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Abstract: The polycrystalline CHA-type zeolite layer with Si/Al = 18 was formed on the porous α-Al2O3

tube in this study, and the gas permeation properties were determined using single-component H2,
CO2, N2, CH4, n-C4H10, and SF6 at 303–473 K. The membrane showed permeation behavior, wherein
the permeance reduced with the molecular size, attributed to the effect of molecular sieving. The
separation performances were also determined using the equimolar mixtures of N2–SF6, CO2–N2, and
CO2–CH4. As a result, the N2/SF6 and CO2/CH4 selectivities were as high as 710 and 240, respectively.
However, the CO2/N2 selectivity was only 25. These results propose that the high-silica CHA-type
zeolite membrane is suitable for the separation of CO2 from CH4 by the effect of molecular sieving.

Keywords: zeolite membrane; CHA-type zeolite; gas permeation; CO2 separation

1. Introduction

Zeolites are microporous aluminosilicate compounds, and they have been attracted
much attention as the potential material for membranes. Zeolite membranes have been
studied since the 1990s, and the MFI-type zeolite membranes were formed on the substrates
by deposition and intergrowth of crystallites, which were nucleated in synthesis mix-
tures [1–10]. Geus et al. [1] prepared MFI-type zeolite membranes on several kinds of sub-
strates and determined gas permeation properties through the membranes. Sano et al. [2]
investigated MFI-type zeolite membranes by a hydrothermal process on porous stainless-
steel and alumina substrates and applied them to the separation of water/alcohol mixtures.
The permeation and separation properties were also studied by several groups [11–17].
Moulijn and coworkers [11–14] estimated the permeation properties through the MFI-type
zeolite membranes using a Maxwell–Stefan formulation containing the gas adsorption on
zeolites and the diffusion inside the membrane. Morooka and coworkers [15,16] proposed
an adsorption–diffusion model to discuss the effect of CO2 adsorption on zeolite and
diffusion in the membrane for CO2 separation using Y-type zeolite membranes. Some
kinds of zeolite membranes are available for the dehydration of many kinds of organic
solvents in industries [18–22].

These mechanism studies have established that DDR-, CHA-, and AEI-type zeolite
has favorable characteristics for the membrane material, such as small micropore diameter,
large micropore volume, and the composition variability [23]. These features correspond
to the permeation and separation performances and the acid and thermal stabilities of
the membrane [24]. Tomita et al. developed the DDR-type zeolite membrane by the
secondary growth of seeded crystals [20], and the several gas permeation properties
were determined [25]. In particular, the CO2/CH4 selectivity was as high as 2000 below
250 K. However, the selectivity decreased to 220 around 300 K. Noble and coworkers
investigated CHA-type silica-aluminophosphate zeolite (SAPO-34) membranes [26–30],
and the separation performances were determined for CO2–CH4, CO2–N2, Kr–Xe, and
N2–CH4 mixtures. The CO2/CH4 selectivity was 171 at 295 K [28]. Some high-silica
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CHA-type zeolite membranes with no phosphates were developed, and the dehydration
and CO2 separation performances were determined [31,32]. Sato et al. developed the
commercially available CHA-type zeolite membranes with Si/Al = 7, and the dehydration
performances were determined for N-methyl-2-pyrrolidone (NMP) [31]. For a 50 wt %
NMP solution at 403 K, the permeation flux and separation factor were 36 kg m−2 h−1 and
1100, respectively. Imasaka et al. developed high-silica CHA-type zeolite membranes with
Si/Al = 23, and they applied them to the CO2 separation [32]. The membrane showed
the high CO2 permeance (1.5 × 10−6 mol m−2 s−1 Pa−1) and CO2/CH4 selectivity (115)
at 313 K. AEI-type zeolite is one of the aluminophosphate-type zeolites and contains no
exchangeable cations. Since the crystal structure is similar to CHA-type zeolite, the identical
CO2/CH4 selectivities were obtained [33–35].

