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Incomplete Coverage of Candidate Genes: A Poorly Considered Bias  
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Abstract: Current genetic investigations are performed both on the basis of a rational and biologically based choice of 

candidate genes and through genome wide scans. Nonetheless, lack of replication is a common problem in psychiatric ge-

netics as well as in other genetic fields. There are a number of reasons for this inconsistency, among them a well known 

but poorly considered issue is gene coverage. The aim of the present paper is to focus on this well known and defectively 

deemed bias, especially when a candidate gene approach is chosen. The rational and the technical feasibility of this pro-

posal are discussed as well as a survey of current investigations. The known consistent methodology to fix this bias is also 

discussed.  
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INTRODUCTION  

 By identifying heritable risk factors, genetic association 
studies will reasonably help to clarify the biological basis of 
psychiatric disorders, to identify the most consistent prog-
nostic factors, to simplify the therapeutic choices in every 
day clinic management. Anyway, despite a worldwide im-
pressive scientific effort, there are not many conclusive re-
sults so far. This lack of consistency may be due to some 
methodological bias. There are roughly two main ways to 
investigate the associations between genetic variants and 
phenotypes or endophenotypes: genome wide analysis and 
candidate gene analysis. Going genome wide is probably the 
way of the future, provided that the haplotype strategy turns 
out to be really applicable and effective across the genome 
[1]: however, genome wide investigations focused on psy-
chiatric disorders reported no definitive association results  
so far [2]. On the other hand, the candidate gene approach 
showed some good results and some genetic variations 
proved to be highly informative: for example, the inser-
tion/deletion polymorphism in the promoter of the serotonin 
transporter has been independently demonstrated to be asso-
ciated with some aspects of psychiatric disorders [3-5], and 
some clinical guidelines for the use of pharmacogenetic test-
ing for CYP4502D6 and 2C19 mutations are available al-
ready [6]. The genome wide and candidate methods are not 
thought to be competitive: inductive and deductive informa-
tion can be drawn with mutual advantage. Anyway, a large 
part of genetic research, both with genome wide and candi-
date gene methodologies, leaded to poorly replicated results. 
This might be due to a list of reasons, and some of them are 
methodological by nature: biases related to phenotype defini-
tions (diagnosis, symptom clusters), sample size, selection 
bias, treatment lack of homogeneity, statistical biases and the 
little impact of a single gene over clinical phenotypes [7, 8]. 
Beyond this well documented complexity, one well known 
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but poorly considered bias is the incomplete coverage of 
genetic variations running within the gene which is under 
investigation. The aim of this paper is to consider if recent 
literature under estimated this last point. The reader will find 
a list of web resources helping to fix this bias at the end of 
the paper.  

THE ROLE OF SINGLE NUCLEOTIDE POLYMOR-

PHISM (SNPs) 

