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proteins and chaperones, extracted from 
the anterior sperm head plasma membrane, 
coexist as high molecular weight  (HMW) 
complexes, and that these complexes in 
capacitated spermatozoa have preferential 
ability to bind to the ZP. Zonadhesin (ZAN), 
known as an acrosomal protein with ZP 
affinity, is one of these proteins in the 
HMW complexes. Immunoprecipitation 
indicates that ZAN interacts with other 
acrosomal proteins, proacrosin/acrosin and 
sp32  (ACRBP), also present in the HMW 
complexes. Immunodetection of ZAN and 
proacrosin/acrosin on spermatozoa further 
indicates that both proteins traffic to the 
sperm head surface during capacitation where 
the sperm acrosomal matrix is still intact, and 
therefore they are likely involved in the initial 
sperm–ZP binding step.

S P E R M  C A P A C I TAT I O N  A N D 
S P E R M ‑ Z O N A  P E L L U C I D A 
INTERACTION–  BACKGROUND AND 
CONFUSION IN THE FIELDS
Sperm capacitation was first described by Chang 
to be a physiological process occurring in the 
female reproductive tract whereby spermatozoa 
gain fertilizing ability.1,2 Subsequent studies 
indicate that capacitation can be induced in vitro 
simply by incubating spermatozoa in a medium 
containing albumin, calcium and bicarbonate.3–7 
The procedures of in  vitro capacitation and 
egg culture were then combined to establish 
the in vitro fertilization process, which is now 
used routinely as part of assisted reproductive 
technology.8 On the research side, the ability 
to induce sperm capacitation in  vitro has 
also accelerated studies on the molecular 

The interaction of sperm with the 
egg’s extracellular matrix, the zona 

pellucida (ZP) is the first step of the union 
between male and female gametes. The 
molecular mechanisms of this process have 
been studied for the past six decades with 
the results obtained being both interesting 
and confusing. In this article, we describe 
our recent work, which attempts to address 
two lines of questions from previous studies. 
First, because there are numerous ZP binding 
proteins reported by various researchers, how 
do these proteins act together in sperm–ZP 
interaction? Second, why do a number of 
acrosomal proteins have ZP affinity? Are 
they involved mainly in the initial sperm–ZP 
binding or rather in anchoring acrosome 
reacting/reacted spermatozoa to the ZP? Our 
studies reveal that a number of ZP binding 
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mechanisms of the process. Hyperactivated 
motility patterns are now known as signature 
movements of capacitated  (Cap) sperm. 
Increases in sperm tyrosine phosphorylation 
are other emblems of capacitation‑associated 
signaling events.9

R e m o d e l i n g  o f  t h e  m o l e c u l a r 
components on the sperm surface is 
another capacitation‑associated event that 
has unfolded from research from the past 
few decades. Albumin and high‑density 
lipoproteins present in the female reproductive 
tract or medium induce the release of 
cholesterol from the sperm surface during 
capacitation, thus leading to an enhancement 
in sperm membrane fluidity.10,11 This can be 
detected by a fluorescent dye, merocyanine, 
which intercalates into the disorganized 
membrane domains.7,12,13 This increase in 
membrane fluidity prepares Cap sperm for 
the downstream membrane fusion events that 
are essential for fertilizing ability, that is, the 
acrosome reaction and sperm–egg plasma 
membrane fusion.9