Recently, we developed the rapid preparation technique for high-silica CHA-type
zeolite membranes using the structure conversion of Y-type zeolite [36–38]. The influence
of preparation conditions on the separation performances were studied, and the high repro-
ducible procedures were determined [37]. The dehydration performances were determined
for several organic solutions in our previous report [38]. However, the gas permeation
and separation performances have not been determined. In this study, the gas permeation
properties were determined using single-component H2, CO2, N2, CH4, n-C4H10, and SF6
at 303–473 K. The gas separation tests were also examined for binary mixtures of N2-SF6,
CO2-N2, and CO2-CH4 at 303–473 K. Furthermore, the gas permeation and separation
mechanisms of the CHA-type zeolite membrane were discussed in this paper.

2. Materials and Methods
2.1. Membrane Preparation

A high-silica CHA-type zeolite membrane was prepared on the outer surface of
a porous α-Al2O3 support tube by the combination of the secondary growth of seed
particles and the structure conversion of FAU-type zeolite [36–38]. The seed particles were
prepared by mixing sodium hydroxide (FUJIFILM Wako, Tokyo, Japan), sodium aluminate
(FUJIFILM Wako, Tokyo, Japan), a N,N,N-trimethyl-1-adamantammonium hydroxide
solution (SDA, 25%, Sachem Asia, Osaka, Japan), and ultra-stable Y-type zeolite particles
(HSZ-390HUA, Tosoh, Tokyo, Japan). The molar composition of the solution was 40 SiO2:1
Al2O3:4 Na2O:8 SDA:800 H2O. The mixture was poured into a Teflon-lined stainless-steel
autoclave, and a hydrothermal reaction was carried out at 433 K for 4 days. Solids were
recovered by filtration, washed with distilled water, and dried overnight at 383 K to obtain
seed particles. For the secondary growth, a synthesis solution was prepared by the same
procedures as that for the seed particles, and the mixture was stirred at room temperature
for 4 h. The molar composition of the mixture was 45 SiO2:1 Al2O3:4.5 Na2O:3.4 SDA:4500
H2O. The α-Al2O3 tube was used as the support, and the properties were as follows:
outer diameter = 2.0 mm; inside diameter = 1.5 mm; mean pore diameter = 0.3 µm; and
porosity = 45%. The outer surface of the support tube was rubbed with the seed particles
to implant seeds for nucleation, and the tube was added to the autoclave filled with 30 g
of the synthesis solution. The autoclave was placed horizontally in an oven at 433 K for
20 h to form the polycrystalline high-silica CHA-type zeolite layer. After the autoclave was
cooled to room temperature, the support tube was recovered, washed with distilled water,
and dried at room temperature overnight. Finally, the tube was calcined in air at 773 K for
10 h to remove the SDA to obtain the high-silica CHA-type zeolite membrane.

The morphology was observed using a scanning electron microscope (SEM, TM-
1000, Hitachi High-Technologies, Tokyo, Japan), and the composition was analyzed by an
energy-dispersive X-ray (EDX) analyzer attached with the SEM. The crystal structure of
the membrane was identified by X-ray diffraction (XRD, Smart-Lab, Rigaku, Tokyo, Japan).

2.2. Gas Permeation Test

Both the ends of the support tube were connected to stainless-steel tubes with silicon
resin (TSE3976-B, Momentive, Tokyo, Japan), and the outer surfaces of resin were wrapped
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with thermally shrinking tetrafluoroethylene and hexafluoropropylene copolymer (FEP)
tubes (FEP-040, Junkosha, Osaka, Japan). The effective membrane area for permeation
was 1.2 cm2. The membrane was fixed to a permeation cell, as shown in Figure 1, and the
cell was placed in an electric furnace [39]. Single-component H2, CO2, N2, CH4, n-C4H10,
and SF6, as well as binary mixtures of N2–SF6, CO2–N2, and CO2–CH4, were fed onto the
outer surface of the membrane (feed side) at 100 mL min−1, and either argon (for H2) or
helium (for the others) was introduced into the inside of the membrane (permeate side) at
10–50 mL min−1 as the sweep gas. The total pressures of the feed and permeate sides were
kept at 300 and 101 kPa, respectively. In this study, the membrane was treated under N2
flow at 473 K for 30 min to remove adsorbed water, and the test gas was fed onto the feed
side. The pretreatment was carried out before each measurement. The gas composition
was analyzed using a gas chromatograph with a thermal conductivity detector (Shimadzu
GC-8A), and the gas flow rate was determined by a soap-film flowmeter. The permeance
for component i, Qi, was calculated using the following equation:

Qi =
Npyi

S(Pfi − Ppi)
, (1)

where Np is the molar flow rate of the outlet from the permeate side; S, the effective
membrane area for permeation; yi, the mole fraction of component i in the outlet gas of the
permeate side; Pfi, the partial pressure of component i on the feed side; and Ppi, the partial
pressure of component i on the permeate side. The selectivity was defined as the ratio of
the permeances in this study.
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formed on the porous α-Al2O3 tube with high reproducibility. 

Figure 1. Schematic illustration of the gas permeation cell.

3. Results and discussion
3.1. Membrane Characterization

Figure 2 shows the SEM images of the CHA-type zeolite membrane. The outer
surface of the porous support tube was covered with a polycrystalline layer (thickness
≈ 3 µm, Si/Al = 18). The XRD pattern of the membrane contained both the peaks of the
support tube and seed particles, as shown in Figure 3. These are identical to those reported
previously [36–38]. This suggests that the polycrystalline CHA-type zeolite layer could be
formed on the porous α-Al2O3 tube with high reproducibility.
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Figure 3. XRD patterns of the support tube, seed particles, and zeolite membrane.

3.2. Single-Component Gas Permeation

Figure 4 shows the influence of the kinetic diameter on the single-component gas
permeance at 303 and 473 K. The permeance of CO2 was 5.1 × 10−7 mol m−2 s−1 Pa−1

at 303 K. The permeance, except for H2, decreased, with increase in the diameter, and
that reached 4.1 × 10−11 mol m−2 s−1 Pa−1 for SF6. The diameter of the crystallographic
channel aperture of the CHA-type zeolite is 0.38 nm [23], and the molecular diameters
of H2, CO2, N2, CH4, n-C4H10, and SF6 are 0.289, 0.33, 0.364, 0.38, 0.43, and 0.55 nm,
respectively [40]. Since H2, CO2, and N2 molecules are smaller than the channel diameter,
those molecules can penetrate into and diffuse within the zeolite channels. Although the
molecular diameter of SF6 is clearly larger than the channel sizes, SF6 was detected on
the permeate side of the membrane. The marginal permeance of SF6 proposes that the
membrane had intercrystalline boundaries. The unit cell of the high-silica CHA-type zeolite
was shrunk by the air calcination, and the volume shrinkage degree was 0.6 vol % [37].
The small intercrystalline boundaries were produced by the unit cell shrinkage by the
air calcination.
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Moreover, the permeance of N2 was 1.8 × 10−8 mol m−2 s−1 Pa−1 at 473 K. After
nine times heating and cooling treatment for determination of the permeation properties
of single-component gases and binary mixtures, the permeance was 1.7 × 10−8 mol m−2

s−1 Pa−1. The identical permeances of N2 indicates that the high-silica CHA-type zeolite
membrane was stable for the thermal treatment.

Figure 5 shows the effect of temperature on the permeances of the single-
component H2, CO2, N2, CH4, n-C4H10, and SF6 at 303–473 K. The permeance of CO2 was
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5.1 × 10−7 mol m−2 s−1 Pa−1 at 303 K and decreased with temperature. As a result, it was
1.3 × 10−7 mol m−2 s−1 Pa−1 at 473 K. The permeances of H2 and N2 showed similar
dependencies. Since these molecules are smaller than the channel diameter of the CHA-
type zeolite, these molecules can adsorb on the zeolite channels. The adsorption amount
decreased with temperature. Therefore, the permeances of H2, CO2, and N2 were decreased
with temperature by the reduction of the concentration difference between both the sides
of the membrane.
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and SF6 at 303–473 K.