 Since the finding of the first physical map of the human 
genome in 1956, the suggestion of random DNA markers to 
build a sequence map in 1980 [9], the completion of the se-
quence of human genome in 2003 and the first study with a 
genome wide technique (more than 44 clinical trials pub-
lished in the last two years), the research community has 
now the possibility to do both wide (entire genome) and hy-
pothesis related (single nucleotide polymorphism) genetic 
association studies. Briefly, DNA variations can occur at 
different levels: duplications, insertions, deletions and trans-
positions. The most frequent changes involve single nucleo-
tide substitutions, insertions and deletions. There are two 
basic classes of polymorphisms: SNP (single nucleotide 
polymorphism) and VNTR (variable number of tandem re-
peats). A list of SNPs is available from public databases 
(http://www.hapmap.org/downloads/index.html.en), and a 
part of these variations has a relevant prevalence within the 
general population: they are considered as “common” above 
the 5% frequency [10]. There is a variable number of SNPs 
for each gene: the longer the gene, the higher the number of 
running variations within its sequence. It is not easy to de-
fine the average number of one gene mutations, but it may be 
reasonably said that one single mutation is not representative 
of a gene’s complete sequence. In fact, there might be other 
mutations within the same gene counteracting or enhancing 
the effect of the first one. We hypothesized that this simple, 
self – established statement is poorly considered by recent 
literature. To test this hypothesis, we surveyed the literature 
based on genetic association studies, inclusion criteria is 
listed below. A special attention might be paid to one of 
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them: a sample size threshold (about one hundred patients) 
was chosen as inclusion criteria. This was meant to be closer 
to rational concerns about the studies’ economic burden than 
to statistics: budget represents a relevant part in every study 
design, and a cut off of one hundred patients may identify 
studies which could afford a complete genetic analysis. 
Some words should be spent about this controversial topic. 
The definition of a statistically correct sample size for an 
association study appears to be quite a complex task: small 
sample sizes are not representative, while bigger sample 
sizes are associated with the risk of higher false positive 
rates, as recently demonstrated by Sullivan [11]: his in silico 
investigation showed dramatic rates of false positive results 
with a sample of 500 cases and 500 controls, examined for a 
set of 10 SNPs. Conflicting with this, genome wide analysis 
performed on thousands of patients only reported mild sig-
nificant results: the recent genome wide investigation by 
Fanous and colleagues [12] (n=1383), for example, shed 
some light on the boundaries between schizophrenia and 
schizotypy, but the level of significance (p=0.04 and p=0.02) 
does not allow to discard the possibility of a first type error 
occurrence. Similar considerations might then be done for 
other interesting recent findings: in an relevant paper by Bu-
layeva and colleagues, the genome wide investigation of a 
set of genetic isolated schizophrenic pedigrees revealed dif-
ferent pattern of association with psychiatric phenotypes 
between younger and older pedigrees [13]. The study of ge-
netic isolated pedigrees lowered the occurrence of population 
stratification factors, and the wide investigated sample sizes 
(hundreds) were a relevant point of the study, but the level of 
significance that was reported (p < 0.05) may not be consid-
ered sufficiently protective. Furthermore, it must be noticed 
that, even with a higher level of significance (p<0.002) at the 
genome-wide analysis, the subsequent SNP investigation 
does not necessarily confirm the results [14]. Many factors 
probably influenced the statistical power of these studies and 
therefore, they all should be considered for statistically de-
termined correct sample size: the haplotype Linkage Dise-
quilibrium (LD) which varies along chromosomes and 
within genes, the assumed genetic path associated with dis-
orders (additive or multiplicative), the prevalence of the in-
vestigated disorder in the general population, the prevalence 
of the alleles associated with the disorder, and the definition 
of the relative risk for the disorder may represent some ex-
amples of these interactions as far as they are all influent 
toward the definition of a sample size tailored to a fixed sta-
tistical detection power [15].  

 So, even in the simplest case, when a candidate gene ap-
proach is chosen, the index sample size will vary according 
to the disorder, to the haplotype Linkage Disequilibrium 
average value in the candidate gene, to the associated ex-
pected Odds Ratio and so on. Thus, the correct identification 
of the exact average sample size for a rational analysis ap-
pears to be quite a complex task, and it is anyway beyond the 
aim of this paper. If the reader is interested in this topic, De 
La Vega recently proposed an online free software meant to 
deal with these issues [15], and the recently published 
HAPMAP project phase II focuses on these topics in deep 
too [10], reader’s attention is then readdressed to these rele-
vant publications. More simply, we choose to use the sample 
size to select appropriate studies for our survey on the basis 

that, given the economical effort leading to the selection of 
about two hundred persons (cases and controls), it would be 
worth performing a completer SNP selection, avoiding the 
simple bias of an incomplete investigation, which otherwise 
would detract from the scientific and economical effort of 
the study. According to this advice, we listed some recent 
association studies published in the last three years (July 
2004 – July 2007) in the field of psychiatric genetic research, 
and pointed out the investigated/known genetic variations 
ratio for each gene in the studies. Pubmed database was used 
with the following criteria: 

1. Key words: gene, polymorphism, schizophrenic, bipolar, 
depressive, anxiety, obsessive, panic, PTSD, phobic.  

2. Sample size = 90-100  

3. Limits: Humans, Clinical Trial, Meta-Analysis, English. 

 Results are presented in Table 1, SNP data are collected 
from NCBI database (http://www.ncbi.nlm.nih.gov/).  

