Here, we generate chromatin accessibility profiles for six

embryonic, plus larval and adult stages in the sponge Amphimedon queenslandica. These profiles are reproducible within stages,
reflect histone modifications, and identify transcription factor (TF) binding sequence motifs predictive of cis-regulatory el-

ements operating during embryogenesis in other metazoans, but not the unicellular relative Capsaspora. Motif analysis of

chromatin accessibility profiles across Amphimedon embryogenesis identifies three major developmental periods. As in bilat-

erian embryogenesis, early development in Amphimedon involves activating and repressive chromatin in regions both prox-

imal and distal to transcription start sites. Transcriptionally repressive elements (“silencers”) are prominent during late

embryogenesis. They coincide with an increase in cis-regulatory regions harboring metazoan TF binding motifs, as well

as an increase in the expression of metazoan-specific genes. Changes in chromatin state and gene expression in

Amphimedon suggest the conservation of distal enhancers, dynamically silenced chromatin, and TF-DNA binding specificity

in animal embryogenesis.

[Supplemental material is available for this article.]

Embryogenesis occurs in most animals and includes fertilization,
activation of the zygotic genome, cell proliferation, cell differenti-
ation, and patterning (Kalinka and Tomancak 2012). Conserved
transcription factors (TFs) and signaling pathways, Hedgehog,
Notch, TGFB, and Wnt, underlie these processes across metazoan
development (Carroll 2008; Levin et al. 2016). Despite this conser-
vation, embryogenesis varies markedly between andwithin phyla,
suggesting that changes in gene expression and regulation are the
basis for animal body plan diversification (Wray 2003; Carroll
2008; Kalinka and Tomancak 2012).

The chromatin environment plays a key role in regulating
complex developmental programs. Within this environment, cis-
regulatory elements, including promoters and enhancers, orches-
trate the precise gene expression patterns required formulticellular
development. Via their interaction with trans-acting proteins,
notably TFs, cis-regulatory elements modulate the chromatin ac-
cessibility landscape and define cell states, identities, and develop-
mental fates (Zeitlinger 2020). Where promoters are primarily
involved in initiating transcription, enhancers play an essential
role in tuning expression in a spatiotemporal context (Long
et al. 2016).

Sponges (poriferans) are widely considered one of the earliest
branching extant animal phyla. Their body plan is simple:
Sponges have no nervous system, muscle cells, or gut. Yet, their
regulatory genome and gene repertoire is complex and animal-
like. Amphimedon displays an extensive repertoire of noncoding el-
ements, including microRNAs, long noncoding RNAs, and

piwiRNAs (Grimson et al. 2008; Gaiti et al. 2017; Calcino et al.
2018). The larval and adult stages possess metazoan regulatory in-
novations, including distal regulatory elements and bivalent pro-
moters (possessing both activation and repressive histone marks),
both of which are not found in the unicellular relative Capsaspora
(Bernstein et al. 2006; Bulger and Groudine 2011; Fernandez-
Valverde and Degnan 2016; Sebé-Pedrós et al. 2016; Gaiti et al.
2017). Furthermore, despite the lackof primary sequence conserva-
tionand the absenceof shared cell types, developmental enhancers
in conservedmicrosyntenic regions inAmphimedondrive cell type–
specific expression in developing vertebrates (Wong et al. 2020).
This last discovery suggests a cis-regulatory grammar arose before
the divergence of sponge and vertebrate lineages some 700million
years ago andhas beenmaintained in conserved genomic regulato-
ry blocks.

Advances in sequencing technology have enabled the
mapping and characterization of the metazoan gene regulatory
landscape during embryogenesis. Transcriptomes have been com-
pared across the development of multiple divergent animal phyla
(Levin et al. 2016), and post-translational histone modifications
have also been profiled during development in several species
(Bogdanovic ́ et al. 2012; Schwaiger et al. 2014; Daugherty et al.
2017; Gaiti et al. 2017; Jänes et al. 2018; Domcke et al. 2020;
Floc’hlay et al. 2021). With the advent of transposase-accessible
chromatin using sequencing (ATAC-seq) (Buenrostro et al. 2015),
genome-wide profiling of chromatin accessibility across develop-
ment can also be undertaken using small amounts of starting

Corresponding authors: b.degan@uq.edu.au,
e.wong@victorchang.edu.au
Article published online before print. Article, supplemental material, and publi-
cation date are at https://www.genome.org/cgi/doi/10.1101/gr.275864.121.

© 2022 Cornejo-Páramo et al. This article is distributed exclusively by Cold
Spring Harbor Laboratory Press for the first six months after the full-issue publi-
cation date (see https://genome.cshlp.org/site/misc/terms.xhtml). After six
months, it is available under a Creative Commons License (Attribution-
NonCommercial 4.0 International), as described at http://creativecommons.
org/licenses/by-nc/4.0/.

Research

474 Genome Research 32:474–487 Published by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/22; www.genome.org
www.genome.org

mailto:b.degan@uq.edu.au
mailto:e.wong@victorchang.edu.au
https://www.genome.org/cgi/doi/10.1101/gr.275864.121
https://www.genome.org/cgi/doi/10.1101/gr.275864.121
http://genome.cshlp.org/site/misc/terms.xhtml
https://genome.cshlp.org/site/misc/terms.xhtml
https://genome.cshlp.org/site/misc/terms.xhtml
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://genome.cshlp.org/site/misc/terms.xhtml


material to provide insights into the genomic environment where
the transcriptional machinery operates (Daugherty et al. 2017;
Sebé-Pedrós et al. 2018b; Esmaeili et al. 2020).

Hence, to study the chromatin dynamics of embryogenesis in
an early-branching metazoan phylum, we profiled the chromatin
accessibility of Amphimedon queenslandica across eight life stages.
We interrogated differentially accessible regions across develop-
mental stages to identify the collection of cis-regulatorymotifs un-
derpinningAmphimedon embryogenesis.We integrated chromatin
structure and gene expression atmatched life stages to characterize
developmental dynamics and to infer the regulatory genome of
earlymetazoans. Finally, we tested the ability ofAmphimedon chro-
matin-accessible sequences to predict other species’ developmen-
tal cis-regulatory regions using a machine-learning framework.

Results

Dense chromatin accessibility landscapes across Amphimedon
embryogenesis

To investigate the genome-wide dynamics of chromatin accessibil-
ity during A. queenslandica embryogenesis, we collected individual
animals from the following embryonic stages: white, brown,
cloud, spot, ring, late ring embryonic stages; planktonic larval
and sessile adult stages in triplicate (duplicate in late ring stage).
We mapped transposase-accessible chromatin by short-read se-
quencing (ATAC-seq) across the eight life stages. Amphimedon is a
viviparous sponge and embryonic stages occur throughout the
year in brood chambers (Degnan et al. 2015). Embryogenesis is
staged by the position and pattern of pigment cells in the embryo
(Fig. 1A). Early cleavage stages are termed white-stage embryos. At
this stage, blastomeres are irregular in size and shape and aremixed
with maternal nurse cells. The transition to a two-layer embryo is
called the brown stage, which is characterized by dispersed pig-
ments. This is followed by the cloud stage, in which the pigment
cells mark the anterior–posterior axis. Subsequently, pigment cells
begin to concentrate at the posterior pole defining the spot and
ring stages, each with their specific patterns of pigmentation.
These stages are also characterized by the appearance of specific
cell types.

