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Information normally considered task-irrelevant
drives decision-making and affects premotor
circuit recruitment
Drew C. Schreiner1, Christian Cazares 2, Rafael Renteria1 & Christina M. Gremel 1,2✉

Decision-making is a continuous and dynamic process with prior experience reflected in and

used by the brain to guide adaptive behavior. However, most neurobiological studies con-

strain behavior and/or analyses to task-related variables, not accounting for the continuous

internal and temporal space in which they occur. We show mice rely on information learned

through recent and longer-term experience beyond just prior actions and reward - including

checking behavior and the passage of time - to guide self-initiated, self-paced, and self-

generated actions. These experiences are represented in secondary motor cortex (M2)

activity and its projections into dorsal medial striatum (DMS). M2 integrates this information

to bias strategy-level decision-making, and DMS projections reflect specific aspects of this

recent experience to guide actions. This suggests diverse aspects of experience drive

decision-making and its neural representation, and shows premotor corticostriatal circuits are

crucial for using selective aspects of experiential information to guide adaptive behavior.
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Investigations into the neuroscience of decision-making are
typically aimed at understanding how ongoing brain compu-
tations support behavior. As decision-making is a continuous

and dynamic process, one’s past and ongoing experience is likely
to be reflected in and used by the brain to guide decision-making.
While we may exploit learned rules and associations, our ongoing
experiences (related-and-unrelated to such rules and associations)
can shape our behavior. That experience modulates decision-
making is broadly evident and has been the focus of significant
study; it is found in innate behaviors1, and though experience can
drive initial learning, simple win-stay and lose-shift experience-
based strategies persist even after rules and associations are well-
learned. Indeed, experience continues to influence behavior even
when detrimental to task performance (e.g., in many perceptual
tasks)2,3. That the use of experience to guide decision-making is
often altered in psychiatric disease (e.g., the temporal pattern of
drug use, and not just total amount of drug, is decisive in sub-
stance use disorders4), suggests efforts towards investigating its
role in guiding decision-making are warranted.

However, investigations into how experience shapes decision-
making and recruits neural mechanisms are often impoverished.
Historically, tasks investigating decision-making often institute a
trial structure, limit choice and movement, and elicit behavior via
cues, with the latter resulting in a focus on elicited stimulus-
response characterization of involved mechanisms5. More
recently, there has been a growing focus on the contribution of
prior choices, actions, and outcomes2,6–8 as sources of experi-
ential information. However, by examining these contributions
based on their discrete occurrence (e.g., a binary choice), this
experiential information has been removed from the rich, con-
tinuous environment in which it is naturally embedded and
across which it evolves. Thus, the potential contribution of see-
mingly task-irrelevant behaviors is also typically neglected. There
is growing concern that such an approach negates the indivi-
dualistic and continuous nature of decision-making9–13. Pre-
sumably, continuous experiential information is used by the brain
to execute adaptive behavior to support ongoing decision-
making. Yet such information is often treated as task-irrelevant
and may be ignored or factored out14.

This neglect may result in seemingly incongruent hypotheses
when decision-making and its neural mechanisms are likely to
rely on such experiences. One example may be hypotheses con-
cerning secondary motor cortex (M2) and its role in exploration
versus experience-guided behaviors. On one hand, M2’s sensory,
motor, and premotor characteristics have suggested a role in
using experience to guide decision-making7,15–17. On the other
hand, several studies implicate M2 in implementing stochastic or
exploratory decisions18–21. However, animals may decide to
explore based upon their experience; for instance making more
exploratory decisions when uncertainty is high22. Thus, attribu-
tion of M2 function to seemingly disparate processes may reflect
the lack of accounting for, or limiting the contribution of, prior
experiences.

Here, we hypothesize that M2 represents and integrates con-
tinuous experiential information to guide experience or
exploration-based decision-making when use of such information
is advantageous. We utilize an unstructured free operant foraging
task with continuous analog variables in mice where experience
provides the only information available to guide performance. We
show aspects of experiential information normally considered
task-irrelevant, such as the passage of time and checking beha-
viors, play large roles in supporting and adjusting adaptive
behavior. We then show M2 circuits are key for broad aspects of
experiential control while selective M2 output to dorsal medial
striatum (DMS) conveys action-related aspects of experience to
drive adaptive behavior.

Results
Mice learned a self-generated, self-paced lever press hold down
task. We adapted an instrumental task23–25 where mice (n= 12
C57BL/6 J) were trained to press and hold down a lever for at
least a minimum duration to earn a food reward, with reward
delivered after lever press release/offset (Fig. 1a). There were no
external cues signaling reward availability or duration, nor any
trial structure (lever was always available). Thus lever presses
were self-initiated, self-paced, and self-terminated and mice had
to explore to determine the rule, a process termed action
differentiation26.

We first examined macroscopic aspects of lever pressing. Mice
were initially trained with a >800ms criterion before being shifted
to a > 1600ms criterion. Mice readily learned that press duration
was the operant and quickly reduced the number of Total Lever
Presses (Fig. 1b), while they increased the percentage of presses
that met the minimum duration criterion (%Presses Met Criteria,
Fig. 1c), and showed little evidence of stereotypies in their lever
pressing (see Supplementary Note 1). Mice were sensitive to the
minimum duration rule and shifted the distribution of press
durations from a pretraining session with no duration require-
ment, to the final day of >800ms training, and further still to the
final day of >1600ms training (Fig. 1d). To examine whether
actions were controlled by their expected consequence and
operationally goal-directed or were instead habitual27,28, we
performed outcome devaluation testing (Supplementary Fig. 1a).
Mice reduced their Total Lever Presses on Devalued days relative
to Valued days (Supplementary Fig. 1b), consistent with using
expected outcome value to guide decisions as seen in goal-directed
control27. Although Total Lever Presses decreased, the %Presses
Met Criteria increased following devaluation (Supplementary
Fig. 1c) with a small rightward shift in the distribution of press
durations (Supplementary Fig. 1d), suggesting action selection and
execution may be differentially controlled by outcome value.

It is clear that mice can use contingency and consequence
information to perform this task, but it is unclear how they are
doing so. One possibility is that executed lever press durations are
independently timed. If so, we hypothesized that mice may
exhibit the scalar property of timing; as lever press durations
increase, so too does variability25,29. During initial short criterion
training, we found concomitant increases in both the median
duration and the interquartile range (IQR) of each animal’s lever
press across training days (Fig. 1e). However, when duration
criteria increased, the pattern of change in lever press IQR
departed from that of median duration. Mice showed within
session increases in median durations across training (Fig. 1f), but
increases in IQR were present on the first, but not the last training
day. Furthermore, while the within session median and IQR
slopes were not different on the first day, they did differ by the
final day. Finally, the IQR/Median ratio significantly changed
between the final day of 800 ms versus 1600ms training
(Wilcoxon signed rank test, W11= 78.0, p= 0.0005), in violation
of scalar timing.

