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Simple Summary: The transcription factor family LBD were well-known as regulator of plant
development. Several recent studies indicated LBD genes response to abiotic stresses and abscisic
acid. The salt tolerant rose (Rosa rugosa) distribute wildly in coastal saline sands are ideal materials
of exploring the salt -responsive LBD genes. We found 41 RrLBDs from genome of wild rose and
classified them into Classes I and II. Interestingly, many plant hormone response sites and abiotic
stress response sites were predicted in promoters of some RrLBDs. In them, five RrLBDs (RrLBD12c,
RrLBD25, RrLBD39 and RrLBD40) were significantly induced or depressed by salt stress. We
predicted the five genes as salt response candidate genes of wild rose and the sites in their promotors
maybe pointcut for further study.

Abstract: LATERAL ORGAN BOUNDARIES DOMAIN (LBD) transcription factors are regulators of
lateral organ morphogenesis, boundary establishment, and secondary metabolism in plants. The
responsive role of LBD gene family in plant abiotic stress is emerging, whereas its salt stress responsive
mechanism in Rosa spp. is still unclear. The wild plant of Rosa rugosa Thunb., which exhibits strong
salt tolerance to stress, is an ideal material to explore the salt-responsive LBD genes. In our study,
we identified 41 RrLBD genes based on the R. rugosa genome. According to phylogenetic analysis,
all RrLBD genes were categorized into Classes I and II with conserved domains and motifs. The
cis-acting element prediction revealed that the promoter regions of most RrLBD genes contain defense
and stress responsiveness and plant hormone response elements. Gene expression patterns under
salt stress indicated that RrLBD12c, RrLBD25, RrLBD39, and RrLBD40 may be potential regulators of
salt stress signaling. Our analysis provides useful information on the evolution and development of
RrLBD gene family and indicates that the candidate RrLBD genes are involved in salt stress signaling,
laying a foundation for the exploration of the mechanism of LBD genes in regulating abiotic stress.

Keywords: Rosa rugosa; LBD transcription factor; salt stress

1. Introduction

Transcription factors (TFs) play key roles in plant functional regulatory maps by reg-
ulating target gene transcription [1,2]. The plant-specific TF family LATERAL ORGAN
BOUNDARIES DOMAIN (LBD) was identified by the conserved DNA binding domain
LATERAL ORGAN BOUNDARIES (LOB), which includes a zinc-finger-like motif com-
posed of cysteine residues “CX2CX6CX3C,” a Gly-Ala-Ser (GAS) block, and a spiral coiled
structure similar to leucine (Leu) zipper related to protein dimerization, “LX6LX3LX6L” [3].
In particular, the Class II LBD protein only contains the zinc-finger-like structure in the
LOB domain [3,4]. The LBD gene families of numerous plant species have been identified
genome-wide. A total of 43 LBD genes were first discovered in Arabidopsis thaliana [5].
In addition, 44 LBD genes were identified in the monocotyledonous plant Zea mays [6].
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Exactly 131 LBD genes were identified in the dicotyledonous plant allotetraploid cotton
variety Gossypium hirsutum [7]. In Rosaceae, 58 and 37 LBD genes were identified from
Malus pumila and Fragaria vesca, respectively [8,9].