Across all life stages, we identified a total of 40,218 nonover-
lapping ATAC-seq peaks (P<1×10−5) (Supplemental Table S1).
These spanned 32 Mb (20%) of the Amphimedon genome. The me-
dian number of peaks was 19,225; the average fraction of reads in
peaks across libraries, 23% (Supplemental Table S2). Peak counts
were highly correlated among biological replicates (Supplemental
Figs. S1, S2). Overlaps to genome-wide chromatin states defined
by histone marks (H3K4me3, H3K27ac, H3K27me3, H3K4me1,
H3K36me3) and PolII binding in adults (Gaiti et al. 2017), revealed
overall enrichment of the ATAC-seq peaks in the active parts of the
sponge genome. ∼64% of consensus ATAC-seq peaks matched a
nonquiescent region compared with the genome background
(42%) (binomial test P= 2.1×10−322, OR>2).

Of all stages, adults have the higher number of peaks and the
highest number of expressed genes, which likely reflects the great-
er complexity of cell types in adulthood (Fig. 1B; Supplemental
Table S3). On the other hand, the highest number of stage-specific
peaks was found at the earliest cleavage white stage. We also ob-
served that the typical periodicity of read fragment density, which
reflects the regular positioning of nucleosomes, was not observed
at this stage in any replicated individual (Fig. 1C; Supplemental
Fig. S3). Further analysis suggests that this observation may reflect

an abundance of maternal nurse cells, which undergo apoptosis in
the early embryo (Eden et al. 2009; Degnan et al. 2015). We found
genes proximal to white-stage-specific peaks showed a sixfold en-
richment in apoptosis-related pathways (GO term “anoikis,” hy-
pergeometric test, P=1.3×10−4).

Although the Amphimedon genome is compact and gene
dense, where ∼60% of the genome is genic, 61% ATAC-seq peaks
were located more than ±500 bp from the transcriptional start
sites (TSSs) of coding genes (Supplemental Fig. S4; Fernandez-
Valverde and Degnan 2016). Examining distal peaks, we found
that they were more dynamically regulated compared with TSS
proximal peaks (χ2 test, P=7.9×10−18, OR=1.7) (Fig. 1D). This
confirms prior results that distal regulatory elements tend to be
cell type–specific, whereas promoters are more constitutively ac-
cessible across all cell types (Bulger and Groudine 2011; Klemm
et al. 2019).

The genomic locations of where ATAC-seq peaks were located
corresponded more closely between sponges, worms, flies, and
humans than the unicellular organism Capsaspora, potentially re-
flecting a common metazoan genome organization. For example,
∼40% of metazoan developmental open-chromatin regions were
at proximal regulatory regions (Fig. 1E; Supplemental Fig. S5;
Sebé-Pedrós et al. 2016). Amphimedon peaks numbers were also
comparable to the numbers of cis-regulatory elements identified
in other metazoans during development, including Caenorhabditis
elegans and zebrafish (Bogdanović et al. 2012; Daugherty et al.
2017; Jänes et al. 2018). Amphimedon ATAC-seq peak widths were
also similar to those of the fruit fly and human, ranging between
260 and 538 bp (Fig. 1F; Supplemental Table S3; Sebé-Pedrós
et al. 2016).

Despite the rapid evolution of regulatory sequences, we
found 436 proximal and 772 distal Amphimedon peaks weakly
mapped to the human genome with an overlap of ≥1 bp, poten-
tially suggesting a small degree of regulatory conservation
(BLASTN E-value <1×10−3). Based on human gene functional
term annotation, association with the closest sponge gene re-
vealed these aligned distal peaks were significantly enriched in en-
vironmental sensing terms (hypergeometric test, false-discovery
rate [FDR] < 7 ×10−8) (Supplemental Table S4).

We next assessed differential chromatin accessibility between
consecutive stages to interrogate chromatin dynamics during
developmental transitions.We found 4751 peaks that are differen-
tially accessible between consecutive life stage (Methods; Fig. 1G–

H). The greatest change in accessibility occurred during early em-
bryogenesis, during the transition between the white and brown
stages, consistent with the high number of stage-specific peaks at
the white stage (Fig. 1B,G). Focusing on the TSS, we next mapped
the density of ATAC-seq reads upstream of and downstream from
the TSS region for each stage of development. We found the high-
est level of accessible chromatin was located immediately before
the TSS in the white stage but after the TSS in the ring, late ring,
and adult stages (Fig. 1I; Supplemental Fig. S6). At downstream
coding regions, overall chromatin accessibility was most reduced
in the white stage, suggesting that transcription has not yet been
initiated, despite accessible chromatin at the TSS. Based on this,
we can also infer that the measured RNA at this stage is likely to
be predominantly maternally deposited. An increase in down-
stream accessibility occurs as embryogenesis progresses, indicating
increased transcription in the developing embryo following loss of
the maternal nurse cells (Fig. 1H). Consistent with this, many
genes that are accessible during early embryogenesis inDrosophila,
zebrafish, mouse, and human are not transcribed until later
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Figure 1. Overview of Amphimedon cis-regulatory regions. (A) Amphimedon queenslandica developmental stages. The number of ATAC-seq libraries for
every developmental stage is shown. (B) Total and unique number of ATAC-seq peaks by developmental stage. Numbers for each stage calculated using the
arithmetic mean across replicates. A peak must have at least a normalized count above 10 in at least one stage. Summary plot across stages required peaks
with a mean count per million above zero across all replicates for each stage. (C) Density plot of ATAC-seq fragment length (base pair). (D) Pie charts show
the number of proximal (within 500 bp of the TSS) and distal peaks for (1) constitutively open peaks and (2) those not accessible in all developmental
stages. χ2 test was used to compute P-value. Accessible peaks across all stages: over zero normalized counts across all libraries. Peaks with varying acces-
sibility in all stages: normalized count over one in three or more libraries. (E) Boxplot of ATAC-seq peak width and insert size. Numbers for each stage cal-
culated using the arithmetic mean across replicates. (F) Distribution of Amphimedon, C. elegans, human, and Capsaspora ATAC-seq peaks across genomic
features (Buenrostro et al. 2013; Sebé-Pedrós et al. 2016; Daugherty et al. 2017). Promoter region is defined as a region within 500 bp of the TSS for all
species. Downstream is defined as ≤300 bp of the end of a gene. (G) Alluvial plot shows peak dynamics across life stages for peaks that change between at
least one life stage (n=4751) (n=808, 1422, 334, 202, 3, 0, 851, and 509 more-accessible peaks for white, brown, cloud, spot, ring, late ring, larval, and
adult, respectively; n=1422, 808, 693, 213, 48, 0, 202, and 563 less-accessible peaks for the same stages). Differential accessibility determined by beta-
binomial model (Methods). (H) Genome browser view of read coverage at selected dynamically accessible regions (TBX5: Aqu2.1.27488; FOXO3:
Aqu2.1.27411; HMGB-like: Aqu2.1.41331; Kelch-like: Aqu2.1.41157; Aqu2.1.43989) and a selected consistently accessible peak (Aqu2.1.24077) across
all life stages. (I) Chromatin accessibility read density around the TSS (within 1 kb) by life stage. Peaks were used only if at least 50% of bases overlapped
across biological replicates.
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development (Blythe and Wieschaus
2016; Lu et al. 2016;Wu et al. 2016; Pálfy
et al. 2020).

