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Background: It is well known that males have a higher prevalence of developmental dyslexia (DD) than females.
Although themechanism underlying this gender difference remains unknown, the contactin-associated protein-
like 2 (CNTNAP2) gene, which shows sex-specific patterns in some neurodevelopmental disorders, has attracted
extensive attention. This study aimed to explorewhether CNTNAP2 shows a sex-specific association with DD in a
Chinese population.
Methods:Using genomic DNA samples of 726 students [372 cases (282male, 90 female), 354 controls (267male,
87 female)], we genotyped five SNPs of CNTNAP2. Gender-stratified logistic regression models were used to
determine the relationships between the CNTNAP2 variants and DD.
Findings: After adjustment for the false discovery rate (FDR), two SNPs (rs3779031, rs987456) of CNTNAP2were
associated with DD risk in females but not in males. Female participants carrying the rs3779031 G allele had a
lower risk of DD than those with the A genotype [GG vs AA: OR (95%CI) = 0.281 (0.097–0.814)]. The
rs987456 CC genotype was associated with a decreased risk of DD in females [CC vs AA+CA: OR (95%CI) =
0.222 (0.078–0.628)]. Furthermore, the interaction between CNTNAP2 (rs987456) and environmental factors
(scheduled reading time) played a protective role in females [OR (95%CI) = 0.431 (0.188–0.987)].
Interpretation: We performed a genetic association study on CNTNAP2 variants and DD. The sex specificity
of CNTNAP2 in DD, along with the gene-environment interaction may help us to understand gender differences
in DD.
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1. Introduction

Developmental dyslexia (DD) also known as reading disability is the
most common learning disability [1,2]. Children with dyslexia have dif-
ficulties in word recognition, spelling, and decoding, despite adequate
intelligence and normal sensory skills [3]. Approximately 3%–12.6%
school-aged children have dyslexia in China [4,5].

Many studies have reported that a higher prevalence of dyslexia in
males than in females [3]. A large prospective study of white (n =
16,910) and black (n=15,313) children whowere part of the National
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Collaborative Perinatal Project (NCPP) in the UK showed that themale-
female ratio of children with dyslexia was about 2:1, irrespective of
severity of disability, race, or exclusion of childrenwith attention deficit
hyperactivity disorder (ADHD) [6]. Four epidemiological studies
carried out in the UK and New Zealand also reported a higher rate of
reading disability in boys than in girls, with a ratio ranging from1.93:1
to 3.29:1 [7]. Evidence from a large sample of second-grade students
(n = 491,103) from the state of Florida found that the male-female
ratio increased with increasing severity of reading impairment, from
1.6:1 to 2.4:1 [8].

Most studies on gender differences in dyslexia were based on alpha-
betic languages. Only a few studies have focused on gender differences
in dyslexia in China. As an ideographic language, Chinese is entirely dif-
ferent from the alphabetic languages. Chan et al. reported that dyslexia
was 1.6 times more common in boys than in girls in Hongkong [4]. Peo-
ple in mainland China use simplified Chinese characters, whereas the
traditional Chinese is widely used in Taiwan andHongkong [9].We per-
formed an epidemiological study on DD among students (n = 34,748)
of 84 primary schools in seven cities of Hubei province in China and
identified 1200 dyslexic students. A gender difference in DD was also
found in our study, and the male-female ratio was 3:1 [5].
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Although the male predominance of DD is well known, the mecha-
nism underlying the gender difference remains unknown. Developmen-
tal dyslexia is among the heritable neurodevelopmental disorders [10].
Some candidate genes contributing to dyslexia have been reported, e.g.
DYX1C1, DCDC2, KIAA0319, and CNTNAP2 [11–14]. The heritability (hg2)
of DD was estimated to range from 0.18 to 0.72 [1]. The Colorado twin
study (n = 956) of reading difficulties found the gender differences in
hg
2 did not reach the significant level (male hg