The LBD family, which plays an important role in the development of inflores-
cences, leaves, and lateral branches of plants, is also known as ASYMMETRIC LEAVES2
LIKE [5,10]. The first isolated AtLBD (LBD of A. thaliana), that is, AtLOB, regulates the
early development of leaves by interaction with SHOOT MERISTEMLESS and BREVIPEDI-
CELLUS proteins [3]. Meanwhile, AtLOB targets the promoter of PHYB ACTIVATION
TAGGED SUPPRESSOR1 gene to inhibit the accumulation of brassinosteroids, thus limiting
the growth of organ boundaries [11]. The AtLOB homologous gene of rice (Oryza sativa),
OsRA2, is involved in regulating the panicle stem development and seed growth morphol-
ogy [12]. The AtLOB homologous gene of Zea mays, ramosa2, is involved in regulating
the development of flower organ [13]. AtLBD6, one of the earliest isolated AtLBD, is
expressed in the paraxial region of cotyledon primordium [14–16]. The AtLBD6 homolo-
gous gene indeterminate gametophyte1 (IG1) of Zea mays is the key gene to regulating leaf
adaxial–abaxial patterning and embryo sac development [17]. In rice, the homologous
gene OsAS2 regulates bud differentiation and leaf development and controls rice spikelet
development, whereas OsIG1 restricts female gametophyte proliferation to regulate ovule
development [18,19]. On the other hand, LBD genes participate in plant root develop-
ment. AtLBD16, AtLBD18, AtLBD29, and AtLBD33 regulate the formation of lateral roots
by acting downstream of auxin signal transduction pathway mediated by AtARF7 and
AtARF19 [20,21]. In addition, the AtLBD16/AtLBD18-AtARF7/AtARF19 module regulates
adventitious root (AR) production [22]. Two homologous genes of rice, namely, crown
rootless1 (crl1) and Adventitious rootless1 (OsARL1), regulate the growth of underground
parts and development of rice by auxin response. crl1 regulates the formation of crown
roots (CRs), whereas OsARL1 participates in the formation of ARs [6,23]. The Zea mays
homologous gene RTCS-LIKE, which is expressed at the root crown primordium, regulates
the CR development and rooting of the embryo bud [24,25]. In addition, Class II LBD genes
regulate plant metabolic processes such as nitrogen and anthocyanin metabolism [13,15].
AtLBD37, AtLBD38, and AtLBD39 control NO3-/N signal transduction and inhibit antho-
cyanin biosynthesis of A. thaliana [26,27]. OsLBD37 and OsLBD38 delay the heading date
by depression of the flowering gene, thus regulating rice yield [28].

Although the conserved function of LBD genes in the regulation of the development
of lateral organs has been proven in model plants and non-model species [9,29,30], the
emerging role of LBD in plant abiotic stress has been indicated by recent studies. Several
newly constructed genome-wide expression profiles identified that several LBD members
can respond to abiotic stress or abscisic acid (ABA) treatment, e.g., SbLBD32 of Sorghum
bicolor, which is highly induced by salt and drought. CsLOB_3 and CsLBD36_2 of Camellia
sinensis are induced by salt and drought and involved in improving the promoter activity
of CsC4H (cinnamate 4-hydroxylase), CsDFR (dihydroflavonol 4-reductase), and CsUGT84A
(UDP-glucuronosyltransferase), which are key genes of the flavonoid biosynthesis path-
way [31]. PpLBD27 of Physcomitrella paten responds to drought stress through the ABA
signaling pathway [32].

Rosa rugosa is an important aromatic plant whose flowers are rich in terpene aromatic
substances. Its commercial cultivars are widely used for spice industry materials or scented
teas but belong to glycophyte, which lacks salt tolerance. The wild R. rugosa plants are
distributed naturally in the coastal area of northeast China, Russian Far East, the Korean
peninsula, and Japan. The plant evolved a strong salt tolerance to adapt to its growth
environment (high salinity beach), making wild R. rugosa an excellent material for a
salt tolerance study of Rosa genus plants. In the past several years, the whole-genome
sequencing of horticultural plants revealed their long history of evolution and artificial
domestication. The whole genome of rose at the chromosome level released this year (2021)
has lain the foundation for its analysis and genetic transformation at the gene level. Since
the release of genomes of R. rugosa and its sister species R. chinensis recently [33,34], RrLBDs
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(LBDs of R. rugosa) or RcLBDs (LBDs of R. chinensis), including the potential salt-responsive
RrLBD members, have not been identified. This study aimed to screen the RrLBD genes
involved in salt stress response by genome-wide phylogenetic analysis, chromosome
location analysis, gene structure, and expression profile analysis. This study provides LBD
gene candidates for further research on salt stress mechanism regulation in R. rugosa and
will be helpful in the cultivation of salt-tolerant rose species by genetic engineering.