Amphimedon embryogenesis involves

transcriptionally activating and

repressive chromatin

Developmental cell fate decisions in-
volve the interplay between repressive
and active interactions. TF and cis-reg-
ulatory elements frequently repress
genes (Koenecke et al. 2017; Pang and
Snyder 2020; Zeitlinger 2020). Hence,
open chromatin regions can harbor cis-
regulatory elements with either activat-
ing or repressive potential (Bernstein
et al. 2006; Schoenfelder et al. 2018). To
identify potential activating and repres-
sive cis-regulatory elements, we integrat-
ed chromatin accessibility with gene
expression data by leveraging a compre-
hensive set of CEL-Seq data for 61 indi-
viduals at matched Amphimedon life
stages (Levin et al. 2016). Of the 10,766
expressed genes with a median count
per million of 10 in at least one stage,
7451 genes (69%) were proximal to at
least one ATAC-seq peak within 1 kb of
the TSS (Fig. 2A,B). Genes involved in
transcription and cell-to-cell communi-
cation tend to be adjacent to a higher
number of chromatin-accessible regions
(Supplemental Fig. S7).

To examine the stage-specific inter-
play between chromatin and transcrip-
tion, we used conditional probability to
examine the relationship between the
presence/absence of gene expression
and the presence/absence of accessible
chromatin. Conditional analysis allowed
us to account for peak number variation
between stages owing to uneven se-
quencing depth.We found that the prob-
ability of gene expression, given the
presence of a proximal ATAC-seq peak,
was most reduced at ring stages (19%
comparedwith40%–50% inother stages)
(Fig. 2C).

We next integrated chromatin
accessibility and gene expression data to
establish potential activating and repres-
sive cis-regulatory elements. We took a
two-step approach to identify regulatory
pairs by associating peaks that were up to 1 kb from an active
TSS. We used LASSO regression (Tibshirani 1996) to determine
the most informative peaks and classified peaks into either repres-
sive or activating based on the correlation of chromatin regions to
the expression of genes across life stages. A cis-regulatory region
with increased accessibility with increasing gene expression will
positively associate (termed “activating”). On the other hand, a
cis-regulatory element correlated to decreased expression would

have a coefficient term below zero (termed “repressive,” i.e., in-
creased accessibility at these regions corresponded to lower expres-
sion across time). Where only one peak was proximal to a gene,
ordinary least squares regression was used. In total, 5254 peaks
were positively associated with gene expression, and 3686 peaks
were negatively correlated.

To assess whether these assignments of activating and repres-
sive regions were biologically meaningful, we overlapped the

E F

BA

C
D

Figure 2. Interplay between transcription and proximal cis-regulatory elements. (A) Number of cis-reg-
ulatory peaks near Amphimedon genes (flanking 1 kb of the TSS). Number of genes was log10-trans-
formed. (B) Percentage of chromatin-accessible/inaccessible peaks near expressed/unexpressed genes
for each life stage (flanking 1 kb of the TSS) (expressed genes were defined as those with one or more
median cpm in stage; accessible peaks were those with one or more median normalized counts in every
stage). (C) Conditional probability of gene expression given proximal ATAC-seq accessibility. (D)
Heatmap denotes the ratio between silencer and active sets of peaks and proximal genes overlapping
adult Amphimedon histone marks and PolII binding sites. Peak and gene are considered active if there
is a positive association between chromatin accessibility and gene expression across time. Silencers are
defined as those negatively associated between ATAC-seq peak and gene. (E) Forest plot shows the pro-
portion of peaks that are active versus repressive at each life stage. Fisher’s exact tests are used to assess
the significance of change relative to the total number of active and repressive peaks identified. Bars
denote 95% confidence intervals. (F ) Change in average chromatin accessibility read counts for active
and silencer peaks.

Chromatin dynamics in sponge embryogenesis

Genome Research 477
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275864.121/-/DC1


regions to histone marks profiled in adult Amphimedon. Attesting
to our overall ability to distinguish between cis-regulatory regions
with opposing regulatory function, we found a high correspon-
dence between inferred gene activity based on histone marks
and peak classification. Active chromatin marks in adults, particu-
larlyH3K4me3,were highly enriched at positively correlated peaks
and genes proximal to these regions. On the other hand, the re-
pressive polycomb-mediated H3K27me3 mark, also profiled in
adults, was enriched at negatively correlated peaks, consistent
with H3K27me3 regions marking silencers (Fig. 2D; Cai et al.
2021). Linking this corroborating information to developmental
stages, we saw a shift toward increased silencing atmid and late de-
velopment, whereas activating peaks were most prevalent during
early embryogenesis and adulthood (Fig. 2E,F). In line with this,
we found increased accessibility at motifs of RE1-silencing tran-
scription factor (REST) during late development (FDR<0.01;
Methods) (Supplemental Table S5), where regions bound by
REST have been associated with the H3K27me3 mark during the
differentiation of murine neuronal cells (Arnold et al. 2013).

In summary, by integrating chromatin accessibility and gene
expression, our results suggest that transcriptional repression plays
a crucial role in dynamically controlling Amphimedon develop-
mental gene expression. The repressive chromatin marks,
H3K9me3 and H3K27me3, are lacking in some unicellular organ-
isms (Sebé-Pedrós et al. 2016), supporting the notion that tran-
scriptional control of development through repressive elements
is a critical component of multicellularity.

Human TF binding motifs separate developmental transitions in

Amphimedon

To elucidate the dynamic changes in DNA sequence associated
with developmental gene expression, we used position-weighted
matrices (PWMs) to search for TF bindingmotifs underlying acces-
sible chromatin. In our use of PWMs, we leveraged the fact that TF
gene families are highly conserved (Nitta et al. 2015; Kribelbauer
et al. 2019), and used mammalianmatrices to identify knownmo-
tifs. To assess motif enrichment for each time point, we combined
motif alignment scores and ATAC-seq counts tomeasure the acces-
sibility of each motif for each library (n=386 PWMs) (Methods;
Supplemental Table S5). A set of background peaks matched for
GC content and average accessibility was used to assess motif
enrichment.