2 = 0.65, female hg
2 =

0.54) [15]. However, a twin study from UK (n = 3909) showed males
had greater hg2 than females inword recognition deficit [16]. These incon-
sistency results might due to methodological differences, such as the
sample size, themeasures used, and the age of participants. The highpro-
portion ofmaleswith DD indicated that sex-specific genetic factors were
involved in the development of dyslexia. One of the candidate genes,
CNTNAP2,was reported to have sex specificity inmany studies. CNTNAP2
variants were linked to a wide variety of neurodevelopmental disorders,
including autism, dyslexia, depression, and Alzheimer's disease [17]. One
of the common apparent characteristics of those disorders was the
gender-specific difference in prevalence. Evidence from animal studies
showed that male mice were more susceptible to the effects of Cntnap2
mutations than females [18]. Using intrinsic signal optical imaging,
Townsend and Smith found that lack of Cntnap2 expression in adult
males (either Cntnap2 knockout or heterozygous) resulted in decreased
visually evoked activity in dorsal stream relative to wild-type controls,
but in females, dorsal stream responses were similar among Cntnap2
knockout, heterozygous, and wild-type mice. In human studies, a two-
stage association study in AGRE (Autism Genetic Resource Exchange)
trios showed that the correlation between CNTNAP2 (rs2710102)
and language delay in autism-spectrum disorder (ASD) appeared
to be significant for males only [19]. Iakoubov et al. performed an
association study (n = 1118) between three copy number variants
(CNVs) with an intronic location in CNTNAP2 and aging. The esv11910
CNV of the CNTNAP2 gene had the reverse association with healthy
aging (no chronic diseases in medical records) in males, but not in
females. Male carriers of the CNTNAP2 esv11910 in. allele had a
statistically significant decrease, on average by 71% in the probability
of staying healthy at 81–90 years of age, while in females it was
statistically insignificant [20]. These studies implied that CNTNAP2
might have sex-specific patterns in the brain. Additionally, the expres-
sion of CNTNAP2 in certain human brain areas was not identical in
males and females (https://www.gtexportal.org/home/gene/CNTNAP2)
(supplementary fig. 1).

CNTNAP2 is one of the largest mammalian genes, contains 24 exons,
and spans 2.3 Mb on Chromosome 7q35 [21]. The CNTNAP2 gene en-
codes CASPR2, which is a member of the neurexin superfamily of pro-
teins that mediates interactions between neurons and glia during
nervous system development. In the human cortex, CNTNAP2 is highly
expressed in Broca's area, which is known to be important for speech
and language [17]. Considering the importance of CNTNAP2 as a dyslexia
susceptibility gene and the gender difference, we hypothesize that
CNTNAP2may have a sex-specific effect on dyslexia.

According to previous studies, environmental factors also contribute
to gender differences in dyslexia. Evidence from a birth cohort study
(n = 2847) showed that boys and girls were differentially susceptible
to risk factors for dyslexia [22]. Boys were more susceptible than girls
to environmental influences, such as paternal age, parental education
level, socioeconomic status, teaching methods, and societal pressures
[23]. Low birth weight increased the risk for dyslexia in girls but not
in boys [24]. Studies from two cities in China reported that learning
habits and the home literacy environment were associated with
dyslexia [25,26]. It is necessary to determine whether environmental
factors affect the gender difference in dyslexia among Chinese children.

Based on a case-control study of a Chinese population, this study
aimed to testwhether variants in CNTNAP2were associatedwith gender
differences in dyslexics and to explore the interaction between
CNTNAP2 and environmental factors.
2. Methods

2.1. Participants

This study was based on an ongoing project named Tongji Reading
Environment and Dyslexia (READ) research. Our previous studies have
introduced this program [5]. We recruited 726 students (372 dyslexics,
354 non-dyslexics) and obtained oral swabs for DNA genotyping. The
cases and controls were matched for gender and age. The age of
participants ranged from 6 to 15 (mean age = 10.09 ± 1.26). The
male-female ratioswere about 3:1 in the dyslexic (282male, 90 female)
and non-dyslexic (267 male, 87 female) group.