 Table 1 reports the low investigated/known genetic varia-
tion ratio in almost all considered studies: the complete SNP 
coverage of investigated gene then represents quite a new 
topic in nowadays literature [16]. There are good and well 
known reasons to revalue this point: first of all, it is rational 
to assume that every SNP occurring in the genetic coding 
sequence is crucial as far as it can be associated with a 
change in the secondary mRNA structure: that is why silent 
substitutions cannot be considered a priori as devoid of in-
terest if they run in exons. Moreover, SNPs within the cod-
ing sequence can be associated with different aminoacid se-
quence, leading to secondary, tertiary or quaternary possibly 
different protein structures, and, as a consequence or inde-
pendently from it, altered function. Not all the DNA se-
quence is expressed in every cell [17], but a part of it being 
silent or playing a regulatory role, probably influencing the 
differentiation and specialisation processes [18-20]: it might 
be expected then that a number of SNPs will occur in non 
coding DNA, and may be in - or close to - a promoter, en-
hancer, silencer or other regulating sequence. Promoters are 
usually close to exons sequence (TATA box usually locate at 
-25bp; CAAT box at -80bp; CG box up to -950bp), but en-
hancers and silencers can be located at a considerable dis-
tance from the coding stream or inside introns. Other reasons 
to consider intronic polymorphisms relevant to genetic in-
vestigations, arise from the DNA accessibility to RNA po-
lymerases: it is commonly accepted that this mechanism is at 
least partially limited by methylation and acetylation [21-
26], and since cytosine has been proposed to be a site of 
methylation, its variation due to a change in the genetic se-
quence could have an influence on the gene expression. Con-
sistently, there is evidence that the T102C silent variation 
influence HTR2A gene expression [27] probably through 
this mechanism. Finally, an intron variation could be com-
pletely silent but in strong Linkage Disequilibrium with a not 
yet known variation, possibly involving genes or sequences 
still far to be hypothesized as relevant to the topic of the 
study.  

 As Table 2 shows, nowadays investigations of non exon 
variations are limited to sequences located 1 kbp around ex-
ons. For the above mentioned considerations, scans should 
be wider. To complete Table 2 we used temporal criteria (the 
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Table 1. Examples of Investigated/Known Variations Ratio 

Author Sample Gene (s) 
Variation (Investigated /  

Known) 

Number of  

Tag SNPs 

Number of LD 

Blocks 
Main Association Result 

[32] 1447 CREB 1 7 / 173 18 4 Positive association in men (suicide) 

[33] 854 HTR2C; HTR1A 
6 / 1100 (HTR2C); 3 / 16 

(HTR1A) 

18 (HTR2C) No 

haplotypes (HTR1A) 

4 (HTR2C) No 

haplotypes 

(HTR1A) 

No correlation 

[34] 1913 SLC6A4 1 / 171 

14 1 No correlation (MDD, positive  

correlation if stress associated;  

alcohol dependence) 

[35] 
1435 (meta 

analysis) 
SLC6A4 1 / 171 

14 1 Positive correlation  

(MDD, AD treatment) 

[36] 1914 SLC6A4 1 / 171 14 1 No correlation (AD treatment) 

[37] 
1648 (meta 

analysis) 
MTHFR 2 / 147 

9 1 Positive correlation (depression,  

anxiety, psychosis) 

[38] 
9032 (meta 

analysis) 
SLC6A4 1 / 171 

14 1 Positive correlation  

(sucide; p = 0.0068) 

[39] 
3000 (meta 

analysis) 
SLC6A4 1 / 171 

14 1 
Positive correlation (OCD) 

[40] 195 GNbeta3 1 / 39 3 No haplotypes Positive correlation (self mutilation) 

[41] 222 HTR1A 2 / 16 
No haplotypes No haplotypes Positive correlation  

(AD treatment, females) 

[42] 
4175 (298 

MDD) 
SLC6A4 1 / 171 

14 1 
No correlation 

[43] 258 SLC6A4 1 / 171 14 1 Positive correlation (suicide) 

[44] 196 DRD4 1 / 106 No haplotypes No haplotypes Positive correlation (neuroticism) 

[45] 450 GLO1 1 / 152 
11 2 Positive correlation (panic  

without agoraphobia) 