Unsupervised clustering ofmotif accessibility scores clustered
the libraries into three major groups, recapitulating the groupings
by developmental trajectory based on both peak counts and gene
expression (Fig. 3A–D). We identified 85, 17, and 74 up-regulated
differential accessible motifs at the early, mid, and late develop-
mental stages, respectively (adjusted P-value <0.05), with the
greatest changes, both in terms of significance and total number
of motifs, occurring in early embryogenesis (Fig. 3E,F). Top motifs
at early embryonic stages were associated with TFs linked to stem
and cancer cell states, including MAX, E2F4, and Kruppel like fac-
tors (KLFs). Motifs enriched during mid-embryogenesis included
RREB1, tumor suppressor TP53, and glucocorticoid receptor
NR3C1. Late development showed enrichment for the FOS::JUN
dimer,MEIS, and ISLmotifs. To explore regulatorymotifs underly-
ing accessibility dynamics that did not correspond to known mo-
tifs, we performed de novo searches for 8-mers and identified
differentially enriched accessible regions between sponge develop-
mental stages (Supplemental Table S6; Supplemental Fig. S8). We
identified 32,896 enriched 8-mers across consensus peaks relative

to a random background set of matched GC content and an aver-
age number of fragments across all stages (Methods). Of these,
12,523, 6080, and 7277 8-mers were differentially accessible be-
tween early, mid, and late development, respectively (FDR<
0.05). We searched for similarities of the top six 8-mers for each
stage, ranked by statistical significance (n=18motifs), against JAS-
PAR PWMs. Only six of these 18 8-mers showed discernible simi-
larities to known PWMs (q-value< 0.5) (Supplemental Table S7).

TFs are known to interact cooperatively or competitively in
binding to DNA, and enhancers that harbor different TF binding
sites show more activity than those with a single binding site
(Zinzen et al. 2009; Smithet al. 2013).Hence,we examined themo-
tif colocalization among the top 10 most differentially accessible
JASPAR motifs at each Amphimedon developmental stage in a pair-
wisemanner. Earlyhighly significant colocalizedTFmotifs include
MNT&SP4andSP4&BHLHE40 (z-score > 10) (Supplemental Table
S8). Amphimedon orthologs for these genes include an ortholog to
MNT, a member of the MYC/MAX/MAD network (Aqu2.1.41999),
and two SP4-like orthologs (Aqu2.1.26963, Aqu2.1.26964). No
one-to-one ortholog to human BHLHE40 has been identified, al-
though the Amphimedon genome contains multiple bHLH genes,
includingARNTL, which is a core component of the circadian clock
in mammals that interacts with BHLHE40 (Aqu2.1.29954,
Aqu2.1.05065).

We further examined TF cooperatively and antagonism by
calculating the correlation coefficient of motif pairs across life
stages. In contrast to testing for motif co-occurrence above, this
measured the correlation of motif accessibility across develop-
ment. A positive correlation suggests the binding proteins are ac-
tive at the same developmental stage even though the proteins
may not directly interact at the same locus. A negative correlation
coefficient suggests the binding proteins are enriched at different
developmental times. As expected, for the top 10 most differen-
tially accessible motifs at each stage, motif pairs were generally
strongly positively correlated, suggesting their cognate TFs were
active at the same stage and may cooperate in similar molecular
processes (Supplemental Table S9). For example, YY1 and KLF13/
14 motifs were both highly accessible during early embryogenesis
(Pearson rho=0.9). Incidentally, these motifs also co-occurred in
the same peak, suggesting their cognate proteins may interact
(OR=2.30). In contrast, a strong negative correlation was appar-
ent between YY1 and TP53 (Pearson rho=−0.7), where YY1
was most accessible during mid-embryogenesis when TP53 was
low. Consistent with this, YY1 negatively regulates TP53 and
has dual activator and repressor function in other animals (Sui
et al. 2004).

In summary, we find chromatin-accessible regions harbor
specific combinations of TF motifs in a developmental stage-de-
pendent manner. These relationships in Amphimedon can be in-
ferred using human TFs profiles, revealing a potential deep
conservation of TF binding–DNA specificity.

Up-regulation of metazoan TFs during late embryogenesis

In zebrafish and fly, gene expression during development shows
strong phylogenetic signatures corresponding to gene age
(Domazet-Lošo and Tautz 2010). We asked whether a similar evo-
lutionary pattern for gene expression and cis-regulatory regions
exists in the sponge. To this end, we combined information on
the phylogenetic age of Amphimedon genes with our time-series
expression and chromatin accessibility data. We used 4967 ex-
pressed sponge genes that mapped to human using the
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TreeFam database; 2853 were of eukaryotic origin, 1003 of meta-
zoan origin, and 1110 originated earlier at the opisthokonts (Li
et al. 2006). Expression values were grouped by the age of the as-
sociated gene and normalized to total expression (Methods).

Genes of eukaryotic-origin initiated early in Amphimedon devel-
opment, whereas metazoan-specific genes dominated the expres-
sion profile as development progressed (Fig. 4A–D). A similar
increase in the expression of metazoan-specific genes as

BA

C

E

F

D

Figure 3. Motif analyses define three major Amphimedon developmental transitions. (A) Heatmap of Pearson correlation for each library based on TF
motif deviation scores. Hierarchical clustering of rows and columns was performed (Methods). (B) Hierarchical clustered heatmap of Pearson correlation
of the most variable 2000 peaks based on log10-transformed ATAC-seq read counts across life stages. (C) Hierarchical clustered heatmap of the most var-
iable 1000 genes based on expression (counts per million) across life stage. (D) Heatmap of the top differentially enriched motifs (right) based on motif
accessibility, where heatmap values represent motif deviation z-score (Methods). (E) Volcano plot of differentially enriched motifs between the early
and mid stages. (F ) Volcano plot of differentially enriched motifs between the mid and late stages. Each colored dot represents a motif, and the size of
the dot is relative to the −log10(q-value). The x-axis is the log fold change. (Early) White and brown; (Mid) cloud, spot; and (Late) ring, late ring, and larval.
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development progressed has been reported in fly and zebrafish
(Domazet-Lošo and Tautz 2010).

Next, in a similar manner, we tested
whether this trajectory is reflected by
chromatin accessibility.Here, high scores
implied increased accessibility at the pro-
moters of younger genes, whereas low
values reflected the accessibility at pro-
moters ofmore ancient genes.Consistent
with gene expression, the cis-regulatory
elements of metazoan genes became
increasingly accessible during late devel-
opment (Fig. 4E). Late developmental
peaks were highly enriched for motifs
from metazoan genes but not genes
whose origin predate metazoans (eukary-
otic or opisthokont; Fisher’s exact test P=
2×10−8, OR=4.6) (Fig. 4F). In contrast,
early developmental peaks were enriched
for motifs of ancient/eukaryote-specific
genes (OR=1.9) (Fig. 4F). Reassuringly,
TFs linked tomotifs we previously identi-
fied at late developmental peakswere also
more highly expressed during late devel-
opment than in other stages (Fig. 4G).
We further sought to determine whether
there were differences in regulatory
mechanisms among the TFs of differen-
tially accessible bindingmotifs across de-
velopment. We used TRRUST, a curated
database of gene–gene interactions, to in-
fer the mode of action (either activating
or repressive) between the TFs that were
associatedwith the 15most differentially
accessible motifs for each developmental
stage and their associated gene targets
(Han et al. 2018). Over 50% of the peaks
containing thesemotifs canbe associated
with an expressed gene (within 1 kb of
the TSS). TFs ofmotifs enriched in late de-
velopment were significantly more likely
to show a repressive mode of action than
early and mid-stage TFs (Fisher’s exact
test, P=6.4 ×10−5, OR=1.6) (Fig. 4H).