2.2. Measuring Tools

The Dyslexia Checklist for Chinese Children (DCCC) and Pupil Rating
Scale-Revised Screening for Learning Disabilities (PRS) were used to as-
sess children's reading behaviors. The DCCC is a specific rating scale for
dyslexia in Chinese and should be completed by parent/guardian.
Higher scores indicate more serious reading difficulty. The PRS is a
convenient tool to diagnose learning disability in China, and the
scale is filled by teachers. The Higher score means better learning
ability. Details of these two scales were available from our previous
studies [5].

The dyslexia children should meet the following criteria: (a) the
DCCC scorewas 2 standard deviations above themean score of students
in the same grade; (b) the PRS score was lower than 65 points; (c) the
Chinese language exam was below the tenth percentile of all children
in the same grade; and (d) children who had suffered from intellectual
disability, brain injury, visual and auditory disorders, epilepsy, and other
neurological disorders were excluded.

Parent/guardian filled out the questionnaire which contains family
SES, home literacy environment, children's learning habits.

2.3. SNP Selection and Genotyping

The procedures of selection for SNPs were as follows.
First, we searched CNTNAP2 in NCBI-SNP (http://www.ncbi.nlm.nih.

gov/snp/), and selected functional SNPs in promoter (5′near gene),
five prime untranslated regions (5′-UTR), exon (missense,
nonsynonymous), 3′-UTR. Next, using Ensembl (http://asia.ensembl.
org/index.html/), we chose SNPs in splice region variant and upstream
gene variant. Then all selected SNPs from NCBI-SNP and Ensembl were
checked for minor allele frequency (MAF) in 1000 Genomes (https://
www.ncbi.nlm.nih.gov/variation/tools/1000genomes/). Those with
MAF for Han Chinese in Beijing of China (CHB) N5% were identified for
further consideration. After that, we performed linkage disequilibrium
(LD) test using SNAP Pairwise LD (http://www.broadinstitute.org/
mpg/snap/ldsearchpw.php). As for the redundant SNPs which had
strong LD (R2 N 0.8) to each other, only one was retained. Finally, we
got five SNPs (rs10240503, rs3779031, rs9648691, rs987456 and
rs2462603).

Genomic DNAwas extracted from oral swab samples. Genotyping
was performed at BIO MIAO BIOLOGICAL Corporation (Beijing,
China) with Sequenom MassARRAY platform (San Diego, USA)
according to the manufacturer's protocol. As a quality control, we
random selected 4% of the samples (n = 29) as masked subset,
and genotyped them twice. The accordance rate was 100% for all
duplicated samples.

2.4. Ethics Statement

The study was approved by the Ethics Committee of Tongji Medical
College, Huazhong University of Science and Technology. All partici-
pants provided written informed consent from their parents.
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Table 2
Distribution and associations of CNTNAP2 in cases and controls.

SNP Model Cases Controls OR(95%CI) Pa Pb

rs10240503 AA 226 233 1
GA 121 101 1.235(0.896,1.703) 0.198 0.330
GG 17 13 1.348(0.640,2.840) 0.432 0.540
Dominant 1.249(0.917,1.701) 0.159 0.795
Recessive 1.259(0.602,2.636) 0.540 0.540
Additive 1.205(0.929,1.564) 0.161 0.403

rs3779031 AA 178 149 1
GA 167 160 0.874(0.643,1.188) 0.389 0.389
GG 25 41 0.510(0.297,0.878) 0.015 0.075
Dominant 0.799(0.596,1.073) 0.136 0.170
Recessive 0.546(0.324,0.919) 0.023 0.058
Additive 0.776(0.617,0.975) 0.029 0.048

rs9648691 GG 128 129 1
GA 187 156 1.208(0.874,1.670) 0.253 0.633
AA 54 65 0.837(0.541,1.295) 0.425 0.708
Dominant 1.10(0.810,1.492) 0.542 0.678
Recessive 0.752(0.507,1.117) 0.158 0.790
Additive 0.965(0.782,1.190) 0.738 0.738