The ability to culture spermatozoa and 
eggs in vitro has also allowed researchers to 
identify a number of proteins that are involved 
in sperm–zona pellucida  (ZP) interaction. 
With success in the purification of the three 
mouse (m) ZP glycoproteins to homogeneity, 
Florman and Wassarman confirmed that the 
mZP3 glycoprotein was a primary receptor 
binding to acrosome intact sperm, whereas 
mZP2 was a secondary receptor engaging in 
adhering acrosome reacted sperm to the ZP.14 
This concept was later questioned by Gerton 
et al. who showed that acrosomal exocytosis 
occurs in a gradual manner15–17 and that both 
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mZP2 and mZP3 engage in the interaction 
with sperm undergoing acrosomal exocytosis. 
Recent work of Dean et al. further indicated that 
mZP2 cannot be excluded from the binding of 
acrosome‑intact sperm.18,19 The assumption 
that mZP3 binds only to acrosome intact 
spermatozoa has also been recently challenged 
by Hirohashi’s research group, who showed 
using high‑performance videomicroscopy 
that acrosomal exocytosis has already initiated 
by the time that sperm have moved through 
the cumulus cell layers.20 In other words, 
spermatozoa that bind to the ZP do not have 
their acrosome completely intact. Regardless 
of this confusion, one finding that still holds 
true  is that ZP glycoproteins are endowed with 
large carbohydrate moieties and that ZP glycans 
are important in the initial binding of the ZP to 
spermatozoa.9

On the sperm side, the membrane 
β‑1,4‑galactosyltransferase  (GalT) is one of 
the early proteins described by Shur and Hall 
for its affinity for the ZP and its involvement 
in sperm–ZP binding was described through 
a series of in vitro experiments.21–24 Shur et al. 
have hypothesized that GalT is engaged in a 
“dead‑end” reaction. Normally, GalT transfers 
a galactose from a galactose donor (UDP‑Gal) 
to N‑acetylglucosamine  (GlcNAc) to form 
a Gal‑GlcNAc conjugate. In the female 
reproductive tract, Shur and Hall have suggested 
that UDP‑Gal was not present and, therefore, 
the binding of sperm GalT to its substrate 
GlcNAc on the ZP glycans forms a basis of 
sperm–ZP interaction without yielding a 
product.21,22 The same “dead‑end reaction” 
concept can be applied to a number of sperm 
surface glyco‑enzymes with ZP affinity: namely 
that they bind to their substrate, which contains 
a sugar residue present on the ZP glycans. 
These enzymes include α‑D‑mannosidase,25,26 
PH‑20 (aka SPAM1),27,28 arylsulfatase A (ARSA, 
with galactose sulfate as one of its substrates).29,30 
Considering that these glycol‑enzymes do not 
complete their reaction at the time of sperm–ZP 
binding, they can be considered as “lectins.” 
However, it is possible that the reaction of these 
enzymes is eventually completed, so that sperm 
can leave the original binding site and move to 
the next one, as part of their forward movement 
through the ZP.

Besides the glycol‑enzymes, there 
exists another set of sperm surface proteins 
with a direct lectin property. These include 
proacrosin/acrosin  (ACRO),31,32 sp56  (aka 
ZP3R),33 sp38  (aka IAM38, ZP binding 
protein1 [ZPBP1]),34–36 zonadhesin (ZAN),37,38 
sp1739 and spermadhesins  (including AQN, 
AWN).40–42 In addition, ZP binding proteins on 
the sperm surface without known information 

for their ability to interact with the carbohydrate 
moieties of the ZP have been described, 
including SED1  (aka MFGM),43 ZP binding 
protein2 (ZPBP2),44 glutathione‑S‑transferase;45 
ADAM3,46 carbonyl reductase,47 basigin,48 SP1049 
and FA‑1.50,51 Sulfogalactosylglycerolipid (SGG, 
aka seminolipid)52,53 is another sperm surface 
molecule  (not a protein) that has affinity for 
the ZP and is involved in sperm–ZP binding. 
Of note is the acrosomal location of a number 
of ZP binding proteins: that is, proacrosin/
acrosin, ZAN, ZPBP1, ZPBP2, SP10, and 
sp56,35,36,38,44,54–61 and this finding reinforces 
the concept that these ZP binding proteins 
are involved in the binding of the reacting 
acrosome to the ZP. However, before the results 
described by Jin et al.20 it was thought that the 
acrosomal exocytosis occurred on the ZP and 
that the binding of these acrosomal proteins 
to the ZP occurred after the initial binding 
of ZP‑associated proteins on the sperm head 
surface. As described below, this concept is now 
challenged by our recent results.

