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Type 2 diabetes mellitus (T2DM) is a risk factor for Alzheimer
disease (AD). Populations at risk for AD show altered brain activity
in the default mode network (DMN) before cognitive dysfunction.
We evaluated this brain pattern in T2DM patients. We compared
T2DM patients (n = 10, age = 566 2.2 years, fasting plasma glucose
[FPG] = 8.4 6 1.3 mmol/L, HbA1c = 7.5 6 0.54%) with nondiabetic
age-matched control subjects (n = 11, age = 54 6 1.8 years, FPG =
4.8 6 0.2 mmol/L) using resting-state functional magnetic reso-
nance imaging to evaluate functional connectivity strength among
DMN regions. We also evaluated hippocampal volume, cognition,
and insulin sensitivity by homeostasis model assessment of insulin
resistance (HOMA-IR). Control subjects showed stronger correla-
tions versus T2DM patients in the DMN between the seed (poste-
rior cingulate) and bilateral middle temporal gyrus (b = 0.67 vs.
0.43), the right inferior and left medial frontal gyri (b = 0.75 vs.
0.54), and the left thalamus (b = 0.59 vs. 0.37), respectively, with no
group differences in cognition or hippocampal size. In T2DM
patients, HOMA-IR was inversely correlated with functional con-
nectivity in the right inferior frontal gyrus and precuneus. T2DM
patients showed reduced functional connectivity in the DMN com-
pared with control subjects, which was associated with insulin
resistance in selected brain regions, but there were no group effects
of brain structure or cognition. Diabetes 61:2375–2379, 2012

T
ype 2 diabetes mellitus (T2DM) and insulin resis-
tance are associated with systemic hyperinsulinemia
and reduced brain insulin levels, which are risk
factors associated with Alzheimer disease (AD) (1).

Because insulin resistance, one of the main features of T2DM,
is modifiable, it is important to determine whether early signs
of AD can be detected in T2DM patients so that treatments
can be implemented to prevent onset of dementia at a pre-
clinical phase when therapies may be more effective (2).

In other populations at risk for AD, such as carriers of
the apolipoprotein E (ApoE) ApoE-´4 allele (3), researchers

have reported reduced glucose metabolism and/or re-
duced resting-state functional connectivity (3,4) in the
brain’s default mode network (DMN) before cognitive de-
cline is evident. The DMN, which includes the posterior
cingulate cortex (PCC) and temporoparietal posterior as-
sociation cortical regions of the brain, is most active at rest
and is suspended during cognitive activity (5).

In addition to brain functional changes, structural atro-
phy in the medial temporal lobe has been observed in T2DM
patients (6) as well as people with insulin resistance (7) and
may predict progression from the normal elderly state to
mild cognitive impairment and from mild cognitive impair-
ment to AD (8). We measured hippocampal volume and
correlated it with functional connectivity measurements to
determine whether hippocampal size varies with a particu-
lar region in the DMN and whether functional connectivity
and structural atrophy are evident prior to cognitive decline.

Impaired cognition is the last symptom to emerge prior to
decline in clinical function (9). Thus, to establish that our
patients were cognitively intact, we administered a battery
of neuropsychological tests before the functional magnetic
resonance imaging (fMRI) scan to assess IQ, memory, at-
tention, executive function, and psychomotor speed.

On the basis of earlier findings in those at risk for AD, we
hypothesized that 1) patients with T2DM would show re-
duced functional connectivity in the DMN compared with
nondiabetic control subjects, 2) reduced functional con-
nectivity would be associated with the severity of insulin
resistance, and 3) hippocampal size would be reduced in
the T2DM group relative to the non-T2DM group. However,
because it is not yet clear whether structural atrophy pre-
cedes changes in resting-state functional connectivity (9),
brain volumetric changes may not yet be detectable.