rs987456 AA 164 156 1
CA 169 147 1.094(0.801,1.493) 0.573 0.955
CC 37 46 0.765(0.471,1.243) 0.279 0.698
Dominant 1.016(0.757,1.363) 0.919 0.919
Recessive 0.732(0.462,1.160) 0.182 0.303
Additive 0.965(0.782,1.190) 0.578 0.723

rs2462603 AA 158 157 1
GA 169 162 0.808(0.483,1.355) 0.420 0.700
GG 40 31 0.780(0.464,1.310) 0.347 1.735
Dominant 1.077(0.801,1.446) 0.624 0.780
Recessive 1.258(0.768,2.062) 0.362 0.453
Additive 0.913(0.728,1.144) 0.428 0.713

Pa Logistic regression analysis for genotype distributions between DD cases and controls.
Pb The P-values were FDR adjustment for multiple tests.
OR = Odds Ratio; CI = Confidence Interval.
The results were in bold if Pb0.05.
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2.5. Statistical Analyses

We used goodness-of-fit χ2 test to examine the Hardy–Weinberg
equilibrium (HWE) for selected SNPs among controls. We performed
the two-sided chi-square test to measure differences in the distribution
of demographic characteristics between dyslexics and non-dyslexics. As
for the association study, we adopted unconditional univariate logistic
regression analysis to estimate odds ratios (ORs) and 95% confidence
intervals (95% CI) for the effect of individual SNPs on DD susceptibility,
assuming that variant alleles were the risk alleles. We applied the
gender-stratified logistic regression models to determine the different
relationships between the CNTNAP2 variants and dyslexia in boys
and girls. To adjust the P values for multiple tests, we resorted to
Benjamini–Hochberg method for controlling false discovery rate
(FDR). We also used multivariate logistic regression models to analyze
the gene–environmental interaction. All statistical analyses were
performed using SPSS 13.0 software.

3. Results

3.1. Association between the CNTNAP2 Gene and DD

Five DNA samples were not successfully genotyped, and the final
sample consisted of 370 dyslexics (281 boys and 89 girls) and 351
non-dyslexics (265 boys and 86 girls). The dyslexics and non-
dyslexics were matched for gender (χ2 = 0.021, P = 0.889). The geno-
type distributions of five SNPs were in Hardy-Weinberg equilibrium.
The (MAFs) of the five SNPs were similar to those in the HapMap
database of Han Chinese in Beijing, China (Table 1). According to the lo-
gistic regression analysis, the rs3779031 polymorphism was signifi-
cantly associated with a reduced risk of DD under the recessive model
(OR = 0.546, 95%CI =0.324–0.919, P = 0.023) and the additive
model (OR=0.776, 95%CI=0.617–0.975, P=0.029). After adjustment
for the FDR, the additive model reached significance (Table 2).

We conducted further analysis to explore the relationship between
five SNPs of CNTNAP2 and DD by gender (Table 3). Results from the
logistic regression analysis showed that three SNPs (rs3779031,
rs987456, and rs9648691) were significantly associated with DD in fe-
males; the rs10240503 was significantly associated with DD in males.
After adjustment for the FDR, the association between two SNPs
(rs3779031, rs987456) and DD in females remained statistically signif-
icant. Female participants carrying the rs3779031 G allele (GA or GG)
had a lower risk of DD than those with the AA genotype (GA vs AA:
OR = 0.474, 95%CI = 0.249–0.902, Pb = 0.029; GG vs AA: OR =
0.281, 95%CI = 0.097–0.814, Pb = 0.032). Additionally, the rs987456
CC genotype was associated with protection from DD in females
(CC vs AA: OR = 0.263, 95%OR= 0.088–0.783, Pb = 0.040).

3.2. Gene-Environment Interactions

Based on the entire epidemiological study samples, we explored the
association between environmental factors and dyslexia. According to
the stratification analysis of dyslexia by gender, the shared environmen-
tal factors associated with dyslexic boys and girls were active learning,
Table 1
Characteristic of 5 SNPs of CNTNAP2.