Taken together, we identified in-
creased metazoan gene expression and
chromatin accessibility at promoters as
embryogenesis progresses.Motifs at chro-
matin-accessible regions during late
development corresponded to highly ex-
pressedmetazoanTFs enriched for repres-
sive function.

Amphimedon cis-regulatory motif

composition distinguishes

developmental cis-regulatory elements

To further dissect the sequence basis for
our chromatin-accessible regions, we
used a machine learning framework to
test whether TF binding sequence motifs
could distinguish between proximal and

distal Amphimedon peaks (Methods; Fig. 5A; Supplemental Fig. S9).
We generated 10 balanced data sets formodel training and testing,

E F

BA

C D

G H

Figure 4. Metazoan TF motifs are enriched in late development. (A) Relative expression values for
sponge genes that can be traced to a eukaryotic ancestor. Gray area denotes 95% CI as determined
by bootstrapping. Color denotes life stages. (B) Relative expression values for Amphimedon genes traced
to themetazoan stem. Relative gene expression of transcription factors of eukaryotic origin (C) andmeta-
zoan origin (D) with binding motifs enriched in early, mid, and late Amphimedon development. (∗) P <
0.01, (∗∗) P < 0.001, and (∗∗∗) P < 0.0001 (Mann–Whitney U test). (E) Relative chromatin accessibility val-
ues at TFs whose binding motifs are enriched in late Amphimedon development. Color denotes life stages
as in A and B. (F) Bar plots show the number of TFs whosemotifs are differentially enriched for each stage,
grouped to whether the TF originated in metazoan stem versus those that predate metazoan (based on
the TreeFam Amphimedon vs. human comparison). Percentage denotes TFs from themetazoan stem. (G)
Relative gene expression of transcription factors with binding motifs enriched in late Amphimedon devel-
opment. Color denotes life stages as in A and B. (H) Bar plots depict the number of activating versus re-
pressive genes based on human database TRRUST (Han et al. 2018). Genes for each stage are TFs
associated to stage through differential motif analyses. Numbers denote the number of unique interac-
tions found for that gene in the activatory or repressive category. (∗∗∗) P-value significance from Fisher’s
exact tests: early versus late, P = 2 × 10−5; mid versus late, P = 4 × 10−3.
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Figure 5. Amachine learningmodel trained on Amphimedonmotifs distinguishes between proximal versus distal cis-regulatory elements. (A) An extreme
gradient boosting (XGB) machinewas used on a balanced data set of Amphimedon distal and proximal cis-regulatory regions. Seventy percent of peaks was
used to train an XGBmodel. Motif counts for each peak were used to predict distal versus proximal cis-regulatory regions in the Amphimedon test sets (30%
of peaks) and other species data sets. Distal was defined as >1 kb upstream of the TSS. (B) Receiver operating characteristic (ROC) curve of distal versus
proximal cis-regulatory regions prediction in Amphimedon. (C) Relative importance score (SHAP) of most predictive known motifs and 8-mers for
Amphimedon distal versus proximal cis-regulatory regions. Motifs are ordered according to their importance. Every dot in the model represents a peak
used for the training of the XGB model. The SHAP values (x-axis) show the impact on the prediction. Color reflects the motif count in the peak. The
name, class, and species of motifs are indicated: (S. cer) S. cerevisiae, (A. tha) A. thaliana, (D. mel) D. melanogaster, (A. que) A. queenslandica, (Z. mays)
Z. mays, (H. sap) H. sapiens. Metazoan and nonmetazoan TFs are indicated with black-filled and black-outlined circles, respectively. (D, top row) Partial
dependence of top four most predictive PWMs of distal cis-regulatory regions (compared with genomic background), showing the relationship between
the number of instances of themotifs and the probability of a region being an actual ATAC-seq peak. (Bottom row) Sequence logos of themotifs shown inD,
top row. (E) Boxplots of the mean number of instances of the top 100 most predictive actual PWMs (dark gray; compared with genomic background) and
permuted PWMs (light gray), Mann–WhitneyU-test P-value shown (estimate = 0.41). Outliers removed from the plot and defined as values smaller than 1Q
−1.5 × IQR or bigger than 3Q+1.5 × IQR, where “1Q” is the 1st quartile, “3Q” represents the 3rd quartile, and IQR (interquartile range) is the difference
between the 3Q and 1Q. (F) Schematic of the process to calculate dAUC as a measurement of the effect of individual motifs on distal cis-regulatory regions
prediction ability (right); dAUC values for the motifs shown in D (left).
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where for each data set, a matrix was constructed with rows as
ATAC-seq peaks and columns as JASPAR CORE PWMs and the 18
developmental stage–enriched de novo 8-mers identified above.
The matrix was populated using motif counts and used as input
to the XGBoost gradient boosted decision trees algorithm
(Methods). Results showed accuracies of ∼0.6 in classifying be-
tween proximal and distal Amphimedon peaks (distal defined as
>1 kb upstream of TSS) (Fig. 5B; Supplemental Table S10). Motif
importance scores were highly correlated among the 10 randomly
subsampled balanced sets, suggesting robustness to peak selection
(Supplemental Tables S11, S12). Proximal and distal regions
showed representative differences, reflecting sequence differences
between promoter and distal regulatory regions (Fig. 5C).
Promoters were best explained by plant TF motifs, and these
were often associated with environmental sensing. For example,
the g-box motif (CACTG) is present at light responsive genes
(Fig. 5C; Shen et al. 2008). In contrast, metazoan TF motifs (e.g.,
Optix, Deaf1, MXI1) were only predictive at distal regions, further
supporting the idea that distal enhancers are metazoan specific
(Fig. 5C; Sebé-Pedrós et al. 2016).

Furthermore,motifs of key developmentalmetazoanTFswere
significantly overrepresented at cis-regulatory regions compared
with a genome-wide background, including GATA-type, homeo-
domain, and Forkhead domain factors (Supplemental Table S13).
Among TF families, the TALE homeodomain superclass was over-
represented at cis-regulatory regions (Fisher’s exact test, FDR=4×
10−2) (Supplemental Fig. S10), including the MEIS1 motif, which
was differentially accessible throughout late Amphimedon embryo-
genesis (AmqTALE, Aqu2.1.41527) (Larroux et al. 2008).