Violation of the scalar property could emerge as a result of
mice using experiential or non-timing information rather than
simply timing presses independently. In Fig. 1g, for one well-
trained mouse, representative press durations plotted across a
session show variability in when presses occurred and in their
duration, as well as seemingly distinct periods of reduced
variability. A cumulative sum (upper bound) analysis (Fig. 1h)
uncovered prolonged periods of time when mice emitted press
durations >2 standard errors above the mean, (Fig. 1i, j). This was
not due to random chance, the consequence of very long press
durations inflating the cumulative sum, or an artifact of early
learning. Overall, this suggests that there was local patterning of
lever pressing within individuals.
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Varied experiences shape continuous decision-making. The
relative similarity among serial lever presses suggests that durations
from recently executed lever presses may contribute. We created a
simple linear mixed effect model (LME) to predict current press
duration (n) given recently executed durations (n-back). We inclu-
ded random effects of both training day and mouse to account for
the repeated structure of our data. We also included several control
variables and compared the actual coefficients to those obtained from
order shuffled data using permutation tests (Supplementary Table 1).
We found a consistent significant linear relationship between current

press n duration and the durations of n - 1 through n - 6 presses,
with the magnitude of this relationship decaying across n-back
presses (Fig. 2b) with largely similar n - 1 coefficients across mice
(Supplementary Fig. 2a). Importantly, there was a positive correla-
tion with a mouse’s n - 1 duration coefficient and overall perfor-
mance (Supplementary Fig. 2b), suggesting mice that used recent
experience to a larger degree were able to perform more efficiently.

However, recent lever presses are not the only experiential
information available (Fig. 2a). The unstructured nature of this self-
generated task allows us to capture aspects of decision-making that
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Fig. 1 Mice learned an unstructured, self-generated, self-paced lever press hold down task. a Behavioral schematic; mice learn to press and hold down a
lever for at least a minimum duration to earn food reward. b Total Lever Presses across training days (1-way ANOVA, main effect of day, F2.9, 31.9= 12.0,
p < 0.0001). c %Presses met criteria (1-way ANOVA, main effect of day F4.22, 46.5= 17.2, p < 0.0001). d Histogram of lever press durations (100ms bins)
on the final pretraining day (CRF= Continuous Ratio of Reinforcement), and final 800ms and 1600ms days. Dashed lines indicate criterion. 2-way RM
ANOVA, main effect of Duration Bin F31,1056= 34.1, p < 0.0001, and an interaction (Duration Bin/Criterion) F62,1056= 10.5, p < 0.0001. e Median and
Interquartile Range (IQR) of lever press durations (800ms training: 2-way RM ANOVA, main effect only of Day, F5,55= 19.5, p < 0.0001. 1600ms training:
2-way RM ANOVA, main effect of Day F7,77= 14.0, p < 0.0001, and interaction (Median/IQR x Day) F7,77= 2.44, p= 0.026). f Duration median (Med)
and IQR within a session, grouped by cumulative rewards. Linear regressions found non-zero slopes for Med on the first (F1,110= 28.9, p < 0.0001,
R2= 0.21) and final (F1,115= 12.6, p= 0.0006, R2= 0.099) training day, while IQR had a non-zero slope on the first (F1,110= 48.5, p < 0.0001, R2= 0.306)
but not last (F1,115= 0.28, p= 0.59, R2= 0.002) day. Med/IQR slopes did not differ on the first (F1,220= 1.2, p= 0.027), but did differ by the final day
(F1,230= 9.1, p= 0.003). g Sample behavior of one trained mouse showing press durations in order of occurrence. h Upper cumulative sum from the same
mouse/session. i, j Number of consecutive presses (i) and Overall % of presses (j) that were >2 Standard Errors (SE) above the mean in the upper
cumulative sum. 2-way RM ANOVA, difference from order shuffled data for % (F1,11= 17.1, p= 0.0017) and number of consecutive presses (F1,11= 14.0,
p= 0.0032). First days excluded, F’s1,11 >= 4.94, p’s < 0.05. All tests were two-tailed and corrected for multiple comparisons. 800ms and 1600ms refer
to days where criterion was >800ms or >1600ms. ****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05. n= 12 mice. Points represent mean+ SEM across
mice, unless noted otherwise. See also Supplementary Fig. 1, Source Data.
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occur across a continuous space beyond just press duration,
including reward delivery, checking behavior, and the inter-press
interval between press n and press n - 1. We created more complex
LMEs, first building a “full”model that included n - 1 through n - 6
durations, as well as main effect and interaction terms for other
n-back variables (see Table 1 for terms). We performed backwards
selection on this full model using Bayesian Information Criterion,
meaning that the addition of these variables helped to explain
additional variance in press durations (Methods). Permutation tests
found these variables differed from order shuffled data (shuffled
within a single mouse/session). Similar to the simple LME model,
mice that had more similar adjacent presses had more efficient

performance (Supplementary Table 2 30% increase in %Met
Criteria roughly doubles the n/n - 1 relationship). Importantly,
the history of executed durations beyond the recently executed lever
presses contributed, as evidenced by a significant moving average
coefficient (Fig. 2c; permutation test p < 0.001).

However, mice have additional experiences beyond just
pressing the lever. As reward delivery can serve as a feedback
signal to adjust behavior30,31, we examined whether its presence
(or absence) altered the relationship between sequential lever
presses. While there was a small but significant negative main
effect of reward delivery (suggesting mice made shorter presses
after reward, perhaps to titrate press durations near the criterion
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Fig. 2 Experience contributes to self-generated decision-making. a Sample data from one mouse (as in Fig. 1g, h) showing diversity of experiential
information available. Top shows a zoomed in subset. Dashed line indicates 1600ms criterion. b LME model β coefficients relating current lever press
duration (n) to preceding press durations (n - x) for Actual and order Shuffled data. c Moving average β coefficient for Actual and Shuffled data. d, e β
coefficients for the interaction between experiential variables and recent (n - 1 duration) or long-term (moving average) experience. For display purposes
we transformed continuous variables to show relevant changes, e.g. time in session, which is in units of ms, was transformed to 45min (half the duration of
a session). f Repeated measures correlation between task performance (%Presses Met Criteria) and model fit (R2) for linear models built using individual
session data. Intercept was allowed to vary across mice, while keeping a shared slope (Rm= 0.56, DF= 153, p < 0.0001, slope = 0.38). g As in b only
building LME models using data only from 800ms training (800) or 1600ms training (1600). 2-way RM ANOVA (800/1600 x n-back), main effect only
of n-back F9,399440= 27.1, p < 0.0001. h As in (d) and (e), building complex LME models using only either 800 or 1600 data. Only HE terms significantly
differed between 800/1600 models (unpaired t tests with false discovery correction, HE*n - 1: t40232= 5.90, p < 0.0001, HE*Mov. Avg.: t40232= 3.05,
p= 0.0023). All tests were two-tailed and corrected for multiple comparisons. Coef= β coefficient. Int= Interaction. LP= Lever Press, HE=Headentry
into food magazine, IPI= Inter Press Interval. Mov. Avg.=Moving Average. Δ=Change. *Markers in (b, c) indicate comparisons to order shuffled data,
(d, e) indicate significant F-tests on model terms. ****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05. Data points are mean+ SEM. Shuffled data are
mean+ SEM of 1000 order shuffled β coefficients. See also Table 1, Supplementary Fig. 2, Supplementary Tables 1, 2, and Source Data.
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boundary, as has been previously suggested24), surprisingly,
reward delivery did not alter the n - 1 coefficient (Fig. 2d). One
potential explanation is that reward-related information may
already be captured within the learned contingency (duration)
itself, as presses above a certain duration are rewarded. To more
directly investigate this, we imposed a probabilistic reward
schedule in a separate cohort (25%, 50%, or 75% rewarded,
n= 5 mice/group) following training. While imposing a prob-
abilistic schedule increased efficient performance (Supplementary
Fig. 2c), a lever press that met criteria (Met) led to an increased
relationship between n and n - 1, whether that press was
rewarded or not. Indeed, the magnitude of this effect was larger
when the Met press was unrewarded due to the probabilistic
schedule, with this “win-stay” effect more pronounced in the 25%
probability group. This provides additional evidence mice use an
internal representation of which press durations are related to
reward to guide future durations and rely less on the presence (or
absence) of reward delivery.