In contrast, for CH4, n-C4H10, and SF6, the diameters of which are identical or larger
than the zeolite channels, the permeances increased with temperature. The effect of
temperatures is described using the Arrhenius equation as follows:

Qi = Q∗
i exp

(
−

Ep

RT

)
, (2)

where Qi
* and Ep are the pre-exponential factor and activation energy for permeation,

respectively. The pre-exponential factors and activation energies of single-component gas
permeation are listed in Table 1. The activation energies for n-C4H10 and SF6 were higher
than those of the other gases. It is well known that the difference in the diffusivities is
important for the permeation through membranes [11–17]. The higher activation energies
of n-C4H10 and SF6 suggest that it is difficult for these molecules to permeate through the
intercrystalline boundaries. Therefore, the high-silica CHA-type zeolite membrane had
small and minimal intercrystalline boundaries.

Table 1. Pre-exponential factors and activation energies for single-component gas permeation through
the high-silica CHA-type zeolite membrane.

Gas σ (nm) Qi
* (mol m−2 s−1 Pa−1) Ep (kJ mol−1)

H2 0.289 5.5 × 10−8 −2.1
CO2 0.33 9.5 × 10−9 −10.6
N2 0.364 2.7 × 10−9 −7.5

CH4 0.38 4.7 × 10−9 1.2
n-C4H10 0.43 7.5 × 10−9 11.3

SF6 0.55 7.3 × 10−9 13.2

As shown in Table 1, the order of the activation energies was CO2 < N2 < CH4 < SF6.
This suggests that the CO2/N2, CO2/CH4, and N2/SF6 selectivities are higher at lower
temperatures. The separation performances for these mixtures are examined in the next
subsection.
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3.3. Binary Mixture Gas Permeation

Figure 6 shows the permeances of N2 and SF6 for the equimolar mixture of them
at 303–473 K. As same as for the single gas, the permeance of N2 for the binary mixture
decreased with temperature, while that of SF6 showed the reverse dependency. Therefore,
the N2/SF6 selectivity was the highest (=710) at 303 K. The permeance of SF6 for the mixture
was the same as that for single gas, and the permeance of N2 for the mixture was also
identical at temperatures higher than 363 K. However, below 363 K, the permeances of N2
for the mixture was lower than that for the single gas. As a result, the N2/SF6 selectivity was
440 for the mixture. The lower N2 permeances for the mixture was attributed to the weaker
interaction of N2 with the zeolite than SF6. The interaction potential of individual molecules
can be described using the Lennard–Jones 12-6 equation. The depths of interaction potential
are 0.59 kJ mol−1 and 1.85 kJ mol−1 for N2 and SF6, respectively [41]. The deeper potential
of SF6 proposes that SF6 molecules interact with zeolites more strongly than N2. In addition,
SF6 molecules permeated through the boundaries, as discussed above. Therefore, N2
molecules, permeated through the boundaries, were inhibited by the SF6 molecules, and
the permeance of N2 became lower compared to the single gas.
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Figure 7 shows the permeation properties of CO2 and N2 for the equimolar mixture of
them at 303–473 K. Although the permeance of N2 became the maximum at 343 K for the
mixture, that of CO2 decreased with temperature. The CO2/N2 selectivity for the mixture
was the highest at 303 K (=25) and decreased with temperature. As a result, the selectivity
became only 9 at 473 K.
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Compared to the single gas, the temperature dependency of CO2 for the mixture was
similar, although the permeance for the mixture was slightly higher at all temperatures.
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The permeance of N2 was almost the same that for the single gas at higher temperatures
than 373 K, while it was lower below 363 K. These are typical permeation properties
when molecules are transferred and separated by the preferential adsorption of CO2.
Similar properties were also observed for the CO2–N2 separation using FAU-type zeolite
membranes [15,16]. Morooka and coworkers explained the permeation properties by the
preferential CO2 adsorption and the overtaking N2 by CO2 [15].