SNP Minor/major MAF in CHB MAF control HWE

rs10240503 G/A 0.1893 0.1830 0.6204
rs3779031 G/A 0.2913 0.3457 0.8442
rs9648691 A/G 0.3835 0.4085 0.1458
rs987456 C/A 0.3010 0.3425 0.2269
rs2462603 G/A 0.3107 0.3200 0.2344

MAF minor allele frequency, HWE Hardy–Weinberg equilibrium, CHB Han Chinese in
Beijing.
scheduled reading time, parents educational level and encouraging
children to read (Table s1).

We analyzed the interactions of the two SNPs (rs3779031,
rs987456) and environmental factors in females. As shown in Table 4,
we found a significant interaction between the rs987456 polymorphism
and scheduled time to read. Individuals with the rs987456 CC genotype
who had scheduled reading time had a lower risk of dyslexia (OR =
0.431, 95%CI = 0.188–0.987). Other interactions between two SNPs
and environmental factors did not reach significance.

4. Discussion

Sex specificity of CNTNAP2 in dyslexiawas observed in this study. Two
SNPs (rs3779031, rs987456) were associated with reduced DD risk in fe-
males but not in males. The interaction between the CNTNAP2 gene
(rs987456) and environmental factors (scheduled reading time) played
a protective role in females. A previous study found that the CNTNAP2
variants were associated with an increased risk of language impairment,
especially for males. In this study, two mutations in non-coding regions
of CNTNAP2were linked to a decreased risk of dyslexia only in females.

The CNTNAP2 genemay show a sex-specific effect through structural
alteration in the brain or brain activation during language processing
[27]. Evidence from neuroimaging studies demonstrated an association
of the CNTNAP2 polymorphism (rs7794745) with the change in gray
matter volume (GMV) in the left superior occipital gyrus (LSOG) of
the human brain [28]. Furthermore, reduced GMV in the LSOG was
found only in female dyslexics, while less GMV in the left inferior
parietal cortex (supramarginal/angular gyri) was observed only in
male dyslexics [29]. Moreover, altered CNTNAP2 expression had a sex-
dependent effect on some brain regions, such as visual cortical areas.
In male mice, decreasing the expression of Cntnap2 reduced visually
evoked activity modulation in the dorsal stream, while females showed



Table 3
Distribution and associations of CNTNAP2 gene in cases and controls by gender.

Male (n = 546) Female (n = 175)

SNP Model Cases Controls OR(95%CI) Pa Pb Cases Controls OR(95%CI) Pa Pb

rs10240503 AA 162 180 1 64 53 1
GA 99 76 1.447(1.003,2.088) 0.480 0.600 22 25 0.729(0.370,1.437) 0.361 0.602
GG 17 9 2.099(0.910,4.839) 0.820 0.820 0 4 0 0.999 0.999
Dominant 0.540(0.236,1.233) 0.143 0.238 0 0.990 1.238
Recessive 0.659(0.464,0.937) 0.021 0.053 1.592(0.820,3.089) 0.169 0.423
Additive 0.691(0.514,0.927) 0.014 0.070 1.747(0.956,3.192) 0.070 0.350

rs3779031 AA 127 118 1 51 31 1
GA 135 119 1.054(0.742,1.498) 0.769 0.961 32 41 0.474(0.249,0.902) 0.023 0.029
GG 19 28 0.630(0.334,1.189) 0.154 0.385 6 13 0.281(0.097,0.814) 0.019 0.032
Dominant 0.973(0.695,1.364) 0.875 0.875 0.428(0.233,0.787) 0.006 0.025
Recessive 0.614(0.334,1.128) 0.116 0.580 0.40(0.145,1.108) 0.078 0.078
Additive 0.895(0.687,1.166) 0.411 0.685 0.508(0.318,0.811) 0.005 0.015

rs9648691 GG 99 100 1 29 29 1
GA 139 122 1.151(0.796,1.665) 0.456 2.280 48 34 1.412(0.718,2.778) 0.318 0.397
AA 43 43 1.010(0.609,1.675) 0.969 0.969 11 22 0.500(0.206,1.215) 0.126 0.315
Dominant 1.114(0.786,1.579) 0.543 1.358 1.054(0.560,1.981) 0.871 0.871
Recessive 0.933(0.589,1.478) 0.767 1.279 0.409(0.184,0.907) 0.025 0.125
Additive 1.034(0.811,1.317) 0.790 0.988 0.784(0.514,1.196) 0.259 0.432