WHY ARE THERE SO MANY ZONA 
PELLUCIDA BINDING PROTEINS?
The existence of so many sperm proteins 
with ZP affinity requires an explanation. One 
possible explanation is that information derived 
from the in vitro sperm–ZP binding assay does 
not accurately represent situations in  vivo. 
With the rapidly advancing technology of 
targeted gene deletion (see http://www.genome.
gov/12514551), colonies of “knockout”  (KO) 
mice lacking individual genes encoding ZP 
binding proteins have been produced and 
fecundity of these male mice was assessed by 
various measurements that is, their ability to 
sire offspring, their sperm parameters (sperm 
number, motility, morphology and in  vitro 
fertilizing ability), and their libido and ability 
to copulate with females.62 Surprisingly 
and interestingly, a number of KO mice 
including Gal−/−, Zp3r−/−, Zan−/−, SED1−/−, 
Acr−/−, Zpbp2−/−, Spam1−/− and Arsa−/− mice 
can sire offspring,43,44,63–69 although evidence of 
subfertility is noted in a number of these mouse 
colonies.43,44,69,70 In contrast, Adam3−/− and 
Zpbp1−/− mice, which still produce spermatozoa, 
are infertile.44,46,71,72 Of note, ADAM3 also 
functions in sperm–egg plasma membrane 
binding. 72 While spermatozoa from Adam3−/− 
mice lack ADAM3, as expected, they also 
possess an aberrant amount of proteins that are 
important for sperm–egg plasma membrane 
binding on their surface (i.e. no ADAM1b and 
a lower amount of ADAM2).72 In addition, 
spermatozoa from Adam3−/− mice are severely 
defective in their movement through the 
uterotubal junction.71 All of these observations 

indicate the multi‑functional roles of ADAM3 in 
fertilization and it is therefore not surprising that 
Adam3−/− male mice are infertile. In the same 
vein, spermatozoa from Zpbp1−/− mice have 
grossly abnormal heads (typical of the so‑called 
“globospermia” morphology), suggesting that 
ZPBP1 is involved in the formation of the sperm 
acrosome.44 The infertility status of Zpbp1−/− 
mice is, therefore, to be expected.

Explanations are required for the existence 
of so many sperm proteins with ZP affinity in 
the first category, the deletion of whose genes 
still produces fertile male mice (see above). The 
results from these KO mouse studies indicate 
that these proteins are not essential for fecundity, 
although their relevance in the ZP binding 
process cannot be denied (especially when a 
number of these KO male mice are subfertile). 
Because fertilization is the fundamental process 
needed to sustain the continuation of a species, a 
number of ZP binding proteins/molecules may 
be required to safeguard this. The redundancy 
of their functions would allow them to back 
up for one another. Alternatively, they might 
act together in a synergistic and/or sequential 
manner, although the disappearance of one 
specific molecule does not annul the sperm–ZP 
binding process.73–75