Finally, we investigatedwhethermodels trained onAmphime-
don regions could classify similar developmental regulatory ele-
ments in other species, including in worm, fruit fly, mouse,
zebrafish, and nonmetazoan unicellular organism, Capsaspora
(Bogdanovic ́ et al. 2012; Sebé-Pedrós et al. 2016; Daugherty et al.
2017; Pijuan-Sala et al. 2020; Floc’hlay et al. 2021). Negative sets
were constructed controlling for cis-regulatory region size for
each species’ genome (Supplemental Fig. S11). Again,motif impor-
tance scores were highly correlated among models trained on data
subsets (Supplemental Tables S14–S17). Models trained on motifs
identified at Amphimedon regulatory regions could weakly predict
both proximal and distal developmental cis-regulatory regions
from the respective genome background in worm, mouse, zebra-
fish, and fruit fly, but not Capsaspora (area under ROC: 0.6–0.7
metazoan, 0.5 for Capsaspora) (Supplemental Figs. S12, S13; Sup-
plemental Tables S18, S19). Partial dependence (PD) plots reveal
the relationship between motifs enrichment and their effect on
the model’s output (Fig. 5D). Comparing the number of JASPAR
motifs per regulatory peak to scrambled PWMs showed that actual
motifs were significantly more abundant than motifs identified
using scrambled PWMs, suggesting that PWMs identified biologi-
cally important information content, independent of overallmotif
nucleotide composition (Mann–Whitney U test, P<2.7 × 10−4; top
100most informativePWMs) (Fig. 5E; Supplemental Fig. S14).Nor-
malizing across all data sets to adjust for species-specific differences
in peak widths did not change the overall findings (Methods; Sup-
plemental Fig. S15). Systematically removing eachmotif and recal-
culating prediction scores for each species revealed the most
informativemotifs to distinguish distal Amphimedon cis-regulatory
regions from background were also informative of regulatory ele-
ments in other species (Fig. 5F; Supplemental Fig. S16).

Taken together, the number and type of TF motifs could dis-
tinguish between proximal and distal Amphimedon regulatory re-

gions. Metazoan cis-regulatory regions across several species can
be identified using a machine learning model trained on sponge
cis-regulatory regions. Although Amphimedon regulatory regions
possessed motifs of TFs key to metazoan development, some of
the most informative motifs at ATAC-seq regions originate from
nonmetazoan species.

Discussion

We mapped the cis-regulatory dynamics of Amphimedon embryo-
genesis usingATAC-seq to assay accessible chromatin in individual
embryos, larvae, and adults. Chromatin accessibility was dynami-
cally regulated across sponge embryogenesis, and changes in ac-
cessibility were concordant with changes in gene expression.
Despite the compactness of the Amphimedon genome, the regula-
tory landscape was dominated by distal (>500 bp from the TSS)
open chromatin regions.We identified transcriptionally repressive
elements indicative of repressive elements (“silencers”), which are
characteristic of development in other animals although less well
studied compared with elements that activate transcription (Liu
et al. 2016; Koenecke et al. 2017; Pang and Snyder 2020).
Confirming a key role of gene repression to early development,
we established that Amphimedon repressive elements were in-
creased in activity during late embryogenesis, coinciding with
the expression of metazoan-specific genes as well as increased
cell complexity. Consistent with this, distal regulatory elements
and the repressive histone mark H3K27me3 are not found in the
unicellular organismCapsaspora and thus appear to be animal-spe-
cific innovations (Sebé-Pedrós et al. 2016).

Despite the rapid evolution of cis-regulatory elements, the
repertoire of TF binding motifs at Amphimedon regulatory regions
showed clear similarities to bilaterian animals. Sponge develop-
mental transitions were well described by human PWMs, despite
many human TFs lacking one-to-one orthologs in Amphimedon.
In line with this, studies of TFs from the same structural family
have been shown to recognize similar DNA sequences despite evo-
lutionary divergence; the expanded repertoire of TFs in humans
compared with fruit flies does not appear to have generally pro-
duced new TF specificities (Nitta et al. 2015; Kribelbauer et al.
2019). Thus, our finding supports the notion that structural con-
strains may limit both TF family diversity and binding specificity
and, consequently, the evolution ofmarkedly different TF binding
sites. Yet, PWMs of 40 bilaterian TFs were not found in
Amphimedon (Supplemental Table S20), raising the possibility
that new TF-DNA specificities may have played a role in the emer-
gence of bilaterian gene regulatory networks. However, we cannot
rule out that changes to the arrangement and context of motifs
(i.e., sequence grammar)may be sufficientmechanisms for cellular
and phenotypic innovations.

Along this line, we showed that a machine learning model
trained with the genome-wide collection of Amphimedon TF bind-
ing motifs (i.e., a bag-of-motif) at ATAC-seq peaks could distin-
guish accessible chromatin regions in other metazoans but not
in the unicellular Capsaspora. The findings suggest a potential
divergence in the overall composition of regulatory sequences
that can be traced back to the evolutionary divergence of metazo-
ans and nonanimals. However, a genome-wide model cannot cap-
ture specificities of individual enhancer–promoter connections in
a locus-specificmanner. This is an inherent limitation,whichmay,
in part, explain why we did not observe stronger predictions.

Notably, some of the most informative sequences in discrim-
inating between ATAC-seq regions and background were found
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enriched in the genome-wide background. This is likely due to
mechanisms, such as DNA repair, that differ in efficiency between
active and closed chromatin, resulting in mutational biases.

Certain overrepresented 8-mers in regulatory chromatin
regions showed a superior ability to distinguish developmental
enhancers betweenmetazoans compared with knownmotifs, sug-
gesting that there may be additional yet uncharacterized sequenc-
es for determining genome accessibility during development (Fig.
5C; Supplemental Tables S11, S14, S16). Because of their low
sequence similarity to previously characterized motifs, these se-
quences may influence other determinants of chromatin accessi-
bility rather than bind canonical TFs. For example, motifs
influencing DNA shape, nucleosome positioning, and DNAmeth-
ylation make significant contributions to enhancer grammar
(Barozzi et al. 2014; Domcke et al. 2015; Levo et al. 2015; Soufi
et al. 2015).

In conclusion, by profiling the chromatin landscape in
Amphimedon, a representative of an early-diverging metazoan lin-
eage, we show that the ancestral regulatory landscape of metazoan
embryonic development consisted of dynamic and abundant dis-
tal nongenic regions that contain shared developmental cis-regula-
tory motifs. Given conserved TF-DNA specificity, we suggest these
TF motifs cooperatively modulate gene expression networks that
are reused and rewired in the evolutionary acquisition of morpho-
logical diversity in metazoans. However, how these cis-regulatory
elements diverge in sequence and in function and contribute to
new gene regulatory networks and higher-order phenotype re-
main to be fully investigated. We anticipate that advances in sin-
gle-cell multimodal data and statistical/machine learning will
provide new insights by tracing how gene regulatory processes
have evolved during cell and developmental evolution.