rs987456 AA 126 120 1 38 36 1
CA 123 116 1.010(0.707,1.442) 0.957 0.957 46 31 1.406(0.738,2.678) 0.300 0.375
CC 32 28 1.088(0.618,1.916) 0.769 3.845 5 18 0.263(0.088,0.783) 0.016 0.040
Dominant 1.025(0.731,1.437) 0.885 1.106 0.986(0.540,1.799) 0.963 0.963
Recessive 1.083(0.633,1.854) 0.771 1.928 0.222(0.078,0.628) 0.002 0.010
Additive 1.032(0.802,1.328) 0.807 1.345 0.712(0.459,1.104) 0.129 0.215

rs2462603 AA 122 120 1 36 37 1
GA 124 121 0.737(0.408,1.331) 0.311 0.518 45 41 1.098(0.377,3.192) 0.864 1.440
GG 32 23 0.731(0.404,1.321) 0.299 0.748 8 8 0.973(0.330,2.871) 0.960 0.960
Dominant 1.066(0.759,1.495) 0.713 0.713 1.112(0.609,2.028) 0.730 3.650
Recessive 1.363(0.773,2.397) 0.282 1.410 0.963(0.344,2.692) 0.943 1.179
Additive 1.107(0.856,1.433) 0.438 0.548 1.058(0.663,1.688) 0.814 2.035

Pa Logistic regression analysis for genotype distributions between DD cases and controls. Pb The P-values were FDR adjustment for multiple tests.
OR = Odds Ratio; CI = Confidence Interval. ref. = reference.
The results were in bold if Pb0.05.
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no change due to a lack of Cntnap2 18. Therefore, females aremore likely
to be neurotypical, even if they carry CNTNAP2 mutations [30]. An ASD
study illustrated the sex specificity of Cntnap2 via interactionwith envi-
ronmental factors such as prenatal stress-induced MIA (maternal im-
mune activation). The interaction between the Cntnap2 mutation and
MIA increased the expression of corticotropin-releasing hormone
Table 4
The gene-environment interaction in female students.

rs3779031

AA GA + GG OR(95%CI)

Father education
Junior high school or below ref.
Senior high School or equivalency 0.642(0.100,4.128)
Junior college or above 0.240(0.053,1.089)

Mother Education
Junior high school or below ref.
Senior high School or equivalency 0.949(0.229,3.940)
Junior college or above 0.4310(0.017,2.639)

Active learning
None ref.
sometimes 0.711(0.043,11.790)
Always 0.531(0.039,7.195)

Scheduled reading time
NO ref.
Yes 0.389(0.105,1.439)

Encourage read
seldom ref
sometimes 0.083(0.007,1.031)
always 0.106(0.009,1.232)

Pa Logistic regression analysis for genotype distributions between DD cases and controls.
OR = Odds Ratio; CI = Confidence Interval. ref. = reference.
The results were in bold if Pb0.05.
receptor 1 (Crhr1) only inmalemice, which then led to deficits in social
recognition [31]. According to a study by Hoffman et al., estrogens
served as modifiers of neural circuits and rescued the mutants in
zebrafish, which may throw light on the molecular mechanism of sex
specificity of Cntnap2 [32]. So far, the mechanism underlying the sex
specificity of CNTNAP2 remains elusive and requires further study.
Pa rs987456 Pa