[46] 937 GAL 4 / 30 3 1 Positive correlation (alcoholism) 

[47] 755 DTNBP1 2 / 448 
26 2 Positive correlation (negative  

symptoms of schizophrenia) 

[48] 2376 BDNF 3 / 214 5 1 Positive correlation (MDD) 

[49] 178 CLOCK 1 / 523 
24 5 Positive correlation  

(AD treatment  insomnia) 

[50] 273 ACE; ATR1 (1 + 1) / (259 + 422 ) 
11 (ACE) 

18 (ATR1) 

4 (ACE) 

2 (ATR1) 

Positive correlation  

(AD treatment) 

[51] 1512 COMT 1 / 293 14 3 Positive correlation (MDD) 

[52] 753 GPR50 3 / 29 No haplotypes No haplotypes Positive correlation (DB) 

[53] 1005 SLC6A4 1 / 171 
14 1 Positive correlation  

(gene environment influence) 

[54] 295 SLC6A4 1 / 171 14 1 No correlation (OCD) 

[55] 159 GABBR1 5 / 204 21 6 Positive correlation (OCD) 

[56] 287 BDNF 2 / 214 5 1 No correlation 

[57] 273 
21 candidate 

genes 

90 polymorphisms  

(average = 3.5) 

Different genes Different genes 
Positive association (PD) 

[58] 230 NET 3 / 263 
25 4 Positive correlation  

(PD without agoraphobia) 
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(Table 1) contd…. 

Author Sample Gene (s) 
Variation (Investigated /  

Known) 

Number of  

Tag SNPs 

Number of LD 

Blocks 
Main Association Result 

[59] 373 

SCL6A4; 

MAOA; TPH1; 

HTR1B 

2 / 171 (SLC6A4);  

1 / 165 (MAOA);  

1 / 81 (TPH1);  

1 / 25 (HTR1B) 

14 (SLC6A4) 

8 (MAOA) 

2 (TPH1) 

4 (HTR1B) 

1 (SLC6A4) 

1 (MAOA) 

None (TPH1) 

1 (HTR1B) 

No correlation 

[60] 65 families PIP5K2A 15 / 742 53 12 Positive association 

[61] 433 FZD3 2 / 280 4 1 No correlation 

[62] 944 BDNF 2 / 214 5 1 Positive association 

[63] 896 SYN3 1 / 2742 257 45 No correlation 

[64] 1153 RGS4 4 / 36 6 1 No correlation 

Gene names are the officials ones according to NCBI database. To identify the Tag SNPs Haploviewer tagger program was used with default settings, CEU population was selected. 

 

Table 2. Papers Published in 2006–7 that Reported Positive Association Results for Intronic SNPs 

Author Disorder Chromosome Gene Variation (Intron) 
Distance from the  

Nearest Exon 

[65] Psychosis 22q13.33 MLC1 rs2235349; rs2076137 ~ 100 bp and 65 bp 

[66] Psychosis  18p11.3 TGIF D18S63 ~ 9.2 kbp 

[67] PTSD Xp11.23 MAO-B rs1799836 ~ 30 bp 

[68] BD 14q22.3 OTX2 rs28757218 ~ 20 bp 

[69] Personality 6p12.3 TFAP2B VNTR (intron 2) ~ 100 bp 

[70] Antipsychotic treatment 7q36.1 NOS3 VNTR (intron 4) ~ 200 bp 

[71] Lithium treatment response 17q11.2 SLC6A4 VNTR (intron2) ~ 100 bp 

[72] Antidepressant response 5p15.33 DAT1 VNTR (intron 8) ~ 200 bp 

[73] Antidepressant response Xp11.23 MAO-B rs1799836 ~ 30 bp 

[74] Eating disorder spectrum 3p25.3 GHRL rs35680 ~ 800 bp 

[75] Personality 19q13.42 PRKCG rs402691 1.2 kbp 

[76] Psychosis 22q11.21 COMT rs737865; rs737864 ~ 700 kb 

[77] Depressive disorder 17q11.2 SLC6A4 rs25531 ~ 1.5 kbp 

[78] Psychosis 6p21.31 FKBP5 17081296 ~ 2.5 kbp 

[79] Antipsychotic response 15q24.1 CYP1A2 rs2472304 ~ 40 bp 

[80] BD 8p21 VMAT1 rs2279709 ~ 220 bp 

[81] Psychosis 8p12 NRG1 rs6150532 ~ 700 bp 

[82] BD 21q22.3 TRPM2 rs1618355 ~ 15 bp 

[83] Suicide  11p15.1 TPH-1 rs684302; rs211105; rs1800532; rs7933505 ~ 250 to 2000 bp 