RESEARCH DESIGN AND METHODS

The study sample consisted of 10 T2DM patients and 11 healthy, age-matched
control subjects. All participants were between the ages of 45 and 66 years
(average 6 SEM age = 54.8 6 2.2 years), and disease duration was between
7 months and 10 years (mean = 6.1 6 0.9 years). T2DM patients could not be
treated with metformin or thiazolidinediones to qualify for the study. In both
T2DM patients and control subjects, any contraindications to imaging, such as
gunshot wound, pacemaker, pregnancy, and claustrophobia, were also exclu-
sionary factors. After approval from the institutional review boards of both the
Joslin Diabetes Center and McLean Hospital (where the MRI was performed),
patients and nondiabetic control subjects provided their informed consent and
the following information during screening: psychiatric history, handedness,
medical history, current medications, height, and weight. T2DM patients also
provided date of diagnosis. All participants were studied in the fasting state,
and glucose and insulin levels were measured for calculation of homeostasis
model assessment of insulin resistance (HOMA-IR). Patients receiving insulin
were asked to refrain from taking their insulin on the day of the study.
Cognitive assessment. We administered the Wechsler Abbreviated Scale of
Intelligence (10), verbal fluency and trail making number-letter switching from
the Delis-Kaplan Executive Function System (11), the Rey Auditory Verbal
Learning Test (12), and the Grooved Pegboard (13).
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Data analysis. Between-group t tests were used to compare demographic and
clinical characteristics between T2DM and control subjects. All tests were
conducted using a two-sided a-level of 0.05. Demographic and cognitive data
are presented as mean (SD); between-groups comparisons are presented as
mean6 SEM. A general linear model was used to assess functional connectivity
strengths (using b-weights), and Pearson correlation was used to determine
whether hippocampal volume and HOMA-IR were correlated with b-weights.
MRI acquisition. All imaging data were acquired at McLean Hospital Brain
Imaging Center on a Siemens 3T Trio scanner (Erlangen, Germany) using the
standard Siemens eight-element receiver phased-array head coil for high res-
olution anatomical scans.
Functional images. Functional image parameters included gradient-echo
planar sequence sensitive to blood oxygen level–dependent (BOLD) contrast
(repetition time = 3,000 ms, echo time = 30 ms, and flip angle = 90°), whole-
brain volumes with 26 contiguous 5 mm–thick transverse slices, no interslice
gap, and 3.125 3 3.125 mm in-plane resolution (14). Patients lay still in the
scanner with their eyes closed but remained awake.
Structural images. Pulse sequence and parameters were contiguous sagittal
three-dimensional series magnetization prepared rapid acquisition gradient
echo (matrix = 256 3 256, field of view = 25.6 cm, 128 slices, slice thickness =
1.33 mm, flip angle = 12°, echo time = 2.74 ms, and repetition time = 2,100 ms).
Images were realigned to Talairach space using the anterior and posterior
commissures and the sagittal sulcus plane.
FMRI image processing and analysis.We assessed functional connectivity
between the PCC and all other regions in the brain using Brain Voyager QX and
by drawing a cube of 10 mm on each side, centered on the PCC using Talairach
coordinates 0, –56, 20. The average time course of the BOLD signal was ex-
tracted from the PCC seed region and used as the model predictor in a general
linear model analysis to determine brain regions temporally correlated with it.
Structural image analysis and processing. Structural MRI data were
processed at the Psychiatry Neuroimaging Laboratory using 3D Slicer to
visualize and realign the data (http://www.slicer.org). The FMRIB Software
Library (FSL v.4.1; http://www.fmrib.ox.ac.uk) was used for skull stripping
(15) and to estimate the intracranial volume to control for head size, and the
FreeSurfer software package (version 4.5.0; http://surfer.nmr.mgh.harvard
.edu/) was used for automated segmentation of the hippocampus (16).
Insulin resistance. HOMA-IR was calculated for control subjects and non–
insulin treated T2DM patients to determine whether insulin resistance was
associated with functional connectivity patterns. Because HOMA-IR does not
accurately reflect insulin resistance in the presence of exogenous insulin
treatment, it was not measured in insulin-treated patients (17).

RESULTS

Clinical demographic characteristics and cognitive
results. The clinical demographic characteristics and cog-
nitive scores are summarized in Table 1.
Functional connectivity. Regression analyses were car-
ried out between the seed reference (PCC) and all other
voxels to determine which regions had low-frequency fluc-
tuations that were most closely correlated with it.

When combining both groups, the following regions were
identified as being functionally connected, that is, their low-
frequency temporal fluctuations were significantly correlated
with those of the PCC (b. 0, P, 0.05, corrected for multiple
comparisons) (18): the right and left middle temporal, right
medial frontal, and left fusiform gyri; right inferior frontal
cortices; right precuneus; left caudate; and left thalamus.