Freely moving subjects also have the opportunity to gain
information about success likelihood through checking behaviors,
such as head-entries (HE) into the food receptacle (Supplementary
Table 2). Indeed, mice used information from checking behavior to
adjust lever press durations (Fig. 2d). The magnitude of this
increase was quite large: lever presses within a lever press/HE/lever
press sequence were effectively twice as related to one another
relative to those in a lever press/lever press sequence. The above
findings challenge the assumption that decision-making is solely
determined by the serial order of actions and their outcome, as is
often presumed in trial-based experimental designs. That sources of
this crucial experiential information accrue across a continuous
temporal space raises the question of how the passage of time itself
may influence decision-making. The relationship between two
adjacent presses (presses n and n - 1) decreased as the inter-press-
interval (IPI) increased (Fig. 2e). To give an example of the
magnitude, the model predicts that the relationship between n and
n - 1 would be ~0 if they were separated by 120 s. This raises the
hypothesis that animals may rely more on the long-term moving
average to guide their behavior following long IPIs32. Indeed, the
use of long-term experience was unaffected by the IPI. Further, we
found that n and n - 1 became more similar towards the end of a
session, and again, there was no relationship between time in
session and the moving average (Fig. 2e).

Collectively, these results suggest that individual experiences,
including checking behavior and the passage of time, are crucial
for modifying recent experience to guide behavior. This is evident
in the strong positive correlation between task performance and
model R2 when ran on individual mouse/session data (Fig. 2f).
We built separate LMEs using only 800 ms or 1600 ms data to
examine how the use of experience itself evolved across learning.

While mice used prior duration information even early in
learning (Fig. 2g), the ability to use headentry checking
information emerged with additional training (Fig. 2h). Although
our goal was not to make the most accurate predictions, the final
model did predict 24.1% of all press durations within a 95% CI,
and whether a press did/did not meet criteria 73.8% of the time.
Thus, in the final model (Supplementary Table 2), the use of
experience correlated with performance.

M2 represents prior experience to guide exploration. M2 has
been reported to be involved in both exploration and experience-
based decision-making, and this apparent discrepancy may be
due to neglecting the contribution of seemingly task-irrelevant
variables. Therefore, we performed pretraining lesions of M2
using ibotenic acid (Fig. 3a; Lesion n= 10) or vehicle (Sham
n= 8). In line with prior reports25, we found no differences
between Sham and Lesion mice in coarse behavioral measure-
ments such as Total Lever Presses (Fig. 3b), %Presses Met Criteria
(Fig. 3c), or Press Durations (Fig. 3d). However, M2 lesioned
mice executed lever press durations that were more similar to
their prior action (Fig. 3e). Post-hoc testing revealed a significant
group difference only at n - 1 (t572740= 6.87, p < 0.0001 (Fig. 3f).
This was confirmed in a joint LME built with both Sham and
Lesion mice together, which also revealed a significant Sham/
Lesion group interaction with n - 1 duration (coefficient for the
Lesion group relative to the Sham=+0.047, F1,57271= 37.6,
p= 8.77e–10). Using the complex LME model, M2 lesions abol-
ished all n - 1 duration interactions with Reward, Checking, IPI,
and Time in Session (Fig. 3g, Supplementary Table 3). Lesions did
not affect moving average interactions. Collectively, this suggests
M2 lesioned mice were relatively inflexible, and were left to rely
on the just-made action without integration of broad experiential
information.

How may experience influence representation of decision-
making in M2 circuits? We utilized in vivo fiber photometry
(Fig. 4a), and measured population Ca2+ activity from M2
excitatory neurons (n= 8). Aligning baseline z-scored activity to
lever press onset (Fig. 4b), we observed preceding ramping
activity as has been previously reported16. This ramping activity
did not differ based on whether that press would go on to exceed
the criteria duration (Met) or not (Fail) (permutation testing
requiring 4 adjacent samples to pass the threshold for
significance33). However, M2 activity during the lever press and
at press offset was modulated by whether that lever press would
or would not meet the criteria (Fig. 4c, d), with an abrupt increase
in Ca2+ activity just after the offset of Met presses, – i.e. reward
delivery – followed by a sustained reduction in activity (Fig. 4d).
Analysis of mouse average data yielded largely similar patterns of
activity (Supplementary Fig. 3). Thus, M2 activity is modulated

Table 1 Complex LME Model Parameters, related to Fig. 2.

Model Parameters Description

Durn-1… Durn-6 Durations of prior lever presses from n - 1 to n - 6.
MA A moving average of lever press durations from n - 7 up to n - 60.
HEn-1 A binary variable coding for if a checking headentry (HE) was (1) or was not (0) made in between lever press n and press n - 1.
Rewn-1 A binary variable coding for if lever press n - 1 was (1) or was not (0) rewarded.
IPIn-1 Inter press interval (IPI, in ms) between lever press n and press n - 1.
IPIn-2 As above, only for the IPI between press n and press n - 2.
Time A timestamp (in ms) for when in a session a lever press occurred (from 0ms to 5,400,000ms).
%Met Overall % of presses that met criteria for a given session
Durn-1: Interactions Interaction terms between n - 1 Duration and: n - 1 Headentry, n - 1 Reward, n - 1 IPI, Time in Session, and %Met Criteria. Overall

question is whether the use of recent durations (n - 1) is affected by these variables.
MA: Interactions Interaction terms between the Moving Average (MA) and: n - 1 Headentry, n -1 Reward, n - 1 IPI, Time in Session, and %Met

Criteria. Overall question is whether the use of the long-term moving average is affected by these variables.
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during lever pressing with ongoing modulation reflecting future
success.

To determine if M2 activity is related to ongoing and prior
behavior, we created LME models to predict Ca2+ activity during
epochs of the current lever press given both the ongoing action
(press n duration) and prior behavior (the duration of press n - 1
to n - 6). We included prior activity as a covariate to control for
autocorrelation in Ca2+ activity and compared β coefficients to
1000 order shuffled datasets. Before the onset of press n, there was
a significant positive relationship between M2 activity and the just
prior press durations (Fig. 4e; n - 1, p < 0.001; n - 2, p= 0.001)
and a small negative relationship between activity and the
upcoming duration (press n, p= 0.048). This representation of
both current and prior lever press duration in M2 Ca2+ activity

continued during the press itself (Fig. 4f; press n, p < 0.001; n - 1:
p < 0.001). At press offset, there was no relationship with the just
completed press (n), but there was a positive relationship with the
previous lever press duration (Fig. 4g; n - 1, p < 0.001). This
relationship was largely conserved across individual mice (LME
models where relationship between durations and activity can
vary by mouse; only 1–2 mice differed across any timepoint).
Modeling with the complex LMEs showed M2 activity reflected:
(main effects) Checking, IPI, and Time in Session, and their
interactions with prior durations (Supplementary Table 4). In
particular, HE checking behavior increased the relationship
between lever press duration and M2 activity across lever press
epochs. The complex LMEs also better predicted M2 Ca2+

activity relative to the simple LMEs that only included durations
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(difference in simple/complex prediction %: Before Press:
+13.7%, During Press: +9.2%, After Press: +16.4%). Combined
with lesion data, this suggests M2 circuits are recruited when a
broad array of experiential information is used to guide behavior
but not when behavior is accomplished using less flexible
processes.