AA + CA CC OR(95%CI)

ref.
0.640 0.556(0.111,2.780) 0.143
0.064 0 0.999

ref.
0.943 0.435(0.066,2.893) 0.389
0.363 0 0.999

ref.
0.812 0.310(0.056,1.706) 0.740
0.634 0 0.999

ref.
0.157 0.431(0.188,0.987) 0.047

ref
0.053 0.529(0.084,3.338) 0.498
0.073 0.175(0.028,1.097) 0.063
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We found two mutations in non-coding regions of CNTNAP2 that
were associated with dyslexia only in females. There is cumulative evi-
dence indicating that genetic variants in non-coding, especially regula-
tory, regions are associated with complex diseases or phenotypes [33].
The rs3779031 polymorphism is located in the 19th intron region and
plays a role in mRNA splicing (http://rsnp.psych.ac.cn/) and post-
transcriptional control. According to the HaploReg v4.1, rs3779031
acts as enhancer histone marks, which may be involved in some epige-
netic processes (http://archive.broadinstitute.org/mammals/haploreg/
haploreg.php). The rs987456 polymorphism is located in the 3′-UTR,
which could influence the translation efficiency, polyadenylation,
and stability of the mRNA. The 3′-UTR also contains binding sites
that could bind to microRNAs (miRNAs), which could modify gene
expression. According to the functional prediction website (https://
snpinfo.niehs.nih.gov/), rs987456 is a binding sitewhose variant A allele
binds to has-miR-624-5p and has-miR-556-3p. The rs987456 has effect
on the motif change of FOXP1 (http://archive.broadinstitute.org/
mammals/haploreg/haploreg.php). FOXP1 variants have been linked to
language impairment [34]. Themechanism how different SNPs can reg-
ulate gender-specific functions need further study.

The interaction between CNTNAP2 (rs987456) and scheduled read-
ing time was associated with a reduced risk of DD in females. Reading
is a complex task which requires the cooperation of many brain areas
[35]. Reading ability is associated with the connection strength among
reading-related cortical regions [36,37]. Intensive learning contributes
to the development of reading networks in childhood and adolescence,
which is called learning-induced cortical plasticity [38]. A more eco-
nomical, integrative and efficient brain network topology depends on
efficient reading [37]. If students have scheduled reading time, their
reading circuitry will be optimized by the interaction of reading behav-
iors and genetics. As CNTNAP2 is involved in the development of cortical
circuits [39], we venture that CNTNAP2 may take part in this learning-
induced cortical plasticity. The polymorphism rs987456 may play a
role in facilitating the alteration of reading circuitry. Developmental
dyslexia is often characterized as a disconnection syndrome, in which
functional connections between reading-relevant cortical regions
are weakened [35,40]. The sex difference in network connectivity
was demonstrated by some magnetic resonance imaging (MRI)
studies. The network organization of teenage male brains was more
local, more segregated than teenage female brains [41]. Based on
connectivity–behavior analysis, proper reading therapy may help
individuals with DD to form efficient reading circuitry and improve
their reading ability [36,42]. Parents and teachers should help students
to develop good learning habits, e.g. scheduled reading time and active
learning.

Our study has several limitations. First, only five SNPs in CNTNAP2
were selected for investigation, additional variants in CNTNAP2 are
need further study. Second, themechanismhow different SNPs can reg-
ulate gender-specific functions was not addressed. Third, the sample
size was relative small, and the results of this study should be verified
in different populations.

We observed sex specificity of CNTNAP2 in DD. Two mutations in
non-coding regions of CNTNAP2 were associated with a decrease risks
in DD in females. The interactions between CNTNAP2 variants and envi-
ronmental factors also played protective roles in females. All these re-
sults might be helpful to understand gender-based differences in DD.
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Evidence before this study

Developmental dyslexia (DD) is one of the heritable
neurodevelopmental disorders. Males show a higher prevalence of DD
than females, but the mechanism underlying this gender difference is
poorly understood. The contactin-associated protein-like 2 (CNTNAP2)
gene shows sex-specific patterns in some neurodevelopmental disor-
ders, which may be one of the potential reasons.

Added value of this study

Using a case-control study in China, we found a sex-specific effect of
the candidate gene CNTNAP2 in children. Two mutations in CNTNAP2
were linked to a decreased risk of DD only in girls. Our findings might
be might be helpful to understand gender-based differences in DD.

Implications of all available evidence

Genetic variants in the CNTNAP2 gene are associated with gender
differences among dyslexic children in China.
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