2. Materials and Methods
2.1. Identification of RrLBD Family

To identify all the members of RrLBD, we searched the hidden Markov model pro-
file of the LOB domain (Pfam number PF03195) in the whole genome of R. rugosa (http:
//eplantftp.njau.edu.cn/Rosarugosa/, accessed on 15 May 2021) by HMMER 3.0 [35,36].
The hypothesized LOB domains of candidate LBD genes were checked in the Conserved Do-
main Database (CDD, https://www.ncbi.nlm.nih.gov/, accessed on 15 May 2021) and Pfam
database (http://pfam.xfam.org/, accessed on 15 May 2021) [35,37]. The number of amino
acids (AAs), molecular weight (MW), and isoelectric point (pI) of protein were obtained by
ExPASy (https://web.expasy.org/protparam/, accessed on 15 May 2021) tool [38].

2.2. Phylogenetic Analysis of LBD Family

All the members of RcLBD family were identified from the genome of R. chinensis
by the same method. AtLBDs were downloaded from the PlantTFDB (http://planttfdb.
gao-lab.org/, accessed on 15 April 2021) and checked in accordance with a reference
study [33]. A neighbor-joining (NJ) tree of protein sequences of RrLBDs, AtLBDs, and
RcLBDs was built by MEGA-X (https://www.megasoftware.net/, accessed on 15 May 2021)
with p-distance and pairwise deletion parameters [39,40]. A total of 1000 bootstrapping
replications were used to verify the reliability of the phylogenies, and the online tool ITOL
(https://itol.embl.de/, accessed on 15 July 2021) was used for coloring [41].

2.3. Genen Structure, Motif Composition, and Cis-Acting Elements Analysis of RrLBD Family

The motifs were predicted by the online tool MEME 5.3.3 (https://meme-suite.org/
meme/, accessed on 15 May 2021) with default parameters. The cis-acting elements of
RrLBD genes were predicted from promoter regions (2000 bp upstream the gene loci) by
PlantCare [42]. The gene structures, motifs, and cis-acting elements were visualized by
Tbtools 1.086 [43].

2.4. Synteny Analysis of LBD Genes

The inter-species synteny analysis was conducted by reciprocal BLASTP search for
potential homologous gene pairs (E < 10−5, top five matches). The syntenic region and
homologous pairs of LBD genes were illustrated by TBtools 1.086 [43].

2.5. Expression Analysis of RrLBDs in Different Tissues under Salt Stress

The wild shrubs of R. rugosa, which are naturally distributed in the coastal beach
of Western hills north village of Muping district, Yantai city, Shandong province, China
(37.455◦ N, 121.692◦ E), were selected as plant materials. In July 2019, three wild plants
were dug out from the sand, and their roots were treated with 170 mM NaCl solution
immediately for 1 h (ST). Another three plants that were soaked in deionized water for
1 h were set as the control group (CK). The leaves and roots of ST and CK plants (three
replications for each) were picked and frozen by liquid nitrogen immediately and stored at
−80 ◦C. The RNA for each sample was extracted by MiniBEST Universal RNA Extraction
Kit (TaKaRa, Japan), and 12 libraries, i.e., three replications for the leaves of ST (L1h),
roots of ST (R1h), leaves of CK (LCK), and roots of CK (RCK), were constructed for
transcriptome sequencing (RNA-seq) on an Illumina NovaSeq 6000 platform. After filtering
raw reads, the fragments per kilobase of exon model per million mapped fragments
(FPKM) was calculated by mapping clean reads to the R. rugosa genome using HISAT 2.2.1

http://eplantftp.njau.edu.cn/Rosarugosa/
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(http://daehwankimlab.github.io/hisat2/, accessed on 15 May 2021). The expression
profile of RrLBDs was constructed with FPKM. Foldchanges of RrLBDs were calculated
on the basis of the read reads using R package DESeq2 (http://www.bioconductor.org/
packages/release/bioc/html/DESeq2.html, accessed on 15 May 2021).