EXISTENCE OF ZONA PELLUCIDA 
BINDING PROTEINS/MOLECULES 
IN SPERM LIPID RAFTS AND HIGH 
MOLECULAR WEIGHT COMPLEXES
The interpretation of the presence of many 
ZP binding proteins/molecules on sperm is 
consistent with the concept of the existence 
of lipid rafts, nanoscale liquid‑ordered 
sterol‑containing membrane microdomains 
that are platforms of cell adhesion and signaling 
molecules.73,76–78 The method to isolate lipid rafts 
as detergent resistant membranes (DRMs)79 
has further accelerated the characterizations 
of their molecular components, results of 
which have supported the stated concept.  
Since sperm-egg interaction is fundamentally 
engaging cell adhesion and signaling processes, 
a number of investigators in the gamete field, 
including us, started to characterize sperm 
lipid rafts. So far, publications on the sperm 
lipid rafts topic have come out from at least 17 
labs,78 starting with the article from Kitajima’s 
lab80 describing the ability of sea urchin sperm 
DRMs to bind to a sperm binding protein 
on the egg. Likewise, we have shown that pig 
and mouse sperm DRMs have affinity for 
homologous ZP glycoproteins and the intact 
ZP, respectively.81,82 Our results showing a higher 
amount and enhanced ZP binding ability of 
DRMs isolated from Cap sperm as compared 
with those from noncapacitated  (Noncap) 
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chaperonin‑containing TCP complex  (CCT/
TRiC) are molecular constituents of a 820 kDa 
HMW complex.85 A similar type of HMW 
protein complex  (~900 kDa) is also present 
in human spermatozoa, although ZPBP2 is 
the only ZP binding protein constituent.86 
A smaller HMW complex  (200 kDa) is also 
present in human sperm comprising two ZP 
binding proteins, ARSA and SPAM1, and a 
chaperone protein, HspA2.87 Of note, only a 
few ZP binding proteins are found in the sperm 
HMW complexes with ZP affinity. It is possible 
that proteins extracted from other regions of 
spermatozoa besides the anterior head  (site 
of ZP binding) may have diluted out HMW 
complexes that are directly involved in ZP 
interaction: this dilution would make it difficult 
technically to detect these relevant complexes.

PROTEOMIC CHARACTERIZATION OF SPERM 
ANTERIOR HEAD PLASMA MEMBRANE 
VESICLES – EXISTENCE OF HIGH MOLECULAR 
WEIGHT COMPLEXES WITH ZONA PELLUCIDA 
AFFINITY
Toward the end of the 2000’s, concerns over the 
use of detergents to isolate lipid rafts were voiced 
strongly; DRMs can be artifacts from protein 
aggregation induced by this treatment.88 Isolation 
of lipid rafts by physical force such as nitrogen 
cavitation was suggested.89 In fact, in the sperm 
biology field, nitrogen cavitation at 650 psi has 
been used since the 1980’s to specifically prepare 
vesicles from the pig sperm anterior head plasma 
membrane (APM), the site of ZP binding.90,91 
Isolated APM vesicles from Cap pig sperm 
have a direct ability to bind to the homologous 
ZP glycoproteins with the same Kd value as 
that measured for Cap sperm DRMs for the 

parallel ZP interaction.81 Therefore, we started 
our proteomic characterization of APM vesicles 
isolated from Noncap and Cap sperm, with the 
hope of gaining an insight to the identities of 
proteins that are relevant in capacitation. Our 
recent results indicate that the amount of APM 
vesicles isolated from Cap sperm increased to 
160% compared with that from Noncap sperm, 
and liquid chromatography coupled with 
tandem mass spectrometry (LC–MS/MS) also 
indicated an increase in the protein numbers in 
Cap APM vesicles (127 vs 81 in Noncap APM 
vesicles, with 59 proteins found in common 
between Noncap and Cap vesicles). Significantly, 
a number of proteins involved in sperm–egg 
interaction and two chaperone proteins (heat 
shock 70 kDa protein 1‑like and heat shock 
protein Hsp90‑alpha) rank the highest in their 
spectral counts among all proteins identified 
by LC–MS/MS (Table 1). The presence of ZP 
binding proteins in APM vesicles corroborates 
their known ZP binding properties81,92 and 
the increase in the amounts of isolated APM 
vesicles in Cap sperm further explains the higher 
capacity of these sperm (compared with Noncap 
counterparts) for ZP interaction.93