In a second-level analysis, we used a random-effects two-
sample t test to determine whether there were group dif-
ferences between the strength of functional connectivity of
these regions (19). We found that the bilateral middle tem-
poral gyrus, left medial and right inferior frontal gyri, and
left thalamus were not as strongly correlated with the PCC
seed region in T2DM patients compared with control sub-
jects. Figure 1 shows regions that were functionally con-
nected to the PCC in control compared with T2DM subjects
in three different slices. Table 2 lists the brain regions that
are functionally connected to the PCC as well as their as-
sociated b-weights and Talairach coordinates. Figure 1 and
Table 2 show that the low-frequency BOLD fluctuations are
more strongly correlated in the control group relative to the

T2DM group, indicating reduced functional connectivity in
the T2DM group. Because IQ can affect brain volume (20),
we conducted a post hoc regression analysis controlling for
both full-scale IQ and verbal IQ, and the results remained
significant.
Structural results. There were no differences in hippo-
campal volume between T2DM and control groups (right
hippocampal volume: control subjects = 4.4 6 0.12 cm3 vs.
T2DM patients = 4.0 6 0.17 cm3; left hippocampal volume:
control subjects = 4.3 6 0.09 cm3 vs. T2DM patients =
4.1 6 0.09 cm3). We found no correlations between the
b-weights derived from the functional connectivity measure
and either hippocampal volume or cognitive scores.
HOMA-IR. HOMA-IR was significantly higher in the five
non–insulin-treated T2DM patients compared with control
subjects (7.46 3.1 vs. 2.66 0.5 mmol/L $ mU/mL; P, 0.05).
In the T2DM patients, HOMA was inversely correlated with
the b-weights for connectivity between the PCC and mul-
tiple other brain regions involved in the DMN, particularly
the right inferior frontal gyrus (r =20.90, P = 0.035) and the
right precuneus (r = 20.81, P = 0.097) (Fig. 2).
Disease duration. Diabetes duration was not associated
with functional connectivity, hippocampal volume, or
cognition.

DISCUSSION

In the current study, we demonstrated that patients with
T2DM show reduced functional connectivity in several de-
fault mode regions, including the middle temporal gyri, bi-
laterally, right inferior and left medial frontal gyri, and left
thalamus, even when controlling for IQ. There were no group
differences in hippocampal volumes and no differences in

TABLE 1
Demographic, clinical, and cognitive characteristics

T2DM patients
(n = 10)

Control subjects
(n = 11)

Age (years) 56 (2.2) 54 (1.8)
Sex (male/female) 7/3 7/4
Education (years) 14.8 (0.8) 15.6 (0.8)
Cholesterol (mg/dL) 159 (4.11) 187 (9.95)*
Blood pressure (mmHg) 125/76 (10/10) 115/70 (24/13)
BMI (kg/m2) 30.9 (2.1) 26.8 (1.3)
HbA1c (%) 7.5 (0.5) 5.6 (0.1)*
Plasma glucose (mmol/L) 8.4 (1.3) 4.8 (0.2)*
Serum insulin (mU/mL) 19.7 (3.6) 11.9 (2.1)*
HOMA-IR noninsulin
users only 7.4 (2.2) 2.6 (0.5)*

Diabetes duration 6.1 (0.9)
Participants on cholesterol-
lowering medications 6 2

Participants on blood pressure
medications 5 2

Patients receiving insulin 5
Cognitive test scores
IQ 103.3 (3.3) 112.6 (3.9)
Immediate memory Rey
Auditory Verbal Learning
Test T score 47.5 (3.9) 57.0 (2.9)

Delayed memory 50.9 (3.0) 58.2 (1.9)
Letter-number sequencing 9.0 (0.8) 9.5 (1.1)
Grooved Pegboard time (s) 92.4 (11.2) 80.7 (4.2)
Verbal fluency 10.2 (1.1) 12.3 (1.2)

Data are means (SD). *P , 0.05.
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FIG. 1. Differences in DMN functional connectivity between T2DM and control subjects. The left and middle columns show functional connectivity
maps of T2DM (DM) and control (CON) subjects, respectively. The color scale represents the strength of functional connectivity with the PCC
(increasing strength from orange to yellow). The right column shows regions for which the strength of functional connectivity with the PCC was
significantly higher in control compared with T2DM subjects (P < 0.05, corrected). All images are represented in color overlaid on the anatomical
slices (gray). The top row shows functional connectivity differences in medial frontal gyrus (MEDFG; axial slice); themiddle row shows functional
connectivity in the precuneus (coronal slice); and the bottom row shows functional connectivity differences in the middle temporal gyrus (MTG;
coronal slice) with the thalamus also visible. Corresponding Talairach coordinates for MTG and MEDFG are presented in Table 2. (A high-quality
digital representation of this figure is available in the online issue.)
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cognitive performance. In the T2DM group, HOMA-IR was
inversely correlated with functional connectivity in several
regions of the DMN, particularly the right inferior frontal
gyrus and right precuneus. Disruption in functional con-
nectivity is associated with insulin resistance and occurs
before cognitive or structural deficits and may provide an
early method to evaluate whether T2DM patients are at
elevated risk for AD.