Quantitative real-time polymerase chain reaction (qRT-PCR) was conducted using
ChamQ SYBR Color qPCR Master Mix (Vazyme, China) on a CFX96 Real-time PCR platform
(Bio-Rad, China). The PCR reaction system and program were conducted following the
manufacturer’s instructions. Three biological replicates with three technical replicates
were prepared for each sample [44]. Table S4 lists the primers of target genes and internal
reference gene.

3. Results
3.1. Identification and Phylogenetic Analysis of RrLBD Family

A total of 41 RrLBD TFs were identified by PF03195 model, and their LOB domains
were verified in the CDD and Pfam database. The gene names were numbered in ac-
cordance with the top one BLASTP search of known AtLBD TFs (Table S1). In addition,
homologous RcLBDs were distinguished by lowercase letter suffixes, and isoforms (pu-
tative alternative splicing RcLBD mRNA) were distinguished by number suffixes. This
situation only existed in RcLBD proteins. The biochemical character of RrLBD proteins
changed within a minimal range. A total of 41 RrLBDs proteins ranging from 144 AA
(RrLBD24) to 386 (RrLBD27a) AA had a MW ranging from 16.1 kDa (RrLBD12a) to 44.6 kDa
(RrLBD27a), and their pI changed from 4.99 (RrLBD7) to 8.91 (RrLBD2b) (Table S2).

The phylogenetic tree (Figure 1) was constructed by the full-length protein sequences
of 41 RrLBDs, 43 RcLBDs, and 43 AtLBDs belonging to two categories (Class I and II),
referring to the known topological structure of AtLBD family [45,46]. Seven groups, namely,
Ia, Ib, Ic, Id, and Ie of Class I and IIa and IIb of Class II, were divided on the basis of the
sub-topological structure. Five homologous gene pairs (LBD37, 38, 39, 40, and 42) of
three species, except the missing homologs of AtBD41, indicated that the LBD of Class II
was highly conserved. In Class I, Ie, containing four AtLBDs, is a unique class found in
A. thaliana. A total of 13, 3, 12, and 8 RrLBDs and 18, 4, 10, and 6 RcLBDs belong to Ia, Ib, Ic,
and Id, respectively, which indicated that RrLBDs have a stronger congruent relationship
with AtLBDs (10, 3, 12, and 8 for each sub-class).

3.2. Gene Structure and Motif Composition Analysis of RrLBD Family

On the basis of the NJ phylogeny of RrLBDs and RcLBDs (Figure 2A), the 10 sig-
nificantly enriched MEME motifs indicated that the region of the top four motifs with
2, 3-1, and 4 arrangement (Figure 2B), which overlapped with the complete LOB do-
mains, corresponded to the zinc-finger-like motif (CX2CX6CX3C, Figure 2D (I)), GAS block
(Figure 2D (II)), and the spiral coiled structure similar to Leu zipper (LX6LX3LX6L, Figure
2D (III)), respectively. The four motifs were conserved in all Class I LBDs (Figure 2B,D)).
Class II RrLBDs only contained motif 2 in the location of LOB domains. In addition,
motifs 5 and 9 located at the C-terminal were motifs specific to Ia, whereas motifs 6 and
10 specific to Class II LOB domain replaced the location of motifs 3 and 4 of Class I LOB
domains, respectively. Compared with AtLBD proteins, in addition to the important pro-
line residue, another glycine residue in the motif 3 specific to RrLBD/RcLBD proteins is
highly conserved, and it may be an important residue of the DNA binding domain. This
finding showed that different AA residues in the LOB domain are indispensable to the
characteristic function of family members, and the protein change in TFs will lead to the
changes in its function of recognizing the promoter region [4,47].