Blue native gel electrophoresis further 
revealed the presence of HMW protein 
complexes  (>200  kDa) in APM vesicles 
from Noncap and Cap sperm  (Figure 1a, 
left panel), but HMW complexes sized 
1000–1300  kDa  (named Complex I), 
850–1000  kDa  (Complex II) and 750–
850  kDa  (Complex III) from Cap sperm 
had a significantly higher capacity to bind 
to pig ZP3 glycoproteins  (hetero‑oligomers 
of pig ZP3α and pig ZP3β; sperm receptor; 

spermatozoa further support the concept 
that sperm lipid rafts are the ZP interaction 
domains on the sperm surface.81 Our lipidomic 
characterization further indicated that SGG 
is an integral component of sperm DRM: it 
plays an important role in the formation of 
sperm lipid rafts as well as endowing their ZP 
binding ability. Proteomic analyses further 
revealed the presence of a number of ZP binding 
proteins  (SED1, GalT, α‑D‑mannosidase, 
SPAM1, ARSA, spermadhesins, basigin, 
proacrosin, SP10) as well as their associated 
partners  (e.g,  sp32 or ACRBP) as molecular 
components of sperm DRMs.82–84 Significantly, 
these findings imply that these ZP binding 
proteins have to be escorted into the lipid raft 
domains. Therefore, it is not surprising that 
several chaperone proteins are also present 
in isolated sperm DRMs including a series of 
heat shock proteins (e.g, Hsp60 (chaperonin), 
HspA5, and Hsp90, Hsp90b1 (endoplasmin)), 
calnexin, protein disulfide isomerase 
associated 3 and protein disulfide isomerase 
associated 6.82 The co‑existence of ZP binding 
proteins and chaperone proteins in isolated 
sperm lipid rafts suggests that they must be 
in close proximity and might be associated 
with one another forming high molecular 
weight  (HMW) complexes within the lipid 
raft microdomains. This postulate was 
indeed verified by Dun et al. Blue native gel 
electrophoresis of proteins extracted from 
whole sperm with a gentle nonionic detergent 
reveals the presence of HMW complexes, which 
have affinity for solubilized ZP glycoproteins. 
In mouse spermatozoa, ZPBP2, ZPBP1, and 
ZP3R and a series of chaperone proteins, 

Table  1: LC–MS/MS analyses of Noncap and Cap APM vesicle proteinsa,b

Protein name/function categoryc Swiss‑Prot 
accession

Average spectral countd Fold difference 
(Cap/Noncap)

Average percentage sequence coveragee

Noncapc Cap Noncap Cap

Sperm–egg interactions

Milk fat globule‑EGF factor 8 (SED1) MFGM 66.91 105.78 1.58 48.80 56.10

Carbohydrate‑binding protein AQN‑3 AQN3 12.03 5.69 0.47 24.47 33.07

Carbohydrate‑binding protein AWN AWN 8.35 6.39 0.77 32.57 51.37

Proacrosin/acrosin ACRO 7.94 8.68 1.09 11.50 20.80

Angiotensin‑converting enzyme ACE 3.55 4.77 1.34 1.93 4.33

Proacrosin‑binding protein precursor (sp32) ACRBP 2.36 8.49 3.59 3.23 13.10

ZPBP1 (sp38) ZPBP1 1.17 1.60 1.36 3.50 5.70

ZAN ZAN 0.00 8.14 ∞ 0.00 6.20

Chaperones

Heat shock 70 kDa protein 1‑like HS71L 10.81 4.81 0.44 12.13 12.87

Hsp90‑alpha (Hsp86) HS90A 4.01 4.17 1.04 5.87 10.00
aAn equal amount  (50 µg) of proteins extracted from APM vesicles of Noncap and Cap sperm from each of the three pigs was used for MS analyses; bOnly highly abundant APM 
proteins, showing at least five spectral counts in one of the three replicates, are listed; cThe APM proteins identified are grouped based on their known biological functions and 
individual proteins in each group were ranked from the highest to the lowest abundance in Noncap samples using normalized spectral counts as relative indexes; dAverage normalized 
spectral counts for proteins identified in Noncap and Cap APM samples from three animals. All data from individual pigs are in Kongmanas et al.93; eAverage percentage of amino acid 
sequence coverage for each identified protein. Cap: capacitated; Noncap: noncapacitated; LC–MS/MS: liquid chromatography coupled with tandem mass spectrometry; APM:  anterior 
head plasma membrane; EGF: epidermal growth factor; Hsp: heat shock protein; ZAN: zonadhesin; ZPBP1: zona pellucida binding protein1
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binding patterns  (Figure  1a). Significantly, 
ZAN contributed to the ZP affinity of the three 
complexes. Preincubation of the complexes 
with various concentrations of anti‑ZAN 
IgG inhibited their binding to pig ZP3 in a 
dose‑dependent manner (Figure 1c).