M2-DMS projections reflect recent experience used to plan
actions. M2 sends dense projections into dorsal medial striatum
regions (M2-DMS)34,35 that contribute to action selection36, but
it is unclear what information is conveyed to basal ganglia cir-
cuits. We performed in vivo fiber photometry of virally targeted
M2-DMS activity and examined representation of experiential
information within this population (n= 7, Fig. 5a). We again
observed a ramping in M2-DMS Ca2+ activity prior to press
onset. This activity reflected future success, with larger increases
in activity for presses that would meet criteria (Fig. 5b). This
relationship was also present during the press itself (Fig. 5c), upon
lever release (Fig. 5d), and was replicated when using mouse
average analyses of the Ca2+ signal (Supplementary Fig. 4),
raising the hypothesis that M2-DMS projections may carry
information involved in specifying and/or planning actions based
on prior experience.

Indeed, LMEs using durations to predict M2-DMS activity before
press onset showed both prior (Fig. 5e; n - 1, p < 0.001) and
upcoming (n, p < 0.001) durations were positively related to M2-
DMS Ca2+ activity. M2-DMS activity during the press did not
relate to the current duration, but was positively related to the prior

duration (Fig. 5f; n - 1, p < 0.001), and likewise at press offset there
was a positive relationship only with n - 1 press duration (Fig. 5g;
p < 0.001). As in M2, this was largely consistent across mice (on
average, 1–2 mice had coefficients that differed from the overall
coefficient at any timepoint). Furthermore, complex LMEs revealed
significant main effects of Checking, prior Reward, IPI, and Time in
Session on M2-DMS activity (Supplementary Table 5) and
predicted more of the data relative to the simple models (difference
in simple/complex prediction%: Before Press: +13.2%, During
Press: +9.2%, After Press: +15.2%). Unlike M2, M2-DMS activity
did not reflect modulatory interactions of Reward, IPI, or Time on
n - 1 durations. Instead M2-DMS activity only reflected an
interaction between n - 1 duration and checking, and this was
observable across all lever press epochs (Supplementary Table 5).

To test whether M2-DMS activity functionally contributed to
planning actions based on recent experience, we used a Cre-
dependent caspase strategy to selectively lesion M2-DMS projection
neurons prior to training (Fig. 6a, n= 8 Lesion, n= 8 Sham).
Again, we observed no effect on coarse measures of behavior
including Total Lever Presses, %Presses Met Criteria, and Press
Durations (Fig. 6b–d). Simple LME modeling showed M2-DMS
lesions reduced the relationship between press n and n - 1. This
deficit was selective to n - 1 (multiple comparison corrected post-
hoc n - 1: t467760= 3.09, p= 0.021), and was replicated in an LME
model built using both Sham and Lesion mice together (coefficient
for the Lesion group relative to the Sham=−0.02, F1, 46767= 5.60,
p= 0.0179). There was no effect on the Moving Average (Fig. 6f).
Interestingly, M2-DMS lesions produced a more specific deficit
relative to the broad M2 lesions, as revealed by complex LMEs
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analyses. M2-DMS lesions reversed the contribution of a checking
HE between press n and press n - 1, such that emitting another
intervening behavior, checking, was detrimental to using prior
duration information to guide performance (Fig. 6g; t47352= 3.10,
p= 0.002). No other terms differed between Sham and Lesion
groups (Supplementary Table 6).

The photometry and lesion data together suggest that M2-DMS
activity represents and is functionally necessary for recent
sequential action experience (pressing and checking) to con-
tribute to the initiation and execution of the current decision. To
directly test this hypothesis, we took a behaviorally-dependent,
closed-loop optogenetic approach to inhibit M2-DMS neural
activity. We used a dual-virus strategy to express an inhibitory
opsin (Fig. 7a, ArchT: n= 5) that reduced M2-DMS spiking when
activated by light (Fig. 7b). We targeted inhibition to M2-DMS
soma at three different epochs: the initiation of a lever press,
during the press itself, and after lever press release. Each
manipulation occurred across 6 days of training and only on a
subset of lever presses. This allowed us to include additional
terms in our LME models to determine if inhibition directly
affected press n duration, and/or if inhibition affected the
contribution of prior experience (i.e., an interaction between
inhibition and n - 1 duration). In addition to this within subject
comparison, we also made between subject comparisons to
fluorophore control mice (tdTomato: n= 6).

To target inhibition prior to press onset, mice were tracked
using an overhead camera and light (1 s, continuous) was
triggered 50% of the time when mice entered a zone centered
on the lever. We did not find any effect of pre-onset M2-DMS
inhibition on overall performance (Fig. 7d), nor any effect on

press duration itself (i.e., no main effect of inhibition, Fig. 7e).
Within the ArchT group, inhibition prior to lever pressing did
induce a significant negative interaction with n - 1 duration
(F1,2718= 10.6, p= 0.001), and a significant difference with the
tdTomato group (Fig. 7f; t6645= 2.04, p= 0.042). However, as this
inhibition continued for 1 s, it may have persisted during lever
pressing itself. Indeed, in analyses restricted to presses without
any spillover, pre-onset inhibition had no effect even within the
ArchT group (F1,534= 0.45, p= 0.50)

We next tied inhibition to lever pressing itself. On every 7th
lever press we inhibited during the full duration of the lever press,
leaving M2-DMS activity intact during all other lever presses.
Such inhibition did reduce the efficacy of lever pressing (Fig. 7g).
Again, there was no main effect of inhibition on press duration
itself, and this was true both whether inhibition occurred during
press n or on press n - 1 (Fig. 7h). However, M2-DMS inhibition
during press n prevented the use of n - 1 duration information
from guiding the current action. Further, inhibition during press
n also prevented the experiential information gained during the
execution of that press from informing the next press (F-test
within ArchT model, n: F1,6110= 11.2, p= 0.0008; n - 1:
F1,6110= 6.91, p= 0.009), with effects significantly different than
the tdTomato group (Fig. 7i). This suggests that M2-DMS activity
during the press itself is not important for controlling the
duration of the current lever press per se. Instead, this activity
contributes to using recent experiential information to execute
current actions, and this abrupt disruption impaired task
performance. In support of this, when we targeted inhibition to
press offset (1 s of light after press release), there was no direct
effect of inhibition on subsequent press durations, nor an
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interaction with the use of recent experience, nor any effect on
performance (Fig. 7j–l). There was also no interaction with the
moving average term at any inhibition time point. The lack of a
direct effect of inhibition on press duration suggests the deficit in
use of recent experience was not due to a non-specific motor
effect. The lack of any inhibition effect prior to or after execution
of the lever press also suggests M2-DMS activity does not
represent a form of working memory, but instead supports use of
prior experience to inform current action execution.

Discussion
There is a growing concern that neuroscience investigations into
decision-making are “missing the forest for the trees”, or vice
versa. Investigations into the nature of decision-making that
isolate specific task-based computations or focus on summary
statistics such as accuracy have been indispensable in providing
information about both the tree and forest, respectively. However,

the present data suggests the need to account for the mesoscopic
context experiential information provides in order to link these
levels of analysis, akin to understanding the intertwined com-
munication among trees in a forest37. Here, sources of experi-
ential information often treated as task-irrelevant determined
whether and to what degree recent experience-information
influenced behavior and recruited involved neural circuits. By
using this approach, we show that M2 and M2-DMS circuits use
broad experiential information to instigate exploratory or recent
experience-based responding.