Methods

Temporal profiles of Amphimedon chromatin accessibility

Adult A. queenslandica were collected from Shark Bay, Heron
Island, Great Barrier Reef, Queensland, Australia (23°26′37.92′ ′ S,
151°55′8.81′ ′ E) under Marine Parks permit number G16/
38120.1 Sponges were transferred to a closed aquaria system at
the University of Queensland, Brisbane, Australia, andmaintained
as previously described (Degnan et al. 2008). Adult brood cham-
bers were dissected, and embryos were staged according to the
method of Adamska et al. (2007). Larvae naturally released from
sponges were collected before dissecting brood chambers (Leys
et al. 2008). Cell suspensions from adult sponges were generated
by cutting away externally facing tissue, avoiding any potential
contaminating tissues, and washing three times in 0.2 µm filtered
artificial seawater (FSW). Cleaned adult tissue was transferred to
0.2 µm filtered Ca+ and Mg+ free artificial seawater (CMFSW) and
passed through a 20-µm nylon mesh to generate a single-cell sus-
pension (Sebé-Pedrós et al. 2018a).

Dissected individual embryos were placed in CMFSW and
loaded into a P1000 pipette tip, which had been cut and fitted
with sealed 60-µm mesh at the end. This allowed a small volume
of CMFSW to be used to push the embryo through the mesh us-
ing a hand-held pipette and the resulting cell suspension to be
collected into a 1.7-mL centrifuge tube. To collect any tissue
stuck on the mesh, the filter tip was then placed in 1× trypsin
(Sigma-Aldrich)/CMFSW solution and placed for 10 min at
37°C. This was washed twice with CMFSW and added to the ini-
tial cell suspension. The above procedure was performed with lar-
vae and the resulting cell suspensions manually counted with a

hemocytometer following trypan blue exclusion staining. A sin-
gle larva was estimated to have approximately 35,000 cells. Cell
suspensions from adult tissues were also counted using trypan
blue staining, and an equivalent number of cells was used to
make adult libraries.

Cell suspensions from individual embryos and adult samples
were centrifuged at 500g for 5 min, and ATAC-seq libraries were
made according to the method of Buenrostro et al. (2013).
Libraries using the unique primers were amplified for fewer than
seven additional cycles. The quality of each individual library
was assessed using a Bioanalyzer high-sensitivity DNA analysis
kit (Agilent). Equal volumes of libraries from three individual rep-
licates for each stage were then pooled and run again on the
Bioanalyser. Because libraries appeared to have a large concentra-
tion of free primer, we incorporated an additional purification
step by adding a 1.8× concentration of AMPure beads (Beckman
Coulter), washed twice with 70% ethanol, and eluted in 40 µL wa-
ter. A 30 nM pooled library was prepared for sequencing.

The ATAC-seq library pool was quantified on the Agilent
Bioanalyzer with the high-sensitivity DNA kit (Agilent Technolo-
gies 4067-4626). The pool is assessed by qPCR using the KAPA li-
brary quantification kit–Illumina/Universal (KAPA Biosystems
KK4824) combined with the Applied Biosystems ViiA 7 real-time
PCR instrument. Pool QC and sequencing were performed at the
Institute for Molecular Bioscience Sequencing Facility (University
of Queensland) using the Illumina NextSeq 500 (NextSeq control
software v2.0.2/Real-Time Analysis v2.4.11). The library pool was
diluted and denatured according to the standard NextSeq protocol
and sequenced to generate paired-end 76-bp reads using a 150 cy-
cle NextSeq 500/550 high output reagent kit v2 (catalog no. FC-
404-2002). After sequencing, FASTQ files were generated using
bcl2fastq2 (v2.17; Illumina).

ATAC-seq read alignment and peak calling

Each ATAC-seq library was sequenced to a mean depth of approx-
imately 12 million reads. Reads were aligned using Bowtie 2
(v2.3.0) (Langmead and Salzberg 2012) to the Aqu1 genome
with Aqu2.1 gene annotations (Fernandez-Valverde et al. 2015).
Correctly mapped paired reads and those above a MAPQ value of
10 were retained using SAMtools “view” (v1.6) (Li et al. 2009) for
peak calling. Peak calling was performed using MACS2 (Zhang
et al. 2008, 2) using the “callpeak” command, a genome size of
1.2 × 10−8, and in -BAMPE mode where insert sizes of read pairs
were inferred using alignment results. A set of consensus vari-
able-sized but nonoverlapping peaks was created for downstream
analysis. Peaks counts reflect the number reads mapping at each
peak. To remove technical compositional biases that can manifest
fromvariable read coverage, we scaled each library based on the ex-
pected mean counts before analysis. Normalization for composi-
tion biases was performed using size factors calculated with the
genomicmean for each peak across all libraries using the R package
“DESeq2” (Love et al. 2014; R Core Team 2020). To select the most
robust peaks for downstream analysis, we only kept those peaks
with 10 or more normalized counts in at least three libraries.
BEDTools (v2.28.0) was used to calculate FRiP scores (Quinlan
and Hall 2010). Irreproducible discovery rates (IDRs), were calcu-
lated following ENCODE (Li et al. 2011). We used conditional
probabilities to understand the relationship between expression
and chromatin accessibility to account for potential technical dif-
ferences in peak number between stages. We used the arithmetic
mean to average the number of counts across biological replicates
for each life stage for summary figures associating peaks to gene
expression.
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Differential accessibility analysis

We performed differential accessibility analyses of peaks using R
packages “edgeR” and “voom/limma” (Robinson et al. 2010;
Ritchie et al. 2015; R Core Team 2020). Normalization for compo-
sition biases was performed using factors calculated as described
above. Peaks with low counts were removed from the analysis by
filtering out peakswith less than onenormalized count permillion
reads mapped in less than four samples; our designmatrix tests for
differences between adjacent life stages. The “voom” function was
used to calculate precision weights to remove heteroscedasticity
from the data. Counts were modelled by “lmFit” using empirical
Bayes moderation to improve the precision of peak variability. A
log fold change cut-off of one and FDR<0.05 were used to define
significantly changed peaks.

Integrative correlative analysis with gene expression

To understand how accessible chromatin and transcription were
linked during development, we associated genes with proximal
ATAC-seq peaks located in the vicinity of TSSs (1 kb bases upstream
and downstream). In linear regression across life stages, we use
ATAC-seq peaks as independent variables and gene expression
data as the dependent variable to identify activating and repressive
cis-regulatory regions. If multiple peaks are adjacent to a TSS (with-
in 10 kb), a LASSO regression (Tibshirani 1996) was performed to
determine the most informative peak using the R package
“glmnet.” Otherwise, ordinary least squares regression was used.
CEL-Seq and ATAC-seq data were averaged by arithmetic mean
among stages and log10 + 1 transformed. The direction of associa-
tion was used to class peak–gene relationship as either activating
or repressive, with a positive coefficient indicative of activating
and a negative coefficient suggestive of the binding of factors re-
pressing expression.

Gene evolutionary history analysis

To examine the connection between development and gene phy-
logeny, we partitioned expressed genes (at least three CEL-Seq li-
braries with count >10) by their estimated evolutionary age
using TreeFam (v9) (Li et al. 2006), where gene orthology was
assigned by phylogenetic analysis. Genes were placed into the
following phylogenetic clades: Eukaryota, Opisthokont, and
Metazoan, reflecting the oldest clade that founders of the gene
can be traced to, where possible based on orthology assignment.
For each phylogenetic group and across developmental data sets,
we calculate a relative measure of gene expression by taking the
sum of all counts of genes classified to the same evolutionary ori-
gin and then normalizing this by the sum of total expression val-
ues across all genes. This value was bootstrapped 500 times to
generate a confidence interval.

