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Abstract

The sleep onset process (SOP) is a dynamic process correlated with a multitude of behavioral and physiological markers. A
principled analysis of the SOP can serve as a foundation for answering questions of fundamental importance in basic
neuroscience and sleep medicine. Unfortunately, current methods for analyzing the SOP fail to account for the
overwhelming evidence that the wake/sleep transition is governed by continuous, dynamic physiological processes.
Instead, current practices coarsely discretize sleep both in terms of state, where it is viewed as a binary (wake or sleep)
process, and in time, where it is viewed as a single time point derived from subjectively scored stages in 30-second epochs,
effectively eliminating SOP dynamics from the analysis. These methods also fail to integrate information from both
behavioral and physiological data. It is thus imperative to resolve the mismatch between the physiological evidence and
analysis methodologies. In this paper, we develop a statistically and physiologically principled dynamic framework and
empirical SOP model, combining simultaneously-recorded physiological measurements with behavioral data from a novel
breathing task requiring no arousing external sensory stimuli. We fit the model using data from healthy subjects, and
estimate the instantaneous probability that a subject is awake during the SOP. The model successfully tracked physiological
and behavioral dynamics for individual nights, and significantly outperformed the instantaneous transition models implicit
in clinical definitions of sleep onset. Our framework also provides a principled means for cross-subject data alignment as a
function of wake probability, allowing us to characterize and compare SOP dynamics across different populations. This
analysis enabled us to quantitatively compare the EEG of subjects showing reduced alpha power with the remaining
subjects at identical response probabilities. Thus, by incorporating both physiological and behavioral dynamics into our
model framework, the dynamics of our analyses can finally match those observed during the SOP.
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Introduction

Scientists have long noted that the sleep onset process (SOP), the

gradual transition between wakefulness and sleep, is marked by a

dynamic continuum of behavioral and physiological changes [1].

Consequently, the ability to understand and provide a principled

characterization of SOP dynamics in both healthy and patholog-

ical subjects is of fundamental importance for sleep medicine and

basic neuroscience alike. In sleep disorders such as insomnia,

which has been associated with increased morbidity and mortality

[2], the time course of the wake/sleep transition may be

pathologically protracted, resulting in difficulty falling asleep. In

disorders of excessive sleepiness, such as narcolepsy or sleep

deprivation, the wake/sleep transition occurs too rapidly, resulting

in difficulty staying awake, with implications for performance and

safety. While there is increasing recognition of the importance of

objective sleep testing, there currently exist no quantitative metrics

for clinically diagnosing insomnia, which is currently defined

exclusively by patient self-report [3]. Hypersomnia, in contrast, is

typically defined using a multiple sleep latency test (MSLT) [4], a

labor-intensive diagnostic involving multiple nap periods, all of

which must be visually scored by technicians. Given the

importance of sleep onset dynamics, the ability to track the

continuous dynamical properties of the SOP in a principled,

automated manner could provide critical insight into the

pathophysiology of these populations, aiding in both diagnosis

and in treatment.

While the wake/sleep transition has been shown to be

continuous and dynamic in every physiological and behavioral

system studied thus far [1], current clinical and research practices

unfortunately employ methodologies that essentially ignore these

dynamics. This is because these analyses still rely on time-

consuming, subjective discretization of the sleep process, per-

formed by technicians who visually score the sleep time-series data
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in 30-second epochs according to semantically-defined sleep stages

[5]. These scoring standards grossly oversimplify sleep dynamics

by discretizing the data in both time (by using fixed, non-

overlapping epochs) and state (by using discrete sleep stages).

Current SOP analysis discretizes the data even further by

reducing the complex, dynamic interplay of neural systems and

behavior to a single ‘‘point of sleep onset’’ using semantic criteria.

Most notably, the American Academy of Sleep Medicine (AASM),

defines sleep onset as the first appearance of any 30-second epoch

that contains at least 15 seconds of sleep [5]. By defining a single

point of sleep onset, these analyses impose a binary model on the

SOP, in which in which the transition from wake to sleep occurs

instantaneously at a particular moment in time. This non-

physiological transition effectively removes all temporal dynamics,

and thus severely limits the degree to which these methods can

successfully characterize and diagnose pathologies of sleep onset.

Therefore, no matter how sophisticated experimental exploration

of the SOP becomes, it will always be limited by the coarse way in

which dynamics are described in the analyses.

Additionally, current experimental analysis of the SOP does not

consider behavioral dynamics in conjunction with the physiology,

and clinical sleep medicine does not record behavior at all. A

reason for this may be the fact that behavioral and physiological

dynamics can evolve at different time scales, which would be

difficult to characterize using traditional staging methods. It is

therefore essential to employ techniques that can fully capture the

dynamics of both the physiology and behavior in a principled and

integrated manner.

While powerful techniques for statistical modeling of dynamic

processes have been widely available for several decades [6], they

have yet to be adopted in sleep medicine, nor used to characterize

the multimodal dynamics of sleep. The absence of appropriate

statistical paradigms for analyzing sleep dynamics is a fundamental

impediment to progress in sleep medicine. Development of such

statistical methods could have tremendous scientific and clinical

impact. In this paper, we propose a dynamic state-space model

framework for the characterization of simultaneously observed

behavioral and physiological dynamics during the SOP. In doing

so, we create a robust quantitative representation of SOP

dynamics that can be used to more accurately and more precisely

track the gradual transition from wakefulness to sleep. We use a

fully Bayesian framework that facilitates flexible and rigorous

statistical inferences, including comparison of SOP in different

patient populations. We apply this method to data from healthy

subjects, demonstrating the features of the method and providing a

point of comparison for future studies of sleep pathologies.