Classic temporal difference or reinforcement learning
models30,31 emphasize the role played by responses and out-
comes. By using an unconstrained task with a continuous deci-
sion variable, we found mice do not drastically shift their strategy
solely on their sequence of actions, nor based on whether their
action earned a reward. Rather, experiential variables such as
checking and the passage of time strongly influenced behavior
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and may serve to arbitrate between strategies. Behaviorally, sen-
sitivity to time could function to bias exploratory responding
when the preceding action is more distal in time and hence, when
the environment, and/or its neural representation may have
changed. On the other hand, checking sensitivity suggests infor-
mation seeking itself increases use of experience-based strategies,
perhaps as a result of providing definitive feedback. As multiple
behavioral controllers can be used to make seemingly similar
decisions38, experiential information may be used to bias

strategy-level recruitment, e.g., by adjusting the relative degree of
exploration (Fig. 3) or the relative similarity between adjacent
decisions (Figs. 6 and 7). This bias in recruitment strategy may
arise through experiential modulation of associated neural
activity19, perhaps by setting the “gain” on behavioral strategies39.

We found a robust representation of varied experience-related
information in broader M2 population activity. M2 lesions both
increased the similarity between adjacent presses and reduced the
integration of non-action-outcome information (including
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Checking, IPI, and Time). M2 might receive such information from
associative regions such as orbital frontal cortex19, as well as sensory
regions40. Although the M2 Sham comparison group showed a low
n - 1 β coefficient, the increased n -1 duration relationship is still
present when comparisons are made to another sham group (M2-
DMS Shams; t56426= 2.22, p= 0.026), and there was a similar loss
of interactions with other experiential information. Collectively, our
results extend previous studies implicating M2 populations in goal-
directed or model-based decision-making41 by providing insight
into precisely how this effect is achieved. Namely, by nullifying the
potential for an individual’s recent experience to contribute to
decision-strategy arbitration, animals with M2 lesions rely on
repetition-based strategies.

While M2 is important for a broader representation of
experiential information, we saw a subset of M2 projections
neurons (M2-DMS) provided a more limited representation of
information. Converging Ca2+ activity, lesion, and optogenetic
inhibition studies implicate M2-DMS projections specifically in
contributing recent lever press and checking information to
ongoing actions. The reduction in the use of recent experience
only when optogenetic inhibition occurred during the press
suggests that M2-DMS activity may serve as an experience-based
guide or reference for ongoing actions. This raises the hypothesis
that M2-DMS may function as part of a comparator for template
or pattern matching during action performance, analogous to the
pattern matching seen in avian vocal learning, and hypothesized
to be implemented in premotor regions42. In M2-DMS lesioned
mice, an intermediate behavior of checking in between lever
presses reduced the reliance of the current action on the prior,
providing some evidence that M2-DMS function is necessary to
link and/or compare recent action experience as has been sug-
gested by work examining sequence learning and initiation43.
Future studies investigating M2-DMS function at the single
neuron level could reveal important insights into precisely how
this is instantiated in the brain, and if there is an “embodied
engram” of recent actions, or a comparator function in M2-DMS
projection neurons.

Rarely is behavior in the natural world so neatly constrained as
in many laboratory tasks; thus it seems likely that animals have
adapted to use diverse sources of information to guide their
behavior. The brain should therefore be sensitive to this infor-
mation, yet several recent studies have demonstrated remarkably
widespread coding of variables in the brain44,45. Perhaps this
apparent distributed coding is the consequence of attributing
relatively static measurements of behavior and human-derived
constructs to large neural populations. That there is a wealth of
information available to animals and many neural circuits to
support decision-making, raises the hypothesis that specific
aspects of experiential information may modulate neural function
differentially depending on the circuit and the computation.
Investigations into circuit, synaptic, and molecular mechanisms
controlling how such experience modulates decision-making will
likely be fruitful, akin to increased understanding of arousal
modulation of sensory processing46. Repetitive decision-making
is found across many disease states including substance use dis-
orders and obsessive compulsive disorder. M2’s potential human
homologues - the pre-supplementary/supplementary motor areas,
have shown promise for the targeting of transcranial magnetic
stimulation in disease treatment47–49. Here we establish that M2-
DMS is involved in implementing repetitive/recent-experience-
based decisions. This raises the hypothesis that M2-DMS dys-
function may lead to decisions that are inappropriately or
excessively repetitive50. Incorporating experience into the exam-
ination of disease-induced brain function during decision-making
may increase the likelihood of obtaining enduring findings rele-
vant to the clinical treatment of disease.

Methods
Experimental model and subject details. Similar numbers of male and female
C57BL/6 J mice (>7 weeks/50 PND) (The Jackson Laboratory, Bar Harbour, ME)
were used for experiments. Exploratory analyses for sex differences in the beha-
vioral cohort revealed no differences, and thus we collapsed across sex. All pro-
cedures were conducted during the light period and mice had free access to water
throughout the experiment. Mice were housed 2–4 per cage on a 14:10 light:dark
cycle, housed at 71.6 °F, at 30% humidity. Mice were at least 6 weeks of age prior to
surgery. Mice were food restricted to 85–90% of their baseline weight 2 days prior
to the start of behavioral procedures, and were fed 1–4 h after the daily training. All
experiments were approved by the University of California San Diego Institutional
Animal Care and Use Committee and were carried out in accordance with the
National Institutes of Health (NIH) “Principles of Laboratory Care”.

Behavioral procedures. Mice were trained once per day in operant chambers in
sound attenuating boxes (Med-Associates, St Albans, VT) in which they pressed a
lever (left or right of the food magazine, counterbalanced for location) for an
outcome of regular ‘chow’ pellets (20 mg pellet per reinforcer, Bio-Serv formula
F0071). Each training session commenced with an illumination of the house light
and lever extension and ended after either 60 reinforcers were earned or 90 min
had elapsed, with the lever retracting and the house light turning off.

On the first day, mice were trained to approach the food magazine to retrieve
the pellet outcome (no lever present) on a random time (RT) schedule, with a
reinforcer delivered on average every 120 s for a total of 60 min. Next, mice were
trained on a continuous ratio schedule of reinforcement (CRF) across 3 days, where
every lever press was reinforced (no duration requirement), with the total possible
number of reinforcers increasing (CRF10, 30, and 60).

Following CRF pretraining, the hold down task was introduced. We instituted a
duration requirement on lever pressing: animals had to press and hold down the
lever for >800 ms in order to earn food reward (delivered immediately after press
release). Importantly, there were no cues, no timeout period, nor any discrete trials;
the lever was always available to mice, until they completed their session. Mice were
trained at the >800 ms criterion for 6 days, followed by at least 6 days of training at
the >1600 ms criterion. During all days, timestamps for lever press onset, lever
press offset, the onset and offset of headentry into the food magazine, and the
delivery of reward were recorded. From this timing information, we were able to
calculate durations of lever presses and headentries. Of note, use of Med Associates
introduced a 20 ms limit on our time resolution.

Outcome devaluation. In the behavioral mice (Figs. 1, 2 and Supplementary
Figs. 1, 2, n= 12 total, n= 7 female and n= 5 male), after 8 days of training at
>1600 ms, we performed outcome specific satiety. Devaluation procedures occurred
across two days. In brief, on the valued day, mice had ad libitum access to an
outcome previously experienced in the home cage for 1 h before being placed in the
training context for a 5 min, non-reinforced test session. On the devalued day, mice
were given 1 h of ad libitum access to the outcome previously earned by lever press,
and then underwent a 5 min, non-reinforced test session in the training context.
One mouse consumed <0.1 g of the valued outcome during pretraining exposure
and was excluded from all devaluation analyses (giving final n= 11). The order of
revaluation day was counterbalanced across mice.