[78] Psychosis 6p21.31 FKBP5 rs1360780 ~ 1.5 kbp 

[44] Personality 7p15.1 CRHR2 rs2267717 ~ 4.5 kbp 

[84] Suicide 11p15.1 TPH Intron 7 SNPs < 750 bp 

[85] Depressive disorder 11q23.2 HTR3A and HTR3B rs2276307; rs2276308; rs3782025; rs2276302 From 60 to 150 bp 

Gene names are the officials ones according to NCBI database.  
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last two years), and the following key words: intron, intronic, 
depressive, psychotic, schizophrenic, bipolar, personality, 
suicide, temperament, eating, anxiety, panic, obsessive, poly- 
morphism, SNP. Pubmed served as database. As regard to 
SNPs, only studies with possible identification of genetic 
location are included. One study for each investigated varia-
tion is included. 

 Finally, 3’ and 5’ endings are also important regulatory 
regions, and it is reasonable to assume that modifications 
running in these genetic sequences, or sufficiently close to, 
might play a relevant role.  

 Some lines of evidence encourage a complete analysis of 
single genes’ variations: Myer and colleagues recently found 
no significant difference in the promoter activity of HTR2A 
gene between the A- and G- allele of the -1438 locus when 
expressed with the major alleles at –1420 C/T and –783 A/G 
loci [28]. This was not consistent with some previous litera-
ture findings [29]; but when the minor allele G at -783 was 
found to be expressed with G-allele at -1438, the promoter 
activity was found to be significantly decreased. Consis-
tently, a triallelic variant of the well known serotonin pro-
moter polymorphism has been recently reported [30], and 
only the A allele carriers at the A/G SNP within 5-HTTLPR 
insertion polymorphism yield high mRNA levels, and the 
L(G) carriers actually behave like the low expressing short 
allele. This finding can explain some of the not replicated 
findings in literature. Moreover, previous studies which in-
vestigated only the long/short polymorphism should be re-
considered.  

 SNPs occur, on average, about less than 1.000 bases. 
Since there are about 3 billion chemical base pairs that make 
up human DNA and its 20.000 – 25.000 genes, about 3 - 5 
million of SNPs might be expected. This is consistent with 
the recent phase II Hap Map project findings [10]. The 
analysis of such a number of variations is feasible from a 
long time: actual techniques (Illumina and Affymetrix) per-
mit the analysis of 500,000 or more SNPs in a single test 
with accessible costs, and lists of TagSNPs which can cover 
the complete gene sequence are easily retrievable from  
public databases (http://www.hapmap.org/downloads/index. 
html.en) (http://www.ncbi.nlm.nih.gov/projects/mapview/ 
map_search.cgi?taxid=9606).  

 Moreover, online free software is available which iden-
tify is a list of significant SNPs to cover a gene’s common 
variations (http://www.broad.mit.edu/mpg/haploview/down-
load.php) (http://marketing.appliedbiosystems.com/mk/get/ 
SNPB_LANDING?_A=22924&_D=18392&_V=0).  

 As a conclusion, a more complete analysis of genes’ 
variations does not represent a novelty in actual knowledge, 
and its rationality as a methodological strategy is expected to 
be self – established. Nonetheless, we report here that it is a 
poorly considered methodological point which could be eas-
ily fixed using free internet resources and laboratory extra 
work, likely affordable in studies able to perform genetic and 
clinic assessments of hundreds of patients. There is some 
evidence that every day genetic clinic use will be a cost ef-
fective or even cost-saving approach in general clinical prac-
tice [31]: in order to hasten this process, a complete coverage 
of single gene polymorphisms is probably needed. 
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