http://daehwankimlab.github.io/hisat2/
http://www.bioconductor.org/packages/release/bioc/html/DESeq2.html
http://www.bioconductor.org/packages/release/bioc/html/DESeq2.html
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(C). The top 4 significant enriched motifs are listed as sequences logos (D).
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The gene structures of RrLBD/RcLBD homolog pairs were highly consistent (Figure 3C).
The variability degree of gene structure is related to the diversity of gene members belong-
ing to the same group. Class I RrLBDs with exons ranging from 1 to 5 (1 to 4 exons for
RcLBDs) include 7 intron-free genes, 25 genes with two exons, 3 genes with three exons,
1 gene with four exons, and 1 gene with five exons. Compared with the high gene structure
diversity of Class I, Class II is relatively conservative. The coding sequence regions of most
Class II RrLBDs (and RcLBDs) are split by a short intron, with the exception of RrLBD38,
which has two more long introns.
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3.3. Chromosomal Distribution and Evolutionary Analysis of RrLBD Genes

The chromosome localization map (Figure 3A) showed that RrLBDs were distributed
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dispersedly in five chromosomes (Chr1 and Ch4–7) and clustered in Chr2 and Ch3 with
two gene clusters. The five paralogous gene pairs, namely, RrLBD2a/2b, RrLBD12a/12b,
RrLBD16.1/16.2, RrLBD17.1/17.2, and RrLBD29.1/29.2, were located in these gene clusters.

The synteny analysis identified 38 LBD orthologous gene pairs of R. rugosa and
R. chinensis (Figure 3B) and 20 pairs of R. rugosa and A. thaliana (Figure 3C). More pairs
of orthologous RrLBD/RcLBD were in accordance with the LBD proteins phylogeny of
three species (Figure 1), and this finding indicated that the lineage division of LBD genes
was smaller between rosaceous plants after separation from the ancestor of three species.
In particular, RrLBD37 and RrLBD38 of Chr2 and RrLBD39 and RrLBD40 of Chr6 were
homologous to at least two RcLBD genes, indicating that Class II members may have
functional differentiation between R. rugusa and R. chinensis.

3.4. Analysis of Cis-Acting Elements of RrLBD Promotors

A total of 19 cis-acting elements in RrLBD promoter regions were identified. These cis-
acting elements were classified into five categories: plant hormone response, light response,
stress response, specific binding site of MYB, and endosperm expression (Figure 4). First,
the plant hormone response-related category contained the most elements, including
methyl jasmonate (MeJA) responsiveness (CGTCA motif), ABA responsiveness (ABRE),
salicylic acid responsiveness (TCA element), gibberellin- responsive element (GARE motif),
gibberellin-responsive element (TATC box), and auxin-responsive elements (TGA element)
or a part of an auxin-responsive element (TGA box). ABRE is the most widely distributed
with 82 sites, whereas TGA box is distributed in 3 sites. The light response-related category
contained the second highest number of elements, including light-responsive element (GT1
motif), light responsiveness (G box), a part of a module for light response (AE box), and
a part of a light response element (CAG motif). Meanwhile, the stress response category
including four elements, namely, wound-responsive element (WUN motif), defense and
stress responsiveness (TC-rich repeats), low-temperature responsiveness, and enhancer-like
elements, are involved in anoxic-specific inducibility (GC motif). The specific binding site
of MYB category included the MYB binding sites (MBS) involved in drought inducibility,
flavonoid biosynthetic gene regulation (MBSI), and light responsiveness (MRE). The last
category included the endosperm expression element (GCN4 motif) with three sites in
all promotors. These predicted binding sites or elements indicated that RrLBDs may be
targeted by related TFs involved in response to plant hormone, light, abiotic stress, and
endosperm development.