Probabilistic reward. A naive group of mice (n= 15, n= 4 female and n= 11
male) were trained for 6 days on >800 ms, followed by 8 days at >1600 ms criteria,
and then switched to probabilistic reward, where only a percentage of presses that
exceeded the duration criterion were rewarded on a random ratio schedule. These
animals were separated into three different probabilistic reward groups: 25%, 50%,
and 75% (n= 5 each group) and trained for a further 3 days under the assigned
probabilistic schedule.

Surgical procedures. All viral vectors were obtained from the UNC Viral Vector
Core (Chapel Hill, NC) or Addgene (Wateron, MA). Mice were anaesthetized with
isoflurane (1–2%) and intracranial injections were performed via Hamilton syringe
(Reno, NV) targeted at a relatively posterior portion of M2 (from Bregma: AP+
1.0 mm, L ± 0.5 mm and V− 1.2 mm, −1.4 mm from the skull), and/or DMS
(from Bregma: AP+ 1.0 mm, L ± 1.65 mm and V− 3.0 mm, −3.2 mm from the
skull). Syringes were left in place for five minutes after each injection to allow for
diffusion, and all viruses or drugs were infused at a rate of 100 nl/min. Mice were
given at least two weeks to allow for recovery and viral expression before the start
of experimental procedures (at least four weeks for all M2-DMS manipulations).
After behavioral testing was concluded, mice were euthanized and brains were
extracted and fixed in 4% paraformaldehyde. Localization and spread of viral
expression was assessed in 50–100 µm thick brain slices using fluorescent micro-
scopy (Olympus MVX10, Shinjuku, Japan).

For M2 lesions, n= 12 Lesion mice were bilaterally injected with ibotenic acid
(10 mg/ml, ThermoFisher), while n= 12 Sham lesion mice were injected with
vehicle (saline) at M2 (2 injections of 120 nl at V −1.4 mm and −1.2 mm from the
skull in each hemisphere). In order to assess excitotoxic lesion presence and spread,
brains were sliced at 50 um thick, and incubated with propidium iodide (1:10000 in
1xPBS, Chemodex: P0023) and Isolectin-GS IB4 Alexa Fluor 488 Conjugate
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(20:10000, ThermoFisher: l21411), a marker of microglial cells which are recruited
via lesions51. Brain slices were incubated for 1 hr, followed by 3 x 10 min washes. 4
Sham mice were excluded due to technical difficulties during training, and 2 Lesion
mice were excluded due to histology, giving final n’s of 10 Lesion (n= 6 female,
n= 4 male) and 8 Sham (n= 4 female, n= 4 male) mice.

For M2 GCaMP experiments, n= 8 mice (n= 4 female, n= 4 male) were
injected (2 injections of 200 nl at V −1.4 mm and 1.2 mm from the skull) with
rAAVDJ/PAAV-CaMKIIa-GCaMP6s to express GCaMP6s under control of the
Ca2+ calmodulin dependent protein kinase IIα (CamKIIα) promoter and
implanted with an optical fiber unilaterally in M2.

For M2-DMS GCaMP experiments, n= 8 mice were unilaterally injected with a
viral vector expressing Cre recombinase (AAV5/Ef1a-Cre-WPRE) in DMS (2
injection depths: V −3.0 mm and −2.8 mm from the skull, 250 nl each), and were
injected with a viral vector expressing a Cre-dependent GCaMP6s
(pAAV.CAG.FLEX.GCaMP6s.WPRE.SV40 (Addgene: 100842); 2 injection depths:
V: −1.4 mm, and −1.2 mm from the skull, 200 nl each) followed by fiber
implantation in ipsilateral M2. One mouse was excluded due to histology (final
n= 4 female, n= 3 male).

For M2-DMS lesion, n= 8 Lesion (n= 4 female, n= 4 male) and n= 8 Sham
(n= 4 female, n= 4 male) mice were bilaterally injected with 200 nl of a viral
vector expressing CamKIIα-Cre in DMS (rAAV5/CamKII-GFP-Cre; 2 injection
depths: V: −3.1 mm and −2.9 mm from skull, 200 nl each). Lesion and Sham mice
were also injected with a viral vector expressing Cre-dependent tdTomato in M2
(rAAV5/Flex-tdTomato; 100 nl at V −1.4 mm from the skull). Lesion mice
additionally received a viral vector expressing a Cre-dependent caspase virus in M2
to induce apoptosis of M2-DMS projections (rAAV5/AAV-Flex-taCasP3-TEVP; 2
injection depths: V −1.4 mm and −1.2 mm from the skull, 200 nl each).

For M2-DMS optogenetic inhibition experiments, n= 8 Archaerhodopsin
(ArchT) and n= 8 tdTomato mice were bilaterally injected with a viral vector
expressing CamKIIα-Cre in DMS (rAAV5/CamKII-GFP-Cre; 2 injection depths: V
−3.1 mm and −2.9 mm from the skull, 200 nl each). Due to the proximity of
bilateral M2 at this posterior portion (~1.0 mm) for ferrule implantation, we
injected virus and implanted fibers at a 10° angle, and adjusted the M2 coordinates
accordingly. Experimental ArchT mice received a viral vector expressing a Cre-
dependent inhibitory opsin (rAAV5/Flex-ArchT-tdTomato), while fluorophore
control mice received a viral vector expressing Cre-dependent fluorophore only
(rAAV5/Flex-tdTomato), in both cases receiving the same injection volume (300 nl
at V −1.42 mm from the skull), with bilateral M2 fibers implanted at V −1.37 mm
from the skull. Following exclusion for viral expression or low levels of behavior,
there were n= 5 ArchT mice (n= 3 male, n= 2 female), and n= 6 tdTomato
control mice (n= 3 male, n= 3 female).

Fiber photometry. Animals underwent pre-training as described above, but
received one additional day of CRF training during which animals were first
hooked up to 400 um optical fiber tethers with ferrule to ferrule connectivity. A
470 nm LED (Thorlabs, Newton, NJ) was used for excitation of GCaMP6s
(<70 µW/mm2), and fluorescence emissions were collected with a bifurcated fiber
(Thorlabs, Newton, NJ) which allowed for simultaneous, independent recordings of
two mice. We imaged the dual fiber core using a 4x objective (Olympus, Shinjuku,
Japan) focused onto a CMOS camera (FLIR Systems, Wilsonville, OR). Regions of
interest (i.e., the fiber cores) were selected using Bonsai software52 to acquire
fluorescence intensity signals (at a rate of 20 Hz). Bonsai software simultaneously
collected analog behavioral data and timestamps for lever presses, head entries, and
reinforcer delivery sent via TTL Med-PC pulses using microprocessors (Arduino
Duo, from Arduino, Sumerville, MA) with custom code. Photometry and beha-
vioral data were imported into Matlab 2019b (Mathworks Inc., Natick, MA) for
analysis using custom scripts. To account for decay across the session (photo-
bleaching), we fit the fluorescence intensity signal to a double exponential. To
check for bad coupling of the fiber to the ferrule, or low expression, each session we
calculated the 97.5 percentile of dF/F and ensured that there was at least a 1%
change, sessions failing to meet this criterion were excluded from analyses53, and
also excluded sessions with visual anomalies in the session long traces (e.g., a
sudden, sustained decrease in activity partway through the session that could
indicate fiber decoupling). We used the mean and standard deviation during a
baseline period -15s to -5s prior to lever pressing to z-score press-related activity
(i.e., from -5s prior to onset up to 5 s post offset). To compare Met and Fail lever
presses, we performed running permutation tests, requiring that at least 4 adjacent
samples were significantly different from one another to control for fluctuations in
the data (functions implemented in Matlab from33). We smoothed Ca2+ activity
data using a 10 sample (or 5 sample for interpolated activity) long Gaussian filter
for display purposes only.