∑g
i=1 ei∑n
i=1 ei

,

where g represents the genes (i) in the evolutionary clade and n rep-
resents all the genes (i) expressed in the library.

Motif analysis

Motif analyses using both known and de novo sequence motif
were performed using the R package “chromVAR” (v3.11) (Schep
et al. 2017; R Core Team 2020). The consensus set of nonoverlap-
ping peaks was used. Known humanmotifs from JASPAR 2016 da-
tabase (Mathelier et al. 2016) were used with the default cut-off of
motif calling of 5 × 10−5. For each library, an accessibility score was
calculated for each motif. This is the dot product across peaks of

the motif score—calculated by the match of the motif PWM and
the peak accessibility score—derived from the normalized read
count. Technical biases, including GC content and average back-
ground accessibility, were controlled using matched sampled
peaks of similar properties using the “getBackgroundPeaks” func-
tion in chromVAR. A deviation score was computed, reflecting
the accessibility of peaks with that motif by subtracting the expec-
tation based on background (Schep et al. 2017). Comparison of the
deviation score between three broad developmental stages (early,
mid, and late) used moderated t-tests with FDR P-value adjust-
ments for multiple testing (Benjamini and Hochberg 1995).
Using chromVAR, we also characterized de novo sequence motifs,
k-mers of length 8, within chromatin-accessible regions. Deviation
scores for k-mers are computed and compared between develop-
mental stages using the “differentialDeviations” function and a
two-sided t-test with FDR adjustments. The top 10 most-deviated
JASPAR motifs and top six k-mers for each developmental stage
were used for downstream analyses. The TF coaccessibility analysis
was performed using the “getAnnotationSynergy” function in the
chromVAR package, which assigns a z-score to each motif pairing,
reflecting variability in peak accessibility of peaks containing both
motifs compared with a background sample containing only one
of the two motifs. To further elucidate the relationship between
motifs at accessible peaks, we examined peaks where the motif
pairs did not colocate. To do this, we calculated the Pearson corre-
lation coefficient of the normalized accessibility (deviation score)
across samples for each pairwise comparison, using the function
“getAnnotationCorrelation.”

Machine learning model

The extreme gradient boosting (XGBoost) machine learning algo-
rithm using sequential decision trees (Chen and Guestrin 2016)
was trained to distinguish between (1) proximal and distal peaks
and (2) actual peaks versus randomly sampled nonoverlapping re-
gions (distal peaks were separated based on >1 kb upstream of the
TSS, and genome background peakswerematched for peakwidth).
To select balanced data sets we used (1) 10,000 distal Amphimedon
peaks versus 10,000 proximal Amphimedon peaks, and (2) 10,000
Amphimedon peaks versus 10,000 nonoverlapping background
peaks that were sampled from the Amphimedon genome using
the function “shuffle” in BEDTools (v2.27.1; -noOverlapping
and -excl, the last option is used to avoid selecting background
peaks that overlap with the actual cis-regulatory regions). Input
into the algorithm is amatrix of counts ofmotif instances for every
peak, where the positive and background sets were coded in a bina-
ry manner (distal ATAC-seq peaks = 1, proximal ATAC-seq peaks =
0, actual ATAC-seq peaks = 1, random regions=0).Motif counts are
determined using the annotatePeaks.pl function from HOMER
(v4.11) (Heinz et al. 2010).

The Amphimedon data matrix was then split into a training
data set and a test data set (70% and 30%of the peaks, respectively)
using R package “rsample” (version 0.0.5) (https://CRAN.R-project
.org/package=rsample). Nonvariable columns were removed from
the training data. We train the XGB model using the
Amphimedon training data set using the following parameters: eta
= 0.01, max_depth=6, nround=60,000, subsample=0.5, nfold=
10, colsample_bytree = 0.5, objective = “reg:squarederror,” and ear-
ly_stopping_rounds =50 (function “xgboost” from R package
“xgboost” v0.90.0.2) (https://rdrr.io/cran/xgboost), where “eta”
is the learning rate, “max_depth” is the maximum depth of a
tree, “nround” represent the maximum number of boosting itera-
tions, “subsample” is the subsample ratio of training instances,
“nfold” is the number of random partitions of the training data,
and “colsample_bytree” is the ratio of columns sampled when
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each tree is created. TheXGBmodel is trained tominimize the “ob-
jective” function, and it will stop if this value does not decrease in
“early_stopping_rounds” rounds.

Convergence has been achieved when error did not decrease
after 50 iterations. Probabilities were calculated using function
“predict” (type = “response”) in the R package “stats” (v3.6.1).
Predictions of cis-regulatory regions from other species (worm,
fly, mouse, zebrafish, and Capsaspora) were performed in a similar
way. To account for differences in peak widths across species, we
trained an XGB model normalizing for peak widths by dividing
each count by the peak size (base pair) and then multiplying by
10,000. ROC curves were generated using the function “roc”
from R package “pROC” (v1.16.2) (Sing et al. 2005). A threshold
of 0.5 was used to transform the raw predicted probabilities into
predicted classes to calculate accuracy. SHAP values were calculat-
ed using the count matrix used to train the XGB model and the
model produced by xgboost (Lundberg et al. 2020).

Zebrafish (Danio rerio) distal regulatory elements were defined
by ChIP-seq peaks of H3K4me1 excluding regions overlapping
H3K4me3 regions and the TSS. The data spans four developmental
stages: dome (1878 peaks), 80% epiboly (23,748 peaks), 24 hpf
(23,419 peaks), and 48 hpf (15,388 peaks) (Bogdanovic ́ et al.
2012). We used Drosophila melanogaster ATAC-seq data from three
developmental stages (2–4, 6–8, 10–12 h post egg-laying)
(Floc’hlay et al. 2021). Consensus peaks more than 20 reads were
used (7241 peaks in total). Consensus ATAC-seq peaks from
Capsaspora owczarzaki profiled from three developmental stages
(filopodiated amoeba, aggregative multicellular stage, and cystic
stage; 11,927 peaks) were used (Sebé-Pedrós et al. 2016). Mouse
and worm cis-regulatory regions were from Pijuan-Sala et al.
(2020) and Daugherty et al. (2017), respectively. Worm ATAC-
seq data spans three developmental stages (early embryo, larval
stage 3, and young adult; n=55,432 total unique peaks). Mouse
scATAC-seq peaks were restricted to those accessible in at least
5% of the cells profiled (corresponding to mouse embryos at
8.25 d post fertilization) (Pijuan-Sala et al. 2020). Background
peaks for worm, fly, zebrafish, mouse, and Capsaspora selected
like in sponge (option -chrom).

Data access

All sequence data generated in this study have been submitted to
ArrayExpress (https://www.ebi.ac.uk/arrayexpress/) under acces-
sion number E-MTAB-10203.
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