Chaperones are also present in Complexes 
I–III, including various subunits of T‑complex 
protein 1  (aka CCT/TRiC).93 As suggested 
earlier by Dun et  al.85–87 these chaperones 
might escort the ZP binding proteins to come 
together to form HMW complexes.

ZONADHES IN  AND  SELECT IVE 
ACROSOMAL PROTEINS PLAY ROLES 
IN SPERM CAPACITATION
Besides ZAN, proacrosin, ACRBP, SP10 and 

ZPBP1 are ZP binding proteins present in the 
three HMW complexes (Figure 1d). All of these 
proteins are known to localize in the acrosome. 
Previous studies indicated that vesicles of 
hybrid membranes (APM and outer acrosomal 
membrane) existed in the vesicle preparation 
from pig sperm subjected to nitrogen cavitation 
at 650 psi (called APM vesicles in this review).94 
ZAN was localized to the outer acrosomal 
membrane and acrosomal matrix.38,57 Therefore, 
its existence as revealed by LC–MS/MS in 
the HMW complexes might reflect these 
previous findings. The question relevant to the 
physiology of sperm–ZP interaction, however, 
remains: are acrosomal proteins present in the 
APM HMW complexes exposed on the sperm 
head surface, so that they can bind to the ZP? 
Our immunofluorescence and flow cytometry 
of ZAN on intact pig sperm indeed revealed 
that ZAN was not present on the head surface 
in the majority of spermatozoa resuspended 
in medium that did not support capacitation. 
However, the percentage of sperm that were 
positively labeled with anti‑ZAN increased 
when sperm were incubated in capacitating 
medium  (containing albumin, bicarbonate, 
and CaCl2) for 30 min (Figure 2a). In addition, 
the immunofluorescence intensity of ZAN 
increased in these spermatozoa. Both the 
percentage of anti‑ZAN labeled sperm and the 
immunofluorescence intensity peaked at 60 min 
incubation in capacitating medium (Figure 2b). 
However, most spermatozoa  (≥80%) were 
still acrosome‑intact as shown by the binding 
of FITC‑labeled Pisum sativum agglutinin 
to their acrosomal matrix  (Figure  2b). 
Corroborating this result is the observation 
that ZAN remained in the acrosome of 
nitrogen‑cavitated spermatozoa with a much 
higher level of immunofluorescence intensity 
than that present on the head surface of 
the corresponding Cap acrosome‑intact 
sperm (Figure 2c). All of these results indicate 
that a fraction of ZAN is transported from the 
acrosome to the sperm head surface during 
capacitation. Immunofluorescence and flow 
cytometry of proacrosin/acrosin show the 
same trend as ZAN in terms of their transport 
to the sperm head surface.93 However, the 
transportation of ACRBP (sp32) to the sperm 
head surface appeared to be much earlier than 
that of ZAN and proacrosin/acrosin. ACRBP 
was present on the head surface of almost all 
Noncap spermatozoa and this distribution 
remained the same when sperm were 
incubated in capacitating medium, although 
the intensity of the immunofluorescence 
increased slightly. ACRBP possesses a specific 
affinity to proacrosin  (53  kDa) but not 
to the intermediate and mature forms of 

Figure 1a, right panel). As expected, LC–MS/
MS revealed that proteins known for their 
affinity for the ZP scored the highest for the 
spectral counts in all three complexes and 
the amounts of most of these proteins were 
higher in Cap HMW complexes (Figure 1d). 
Interestingly, ZAN had the highest spectral 
counts in the three complexes. This finding 
was in contrast to the LC–MS/MS results of 
the whole APM vesicle extracts where SED1 
scored the highest in spectral counts and 
ZAN the lowest in the protein category of 
sperm–egg interaction (Table 1). The presence 
of ZAN in Complexes I, II and III was 
confirmed by immunoblotting  (Figure  1b). 
The anti‑ZAN reactive bands in the three 
complexes corresponded to the pig ZP3 