3.5. Salt-Responsive Expression Analysis of RrLBDs

To screen the salt stress-responsive RrLBD candidates, we screened eight RrLBDs
(with one isoforms) belonging to differentially expressed genes out from roots (R1H versus
RCK) and leaves (L1H versus LCK) by RNA-seq data. The expression profile based
on normalized FPKM values (Figure 5A, Table S3) manifested that RrLBD40, RrLBD25,
RrLBD19, RrLBD12c, and RrLBD4.1 in roots (R1H) and RrLBD40, RrLBD39, and RrLBD38
in leaves (L1H) were induced significantly by salt. The abundance of five RrLBDs in leaves
were extremely low for accurate detection (FKPM < 1), and this finding indicated that most
RrLBDs especially respond to salt in roots. The relative expression level determined in
qRT-PCR (Figure 5B) proved that the profile based on transcriptome data was credible
and indicated the statistical significance of four salt-responsive candidates. RrLBD40 was
significantly induced in roots and leaves, RrLBD39 was significantly induced only in leaves,
and RrLBD12c was significantly induced only in roots. In particular, as the only member
significantly depressed by salt in roots, RrLBD25 can be a negative regulator of salt response
by targeting salt-sensitive genes. The four genes can be candidates of strong response to
salt stress.
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4. Discussion
4.1. High Conservation of RrLBD Family

A total of 41 RrLBDs were located on all the seven chromosomes of R. rugosa genome.
The gene number is similar to that of R. chinensis, A. thaliana, Z. mays, Solanum lycopersicum,
and M. pumila. Thus, the gene number of the LBD family is highly conservative with mini-
mal interference from ancient polyploidization events involving diploid angiosperms [48].
Several paralogous gene pairs located on RrLBD clusters of Chr2 and Chr3 indicated that
these paralogous RrLBDs should evolve from tandem replication. In addition to the stable
gene number, the lineage of the RrLBD family (two groups including seven subgroups)
was consistent with the classification of LBD genes in other species. The homologous pairs
clustered in the same branch generally have conserved LOB domains whose roles may be
similar to those of the corresponding well-studied AtLBDs [49].

4.2. Salt Response of RrLBD Candidates

Soil salinity is one of the main environmental stress factors affecting plant growth
and development [50]. In the past decade, TFs, including ERF, MYB, WRKY, NAC, and
bHLH, have been proven to respond to salt and regulate downstream response gene
expression [51,52]. The transcriptional regulation mechanism of the LBD gene family under
salt stress is still unclear. Most RrLBD genes express highly in specific tissues. Except
RrLBD39 and RrLBD12c, RrLBD25, RrLBD4.1, RrLBD4.2, RrLBD13, RrLBD19, RrLBD38,
and RrLBD40 (Figure 5A) are significantly more abundant in roots. These tissue-specific
RrLBDs are up- or downregulated in roots and/or leaves under salt stress, and several
genes should be salt-responsive RrLBD candidates.

First, for the significant depression in roots and leaves under salt stress, RrLBD25 may
negatively respond to salt stress signal. Further, the defense and stress responsiveness
elements in the promoter region of RrLBD25 and its homologous gene AtLBD25, which
plays a transcriptional role in auxin signaling, indicate that RrLBD25 may respond to salt
by cross talk with auxin signaling [53]. An abiotic stress response study of auxin-related
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gene families in S. bicolor indicated that SbLBD32 was highly induced by salt and IAA. This
result implies that pathways cross talked between auxin and abiotic stress signaling.