Figure 8 shows the effect of temperatures on the permeation properties of CO2 and
CH4 for the equimolar mixture of them. The permeances of CO2 and CH4 for the mixture
were 5.3 × 10−7 and 2.2 × 10−9 mol m−2 s−1 Pa−1 at 303 K, respectively. The CO2/CH4
selectivity was 240 for the mixture. The permeance of CO2 decreased with temperature,
although that of CH4 showed the reverse dependency. As a result, the CO2/CH4 selectivity
reduced to 43 at 473 K. Comparing to the single gases, the permeances of CO2 and CH4
for the mixture were almost identical. The permeation properties cannot be explained by
only the preferential CO2 adsorption, as discussed in Figure 7. Since the molecular size
of CH4 is similar to the channel diameter of the CHA-type zeolite, the diffusion of CH4
within the zeolite channel was slower than N2, as show in Figure 4. It is known that the
i-C4H10 molecules hinder the diffusion of n-C4H10 for the separation of butane isomers
using MFI-type zeolite membranes [39]. The CH4 molecules within the zeolite channels
may hinder the diffusion of CO2 molecules.
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The influence of the CO2 concentration in the feed mixture was determined to check
the interaction between CO2 and CH4 molecules during the permeation. Figure 9 shows
the influences of the CO2 concentration in the feed mixtures on the permeation properties
of CO2 and CH4 for binary mixtures of them at 303 K. If CH4 inhibits the permeation of
CO2, the permeance of CO2 would be reduced at the dilute CO2 concentration. However,
the permeances of CO2 and CH4 were independent of the CO2 concentration in the feed
mixture, and the selectivity was almost constant at 200–260. The constant permeances of
CO2 and CH4 propose that the CO2 and CH4 molecules did not interact each other during
the membrane permeation. Therefore, it is considered that CO2 and CH4 molecules diffuse
in the different passes, such as zeolite micropores and inter-crystalline boundaries.

Figure 10 compares the CO2 separation performance to previous reports [25,27,28,
32,34,42,43]. The CO2 permeance and selectivity of our membrane were relatively high
for CO2–CH4 mixtures, and the performances could be plotted on the trade-off line of
SAPO-34, CHA-, and AEI-type zeolite membranes [27,28,32–34]. It is considered that the
similar CO2 separation performances of the membranes are attributed to the similar crystal
structures [44]. Although the DDR-type zeolite membrane showed extremely high CO2
selectivity below 300 K, the selectivity at temperature higher than 300 K was almost the
same as those of CHA- and AEI-type zeolite membranes [25]. The CO2 selectivities of
the FAU-type zeolite membranes were lower compared to those membranes [42]. On the
contrary, the FAU-type zeolite membranes showed higher CO2 permeance and selectivity
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for CO2–N2 mixtures [42,43]. The selectivity of our membrane was an order of magnitude
lower than those of the FAU-type zeolite membranes and comparable to those of the
DDR-type zeolite membrane around 300 K. The Si/Al ratio of the DDR- and CHA-type
zeolite membranes were more than 15, and the amount of the counter-cation was much
less. In contrast, the FAU-type zeolite membrane contained many cations because of low
Si/Al ratio (Si/Al < 2). These propose that the effect of molecular sieving such as the DDR-,
CHA-, and AEI-type zeolite membranes is effective for the CO2 separation from CH4, while
the selective adsorption of CO2 is necessary for CO2–N2 mixtures.
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4. Conclusions

The polycrystalline CHA-type zeolite layer with Si/Al = 18 was formed on the porous
α-Al2O3 tube in this study, and the gas permeation properties were determined using
single-component H2, CO2, N2, CH4, n-C4H10, and SF6 at 303–473 K. The permeance
was 5.1 × 10−7 mol m−2 s−1 Pa−1 for CO2 at 303 K and the permeance reduced with
increasing the molecular size. Moreover, the permeances of H2, CO2, and N2 decreased
with temperature, while those of CH4, n-C4H10, and SF6 showed reverse trends. The
gas separation tests were also carried out using binary mixtures of N2-SF6, CO2-N2, and
CO2-CH4. The membrane showed the high separation performance for the mixtures, and
the N2/SF6, CO2/N2, and CO2/CH4 selectivities were 710, 25, and 240, respectively.
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