Optogenetic inhibition. For bilateral light delivery, Arduino Duos with custom
code were used to receive TTL pulses from Med-PC operant chambers and trigger
onset of 2 LEDs (595 nm, Thorlabs) coupled to 200 um sheathed fiber optic cable
with ferrule-to-ferrule connectivity (>= 1 mW at ferrule tip). We used 595 nm
light as this has been shown to optimally activate ArchT while avoiding non-
specific effects54. We used several different protocols to target the closed-loop
inhibition to different task epochs. Inhibition during the duration of the lever press
occurred across the 6 > 800 ms training days, with light delivery (continuous, not

pulsed) tied to the lever pressing itself. As we observed a decaying relationship
between n-back press durations and n - 0 press duration, every 7th lever press
triggered light delivery, which persisted for the duration of the lever press (with a
time resolution of 20 ms for light offset). During days 1–6 of the >1600 ms training,
we instead tied light delivery to press offset, again, on every 7th lever press. Thus,
after every 7th lever press, mice were given 1 s of light. Finally, after undergoing
4 days of baseline training without any light inhibition (though while still being
hooked up to fibers), we shifted to inhibiting prior to press onset for 6 days. To
achieve this, animals were recorded with an overhead camera (1080p wide angle
webcam, Logitech) and tracked in real time using Bonsai software. We individually
defined regions of interest centered on the lever (approximately twice the width
and length of the lever itself). 50% of entrances into this region generated a TTL
pulse to turn on the LEDs, which remained on for 1 s.

ArchT slice validation. Coronal slices (250 μm thick) containing M2 were pre-
pared using a Pelco easiSlicer (Ted Pella Inc, Redding, CA). Mice were anesthetized
by inhalation of isoflurane and brains were rapidly removed and placed in 4 °C
oxygenated ACSF containing the following (in mM): 210 sucrose, 26.2 NaHCO3, 1
NaH2PO4, 2.5 KCl, 11 dextrose, bubbled with 95% O2/5% CO2. Slices were
transferred to an ACSF solution for incubation containing the following (in mM):
120 NaCl, 25 NaHCO3, 1.23 NaH2PO4, 3.3 KCl, 2.4 MgCl2, 1.8 CaCl2, 10 dextrose.
Slices were continuously bubbled with 95% O2/5% CO2 at pH 7.4, 32 °C and were
maintained in this solution for at least 60 min prior to recording.

Whole-cell current clamp recordings were made in pyramidal cells of M2.
Pyramidal cells that expressed ArchT were identified by the fluorescent tdTomato
label using an Olympus BX51WI microscope mounted on a vibration isolation
table and a high-power LED (LED4D067, Thorlabs). Recordings were made in
ACSF containing (in mM): 120 NaCl, 25 NaHCO3, 1.23 NaH2PO4, 3.3 KCl, 0.9
MgCl2, 2.0 CaCl2, and 10 dextrose, bubbled with 95% O2/5% CO2. ACSF was
continuously perfused at a rate of 2.0 mL/min and maintained at a temperature of
32 °C. Picrotoxin (50 µM) was included in the recording ACSF to block GABAA
receptor-mediated synaptic currents. Recording electrodes (thin-wall glass, WPI
Instruments) were made using a PC-10 puller (Narishige International, Amityville,
NY) to yield resistances between 3 and 6MΩ. Electrodes were filled with (in mM):
135 KMeSO4, 12 NaCl, 0.5 EGTA, 10 HEPES, 2 Mg-ATP, 0.3 Tris-GTP,
260–270 mOsm (pH 7.3). Access resistance was monitored throughout the
experiments. Cells in which access resistance varied >20% were not included in the
analysis.

Recordings were made using a MultiClamp 700B amplifier (Molecular Devices,
Union City, CA), filtered at 2 kHz, digitized at 10 kHz with Instrutech ITC-18
(HEKA Instruments, Bellmore, NY), and displayed and saved using AxographX
(Axograph, Sydney, Australia). A series of fixed current injections (20 pA
increments from 0 to 120 pA) were used to elicit action potential firing and the
number of spikes were counted at each current step. For verification of ArchT
function, ArchT was optically stimulated using 590 nm light, delivered via field
illumination using a high-power LED (LED4D067, Thorlabs). Optical stimulation
was done under constant illumination for 1 s during current injections.

Data analysis
Linear mixed effects models of behavior. We built simple Linear Mixed Effects
(LME) models to model the relationship between the duration of lever press n and
n-back (n - 1 through n - 10) lever press durations. We included random intercept
terms for mouse and day of training to account for the repeated structure of our
data. To determine how far back a significant relationship existed between press n
and any particular n-back press, we shuffled the order of a particular n-back (e.g.,
only n - 3) 1000 times and compared the shuffled distribution of beta coefficients to
the actual value via permutation test. Of note, we are shuffling here within indi-
vidual mouse/sessions, thus preserving the overall statistics of the data, and shuf-
fling only the order in which a specific type of event occurred.

n ¼ β0 þ βn�1n�1 þ βn�2n�2 þ ¼ þ βn�10n�10 þ βtðtÞ þ β%ð%Þ þ ð1jMÞ þ ð1jDÞ þ εi ð1Þ
In Eq. 1, n is the current lever press duration, n - 1 through n - 10 are the

previous 1 through 10 lever press durations and βx is the linear regression
coefficient for term x (β0 is the intercept). We also included covariates of time in
session (t) and the percentage of presses that met criteria (%). We included random
intercept terms for both mouse (M) and day (D).

In order to determine which other experiential variables affected lever press n
duration, we also built more complex LME models that included additional
variables. To select variables for this model, we created a “full” model that included
n-back durations up to n - 6 (as that is as far back as we see a consistent difference
from shuffled data in the simple models), and then main effects of other variables
and their interactions with n-back durations, also up to n - 6 (e.g., a binary for if
mice made a checking headentry after the previous lever press). We individually
removed terms from this full model and compared Bayesian Information Criterion
(BIC) to assess if adding a term improved the model. If any term did not improve
the model, we removed it, and also removed any further n-back examples of it.
However, we kept main effect terms in the model if the interactions were significant
and kept all the same interaction terms for n - 1 and the moving average term to be
able to directly compare how various events might differentially affect the
contribution of press n - 1 versus the moving average. To ensure that terms in this
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reduced model did not improve the model due to overall correlations across days
or mice, we also compared beta coefficients from the actual data to those obtained
from 1000 order shuffled datasets, where we individually permuted a given term
within individual mouse/sessions. This analysis conducted on our “reduced” model
agreed with the BIC selection for terms that improved the model. We were
ultimately left with the model in Supplementary Table 2 (see also Table 1 for a
description of terms), signified by Eq. 2 below.