Figure 1: (a) Left panel: Presence of HMW complexes in pig APM vesicles as shown by blue native 
gel electrophoresis/silver staining; Right panel: Far western blotting showing the binding of Complex 
I (1000-1300 kDa), Complex II (850-1000 kDa) and Complex III (750-850 kDa) to biotinylated 
pig ZP3 (sperm receptor). (b) Immunoblotting of Cap sperm APM proteins separated by blue native 
gel electrophoresis, showing zonadhesin bands in the three Complexes with patterns similar to 
the far western bands of ZP3 binding. (c) Preincubation of APM Complexes with anti-zonadhesin 
(anti-ZAN) IgG inhibits the Complex binding to ZP3 in a dose dependent manner. (d) Identity 
and spectral counts of proteins in the three HMW Complexes. For experimental details of results 
described throughout this article, see Kongmanas et al.93. All figures shown in this review are also 
adapted from this article.
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As with ACRBP, the presence of SED1 
before and after capacitation was of similar 
pattern and intensity (Figure 2d). This result 
is not surprising, because SED1 is secreted 
by epididymal epithelial cells into the lumen 
and is deposited onto the sperm head surface 
during passage through the epididymis.43 
The absence of SED1 in the acrosome of 
nitrogen cavitated sperm supports the idea 
that SED1 is acquired externally during 
epididymal maturation. The ZP affinity of 
SED1 would contribute to the baseline ZP 

interactions by HMW complexes of Noncap 
sperm (Figure 1a).

Zonadhesin is  a  mosaic  protein 
comprising a number of cell adhesion‑related 
domains (MAM, mucin, and von Willebrand 
factor D [VWF D]) (Figure 3a). It is synthesized 
in spermatids as a precursor protein and then 
processed to mature forms p45 and p105, 
present in mature spermatozoa.37 Both p45 
and p105 still contain VWF D domains: VWF 
D1 + D2 in p45 and VWF D2 + D3 + D4 in 
p105. These VWF D domains are likely the basis 

acrosin  (43 and 35 kDa, respectively). All of 
these proacrosin/acrosin forms are present in 
Noncap and Cap spermatozoa. Therefore, the 
overall results suggest that ACRBP targets to the 
head surface of Noncap sperm independently 
of proacrosin. While the transport of ZAN and 
proacrosin (both with known ZP affinity) to the 
APM region of Cap sperm is likely beneficial for 
interaction with the ZP, the benefit of having 
ACRBP is still a matter of investigation. To date, 
direct affinity of ACRBP for the ZP has not been 
demonstrated.

Figure 2: (a and b) Zan targets to the pig sperm head surface during incubation in capacitating medium. (a) Merged immunofluorescence (panels a–d) and phase 
contrast (panels g–j) images are shown in the left column, whereas the corresponding flow cytometry histograms are shown on the right. Spermatozoa were incubated 
in capacitating medium for 30 and 60 min. (b) Kinetics of the numbers of sperm with ZAN on the head surface is shown as the function of capacitation time, 
together with the population of acrosome reacted sperm (negatively stained with PSA). (c) Immunofluorescence and flow cytometry indicating that only a fraction 
of ZAN was targeted to the sperm surface and that most of the protein remained in the acrosome of nitrogen cavitated sperm. (d) Immunofluorescence of SED1 
(MFGM) on spermatozoa before and after nitrogen cavitation. Results indicate the same fluorescence pattern/intensity of SED1 in Noncap and Cap sperm and the 
absence of the protein in the acrosome of nitrogen-cavitated gametes. Zan: zonadhesin; Noncap: noncapacitated; Cap: capacitated; PSA: pisum sativum agglutinin.
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soluble fraction of these complexes can be 
secreted upon the rise of [Ca2+]i, intracellular 
cAMP levels and pHi.