This abnormal brain pattern in the DMN has recently
been demonstrated using positron emission tomography in
older individuals (aged ;74 years) with insulin resistance

in a mixed group of people with T2DM or prediabetes (21).
Our study extends these findings. We focused on younger
T2DM participants, which reduces the influence of age-
related comorbidities that might affect cognition and brain
responses. We used resting-state fMRI rather than positron
emission tomography, which makes it more scalable be-
cause it does not require radioactive tracers. This method
could be used to detect abnormalities in functional con-
nectivity in apoE-´4 carriers who do not yet show amyloid
build up (4). We also included volumetric measurements of
the hippocampus. The hippocampus is one of the first
brain structures affected by AD and also has been shown
to be a vulnerable region to the effects of T2DM (22).

Although the mechanisms linking T2DM and risk of AD
are not yet understood, several hypotheses have been sug-
gested. The DMN is highly metabolically active and is
a site of increased aerobic glycolysis, making these regions
more susceptible to amyloid accumulation (23). Altered
glucose metabolism inherent in diabetes may augment this
process.

Unlike some other groups at risk for AD, we do not
know whether increased amyloid is the basis of the un-
derlying association between diabetes and AD. It is pos-
sible that vascular changes seen in T2DM heighten the risk
for AD (24). Finally, it is unclear whether the reduced
functional connectivity results we obtained are a warning
signal of impending AD or of some other abnormality, such
as amyloid deposition, endothelial dysfunction, advanced
glycation end products, or inflammation (25).

One limitation of our study is that we do not know
whether participants carry the apoE-´4 allele. Future stud-
ies in this line of research should include this information.
However, it is unclear whether apoE-´4 has any additional
effect on DMN metabolism, independent of T2DM or insulin
resistance (21). In addition, our sample size is small, and
this may have reduced our ability to detect changes in
cognition or hippocampal volume in our T2DM group.

In summary, T2DM patients showed reduced functional
connectivity between the PCC and other DMN regions
despite normal cognition and hippocampal volume. The
disruption in functional connectivity is correlated with the
severity of insulin resistance. It is important that because
level of insulin resistance is modifiable, it may be a vari-
able under patient control. Thus, diet and exercise may
ameliorate reduced functional connectivity in the DMN
and lessen the risk for AD in this population. As this re-
search field evolves, a clearer protocol will emerge out-
lining what steps can be taken to reduce AD risk in people
with insulin resistance.
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TABLE 2
b-Weights for the DMN regions significantly correlated with the PCC

Region R/L

Talairach b-Weight P

valueX Y Z Mean SEM

Middle temporal
gyrus R 58 214 27 T2DM 0.51 0.04 0.02

CON 0.69 0.06
Middle temporal
gyrus L 259 212 26 T2DM 0.43 0.06 0.01

CON 0.67 0.06
Inferior frontal
gyrus R 40 29 24 T2DM 0.31 0.10

CON 0.56 0.06 0.05
Medial frontal
gyrus L 29 37 31 T2DM 0.54 0.07 0.02

CON 0.75 0.03
Thalamus L 216 227 21 T2DM 0.37 0.07 0.02

CON 0.59 0.06

R, right; L, left; CON, control subjects.

FIG. 2. Correlation of HOMA-IR with connectivity between the PCC and
the precuneus (top panel) and connectivity between PCC and the right
inferior frontal gyrus (RIFG; bottom panel) in the five T2DM patients
who were not treated with insulin.
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Parts of this study were presented in abstract form at the
70th Scientific Sessions of the American Diabetes Associa-
tion, Orlando, Florida, 25–29 June 2010, and at the American
Diabetes Association Research Symposium on Diabetes
and the Brain, Alexandria, Virginia, 28–30 October 2011.
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