The expression of RrLBD39 in leaves and RrLBD40 in roots changed acutely under
salt stress. In addition to the highly induced abundance in salt-treated leaves, two MeJA
responsiveness elements (CGTCA motif) of the RrLBD39 promoter region indicated that
RrLBD39 is a positive regulator of salt. Abiotic stresses, such as drought and salt stresses,
can promote the production of secondary metabolites in plants [54,55]. Class IIb gene
RrLBD39 is homologous to AtLBD37, AtLBD38, and AtLBD39, regulating anthocyanin
synthesis and nitrogen metabolism [26]. In Solanum tuberosum, StLBD1-5 is the homologous
gene pair of AtLBD39, and its expression is downregulated under drought stress. This
condition is due to the low expression of StLBD1-5, which promotes the accumulation
of anthocyanins in leaves, thus improving the plant’s drought resistance [56]. The salt
response and potential metabolism regulation role of RrLBD39 indicate the balance or
promoting relationship of salt tolerance and metabolism of R. rugosa. Moreover, MeJA
is a kind of plant hormone that regulates defense mechanism and stress response [57].
MeJA can promote the transcription modification of several genes, thus participating in the
resistance to salt stress by promoting the secondary metabolism of plants [58]. In C. sinensis,
the expression analysis of CsLBDs after MeJA treatment showed that the expressions of
CsLBD38 and CsLBD39_2 were upregulated, and both belong to the Class II subgroup.
Combined with the research evidence of this experiment, RrLBD39 may be connected in
series with the MeJA signaling pathway to participate in plant secondary metabolism and
defense response to salt stress as hormone mediation. Finally, unlike the homologous
gene of AtLBD41 regulating the cell specialization of the paraxial region [59], RrLBD40
has a large number of cis-acting elements involved in ABA responsiveness. ABA is an
important plant stress hormone, and it plays an important role in salt stress signaling [60].
ABA in plants can interact with MYB TFs and play a role as a negative regulator of salt
stress [61]. In addition, several transcriptomics studies showed that most genes of the
ABA synthesis and signaling pathway are up- or downregulated under salt stress, and
ABA signal pathway is involved in the regulation of salt stress-related genes [62,63]. ABA
signaling pathway can also increase the activity and expression of ion transporters, thus
regulating the ion homeostasis of plants [64]. The nearly 10 times increased expression
of AtLBD40 in salt-treated roots may be amplified by the ABA signaling pathway to
actively respond to salt stress signals. In addition, different binding sites of MYB TFs
were observed in the promoter regions of RrLBD39 and RrLBD40. Thus, RrLBD39 and
RrLBD40 may be target genes of MYB TFs. In Salvia miltiorrhiza, SmLBD50 interacts with
SmMYB36/97 protein and participates in jasmonate signal transduction [65]. Therefore,
on the basis of previous studies and this experiment, we find that RrLBDs may have a
complex molecular regulatory network with other TFs, and this association is important
for abiotic stress resistance, growth and development, secondary metabolism, and other
important plant biological processes.

According to collinearity analysis, similar to RrLBD25 and AtLBD25, RrLBD4.1 and
AtLBD4, RrLBD4.2 and AtLBD3, and RrLBD19 and AtLBD19 are homologous gene pairs.
PtLBD4 is involved in the regulation of secondary growth in poplar, whereas AtLBD19 regu-
lates callus formation; however, the specific function of LBD3 has not been clarified [66,67].
Other candidate genes, such as RrLBD12 and RrLBD13, need to be studied to determine
their corresponding salt stress mechanisms.

5. Conclusions

In this study, we identified 41 RrLBD genes from the R. rugosa genome by bioinfor-
matics. According to phylogenetic analysis, all RrLBD genes were divided into seven
subclasses of two classes. The conserved motifs, gene structures, cis-acting elements, and
collinearity analysis showed the conservation of the RrLBD gene family. The expression
profiles of roots and leaves under salt stress indicated that RrLBD25, RrLBD4.1, RrLBD4.2,
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RrLBD12c, RrLBD13, RrLBD19, RrLBD38, RrLBD39, and RrLBD40 are related to salt stress.
RrLBD39 and RrLBD40 were selected to be important salt stress-responsive candidates.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/biology10100992/s1, Table S1: List of all LBD genes of this study. Table S2: The sequence
information of RrLBD genes. Table S3: TPM values of RrLBDs. Table S4: Primes of qRT-PCR.
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