95 All of these stimulations 
take place as part of physiological changes 
during sperm capacitation,96,97 which might 
possibly trigger the traffic of ZAN to the sperm 
APM. In addition, the roles of TCP‑1 subunits in 
chaperoning ZAN and other acrosomal proteins 
to the sperm head surface cannot be ruled out.

SUMMARY AND PERSPECTIVES FOR 
OUR FINDINGS
While pig APM vesicles comprise a number 
of ZP binding proteins and chaperones, 
only some of these proteins interact with 
each other to form HMW complexes. ZAN, 
SED1, proacrosin/acrosin, ACRBP, SP10 
and ZPBP1 are the set of proteins in HMW 
complexes, which are known to be relevant in 

for the ZP affinity of p45 + p105, as well as their 
multimerization and interactions with other 
proteins.37,38 Even on SDS–PAGE, HMW forms 
of Zan (300–500 kDa and higher) are present 
along with p45 and p105 mature forms,37 
a result that corroborates the presence of ZAN 
using blue native gel electrophoresis (Figure 1). 
With this molecular adhesion property, ZAN 
might interact with other acrosomal proteins, 
scaffolding them as HMW complexes for 
transport to the sperm APM. In fact, our 
immunoprecipitation results using anti‑ZAN 
IgG captured on paramagnetic beads93 indicated 
that ZAN interacts with proacrosin/acrosin 
and ACRBP in the APM extracts (Figure 3). 
However, it is still unclear whether ZAN 
interacts directly with ACRBP or through the 
association of ACRBP with proacrosin. On 
the other hand, ZAN does not interact with 
SED1 (Figure 3). This result is not surprising 
considering that ZAN and SED1 on the sperm 
surface originate from different sources: 
ZAN from the acrosome, and SED1 from the 
epididymal lumen. Regardless, the interaction 
among the three acrosomal proteins  (ZAN, 
proacrosin/acrosin and ACRBP) would form 
a basis for their co‑existence in the APM 
complexes, and transportation of a fraction 
of them to the sperm APM region during 
capacitation would partially account for the 
increased amount in isolated APM vesicles in 
Cap sperm and the higher ZP binding affinity 
of the Cap gametes. A better understanding of 
the capacitation process should be gained by 
unraveling the mechanisms of how ZAN moves 
to the sperm APM site. ZAN should be the focus 
in such a protein transport study because it is the 
main component of the APM HMW complexes 
with ZP affinity, and transport of ZAN to the 
sperm head surface is observed in mouse 
spermatozoa during capacitation.65 Notably, 
VWF is known to form multimeric complexes, 
which are stored intracellularly. However, a 

Figure 4: Proposed model of the involvement of acrosomal proteins in sperm–ZP interaction. During 
capacitation, a fraction of acrosomal proteins with ZP affinity traffics to the anterior sperm head surface as 
part of the initiation of acrosomal exocytosis. This endows the ability of Cap sperm to start binding to the 
ZP. Acrosomal exocytosis continues on the ZP with dispersion of the acrosomal matrix. The same acrosomal 
proteins in the matrix then contribute to the anchoring of acrosome reacting sperm to the ZP. Key: PM: 
plasma membrane; OAM: outer acrosomal membrane; IAM: inner acrosomal membrane; ZP: zona pellucida.

Figure 3: (a) Structural domains of ZAN (adapted from Bi et al.38 and Herlyn and Zischler.98  (b) Immunoprecipitation of APM proteins with anti‑ZAN IgG 
captured on Protein G paramagnetic beads93.  Input = whole APM protein extracts; Elute = APM proteins bound to anti‑ZAN beads. Results indicate interaction 
among ZAN, proacrosin/acrosin (ACRO) and ACRBP but not SED1 (MFGM). ZAN: zonadhesin; APM: anterior head plasma membrane.
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