n ¼ β0 þ βn�1n�1 þ βn�2n�2 þ ¼ þ βn�6n�6 þ βMAMAþ βt t

þ β%%þ βIPIIPI�1 þ βIPIIPI�2 þ βRR�1

þ βHEHE�1 þ βt*n�1t*n� 1þ β%*n�1%*n� 1þ βIPI*n�1IPI�1*n� 1

þ βIPI*n�2IPI�2*n� 2þ βR*n�1R�1*n� 1þ βHE*n�1HE�1*n� 1

þ βt*MAt*MAþ β%*MA%*MAþ βIPI*MAIPI�1*MA

þ βR*MAR�1MAþ βHE*MAHE�1*MAþ ð1jMÞ þ ð1jDÞ þ εi

ð2Þ

Where βx represents the linear regression coefficient for a given term. This
model has the same terms as the simple model, though only back to n - 6 durations,
as that is as far back as there is a reliable difference to shuffled data. In addition,
there is the MA term which is a moving average from presses n - 7 through n - 60
(length selected via BIC using different window lengths). Additionally, we have
main effects of time in session (t, in ms), the percentage of presses that met criteria
(%), inter-press interval (IPI in ms, for both time in between press n and press n - 1
(IPI-1), and between press n and press n - 2 (IPI-2)), outcome of press n - 1 (R-1:
binary where 0 is no reward and 1 is reward), and headentry between press n - 1
and press n (HE-1: binary where 0 is no headentry and 1 is headentry). Again, we
have random intercept terms for mouse (M) and day of training (D). We also
included interaction terms between the n - 1 duration term and: t, %, IPI, Rn-1, and
HEn-1. These interaction terms are specified with the general format of βx*n-1x*n-1
where x represents an individual interaction term (e.g., for time in session t
interacting with n - 1 duration: βt*n-1t*n-1).These same interaction terms were
included with the moving average term (MA, of the general format βx*MAx*MA) in
order to see if very recent experience (n - 1) and long-term experience (MA) were
differentially influenced by variables such as time. Interestingly, when examining
further n-back interactions, only the interaction between IPIn-2 and n - 2 duration
survived the BIC selection process, indicating that individual further n-backs were
less open to modification by these variables.

In the probabilistic reward experiment, we added a trinary term for if a lever
press was unsuccessful (0), successful and unrewarded (1), or successful and
rewarded (2), and included interactions between this term and n - 1 as well as the
MA. Additionally, we ran all three probability groups together in the model and
included indicator variables for which group (25%, 50%, or 75% reward) a mouse
belonged to. This allowed us to include a 3-way interaction to determine if the
groups differed in how this trinary outcome term interacted with prior press
durations (e.g., does the probability of reward influence the presence/magnitude of
win-stay behavior?). For the optogenetic inhibition LME models, we included a
binary term indicating if a lever press received light delivery (before, during, or
after for the three different manipulations) as both a main effect and as an
interaction with n - 1 duration and the MA to determine if light reduced the
relationship between press n and press n - 1/the MA.

Ca2+ activity linear mixed effect models. For the M2 and M2-DMS Ca2+ activity
recordings, we built LME models that sought to predict Ca2+ activity given
behavior. For this, we used data only from the 1600ms training days. First, we built
simple LME models that included only current (n) and prior (n-back, up to n - 6)
durations to predict activity (calculated as area under the curve) at three different
time points: −1 s to 0 s before press onset, during the lever press itself, and 0 s to
+1 s after press release. For activity during the lever press itself, we used modified
Akima interpolation, implemented using Matlab’s interp1 function to get presses of
different durations on the same relative scale, and we excluded any lever presses
with fewer than 2 samples which would preclude interpolation. We also included
terms for prior activity (up to n - 6) to control for autocorrelation in the Ca2+

activity signal. We again compared beta coefficients from the actual data to 1000
order shuffled datasets for these simple models.

A ¼ β0 þ βnn0 þ βn�1n�1 þ ¼ þ βn�6n�6 þ βA�1A�1 þ ¼ þ βA�6A�6 þ ð1jMÞ þ ð1jDÞ þ εi

ð3Þ

In Eq. 3, A is current Ca2+ activity and βx is the regression coefficient for term
x. Of note, these models included n duration (n0) as a predictor (whereas this was
what we predicted in the pure behavioral models). We predicted A given both
current (n0) and prior (n - 1, up to n - 6) press durations, included prior Ca2+

activity (A - 1, up to A - 6) as a covariate, and included random intercepts of mouse
(M) and training day (D).

Additionally, we built more complex LME models to predict Ca2+ activity data.
For these, we used the complex behavioral model above for the predictors, as we were
interested in seeing if these variables - which we know influence the behavior - are
also represented in Ca2+ activity, and we also still included prior Ca2+ activity data to
control for autocorrelation in the Ca2+ data. This took the form of the following

Eq. 4, using the same variables as the preceding equations.

A ¼ β0 þ βA�1A�1 þ ¼ þ βA�6A�6 þ βn0n0 þ βn�1n�1 þ ¼ þ βn�6n�6

þ βMAMAþ βt t þ β%%þ βIPIIPI�1 þ βIPIIPI�2 þ βRR�1 þ βHEHE�1

þ βt*n�1t*n� 1þ β%*n�1%*n� 1þ βIPI*n�1IPI�1*n� 1þ βIPI*n�2IPI�2*n� 2

þ βR*n�1R�1*n� 1þ βHE*n�1HE�1*n� 1þ βt*MAt*MAþ β%*MA%*MA

þ βIPI*MAIPI�1*MAþ βR*MAR�1MAþ βHE*MAHE�1*MAþ ð1jMÞ þ 1ð1jDÞ þ εi

ð4Þ
When trying to predict activity after lever press offset, we also included a binary

term for outcome on lever press n (R0 i.e., the lever press that was just completed
with 0 being no reward and 1 being reward). We did not include this term at the
other time points since it would introduce a “post diction” confound (i.e., including
a term for the outcome of a press before the press even occurred). For the same
reason, we did not include interactions with the n0 variable.

Quantification and statistical analysis. All analyses were two-tailed with α= 0.05 as a
threshold for significance. For analyzing coarse behavioral measurements (e.g., Total
Lever Presses) one-way or two-way RM ANOVAs were used, with Greenhouse-Geisser
correction for one-way ANOVA and Bonferroni corrections for post-hoc multiple
comparisons unless otherwise noted. We used the RMcorr package55 implemented in R
(R Core Team) to calculate a repeated measures correlation between individual model
fit and mouse performance to account for the repeated nature of this data (sampling
individual mice across days). We used Matlab’s cusum function to get the upper
cumulative sum in Fig. 1i, j, using 2 SD as the criterion. In our simple LME models, we
used permutation tests comparing actual β coefficient values to a distribution of 1000
order shuffled versions of the same variable, and thus the resolution of our permutation
p values was p < 0.001. We excluded presses over 10 s in duration from all modeling
datasets. For event-aligned Ca2+ activity comparing Met vs. Fail lever presses, we used
permutation tests that required either 4 (for onset and offset-aligned activity) or 3 (for
interpolated activity during the press) consecutive samples to pass the threshold for
significance. To assess the relationship between Ca2+ activity and various aspects of
behavior in our complex LME models, we performed F-tests on the individual para-
meters. For group comparisons (e.g., Sham vs. Lesion) of LME model coefficients, we
used t tests with Benjamini-Hochberg false discovery rate correction (Q= 5%) on all of
the model terms shown in Supplementary Tables 3 and 6. Behavioral data was collected
using Med-PC software, analyzed using Excel (Microsoft), Matlab (Mathworks), R (R
Core Team), and Prism (Graphpad).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data supporting the findings of this study are provided within the paper and its
Supplementary Information. A source data file is provided with this paper. All additional
information will be made available upon request to the authors. Source data are provided
with this paper.

Code availability
The code used to analyze the data from this study is freely available at: https://github.
com/gremellab/Hold-Down-Behavior-GCAMP-Opto-analysis.
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