Defining Sleep Onset: Previous Behavioral and
Physiological Metrics

There have been numerous ways in which scientists have

attempted to measure behavioral and physiological dynamics

during the SOP. For an in-depth look at the methods employed in

the past, see Ogilvie’s review paper [1], which comprehensively

details the many multimodal correlates of sleep onset and the

experimental strategies employed in characterizing them.

Ogilvie divides behavioral metrics of sleep onset into categories

of active and passive behavioral measurement. Active metrics

involve tasks with repeated externally-generated probes for

wakefulness, each of which prompts the subject for a physical

response via button press or verbal response. Additionally,

response via cued respiration has been used for experimental

and interventional behavioral paradigms [7,8]. These active

probes could include subjective queries [9–11], or auditory [12–

14] and vibratory [15] stimuli. Use of a psychomotor vigilance task

(PVT) derived metric [16] has also been proposed. Active methods

are useful, as repeated trials yield multiple measurements of

wakefulness across the entire SOP, which can be used to

characterize SOP dynamics. Moreover, multiple measurements

provide statistical power for descriptive and comparative data

analyses. These active measurement schemes, however, have all

required the use of external stimuli that are potentially arousing

and can disrupt sleep [17–19]. It has therefore been a question of

balancing the trade-off between stimulus salience and the degree

to which the SOP is perturbed.

Passive behavioral methods for measuring the SOP include

actigraphy [17,20,21], continuous pressure (dead man’s switch)

systems [22], or a finger tapping task [19]. Actigraphy is the most

prevalent form of passive measurement, and has recently been

brought to popular attention through home sleep tracking

applications for mobile devices [17,21]. Since actigraphy works

under the assumption that behavioral quiescence in the absence of

a task indicates sleep, it cannot distinguish between wakeful

motionlessness during the SOP and actual sleep, and thus is not

precise enough to describe sleep onset [1]. Passive paradigms

involving the use of a ‘‘dead man’s switch’’ or finger tapping task

compress all SOP dynamics into a single data point by defining

sleep onset as the moment at which behavior ceases, and thus tend

to underestimate sleep latency [1].

While both active and passive behavioral metrics show general

correlation with features of the SOP dynamics, neither is without

issue. Therefore, an important goal is to search for a behavioral

task that features multiple highly-salient trials (as with the active

metrics), yet minimizes arousing external stimuli (as with the

passive metrics).

As sleep is a neural process, direct observation of brain activity

has been the primary means of tracking the SOP. The most

obvious changes to the EEG during the SOP are a progressive

decrease in alpha (8–12 Hz) power, as well as a progressive

increase in slow (,1 Hz), delta (.5–5 Hz), and theta (5–8 Hz)

power [1,23–26]. Recent intracranial recording studies suggest

that this progression of EEG activity relates to changes in thalamic

Author Summary

How can we tell when someone has fallen asleep?
Understanding the way we fall asleep is an important
problem in sleep medicine, since sleep disorders can
disrupt the process of falling asleep. In the case of
insomnia, subjects may fall asleep too slowly, whereas
during sleep deprivation or narcolepsy, subjects fall asleep
too quickly. Current methods for tracking the wake/sleep
transition are time-consuming, subjective, and simplify the
sleep onset process in a way that severely limits the
accuracy, power, and scope of any resulting clinical
metrics. In this paper, we describe a new physiologically
principled method that dynamically combines information
from brainwaves, muscle activity, and a novel minimally-
disruptive behavioral task, to automatically create a
continuous dynamic characterization of a person’s state
of wakefulness. We apply this method to a cohort of
healthy subjects, successfully tracking the changes in
wakefulness as the subjects fall asleep. This analysis reveals
and statistically quantifies a subset of subjects who still
respond to behavioral stimuli even though their brain
would appear to be asleep by clinical measures. By
developing an automated tool to precisely track the
wake/sleep transition, we can better characterize and
diagnose sleep disorders, and more precisely measure the
effect of sleep medications.

Tracking the Sleep Onset Process
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activity that occur prior to changes in cortical activity, the timing

of which has high variability between subjects [27].

Ideally, any descriptor of sleep must account for the fact that it is

a complex neural process consisting of multiple local [28–30] and

spatiotemporally-evolving [23,31–35] factors. In practice, neural

activity is characterized through through polysomnography

(PSG)—the visual analysis of brain (EEG), muscle (EMG), muscle

(ECG), cardiac (EOG), and respiration (PTAF/Airflow) data. In

current clinical practice, sleep EEG is visually scored using the

Rechtschaffen and Kales (R&K) system [24], comprised of Wake,

Stage 1–3 NREM sleep, and REM, defined in 30-second epochs.

Researchers such as Chiappa [36] and Hori [37] found that the

R&K system was too coarse to properly track the SOP dynamics,

and consequently developed alternative scoring systems with many

more stages, which were scored in much smaller epochs.

Unfortunately, neither of these higher resolution frameworks

enjoyed wide implementation, perhaps due to labor-intensive

scoring rules. Additionally, existing scoring systems do not

explicitly account for heterogeneity observed in normal patients

as well as variability associated with age, medications, or

neurological disorders [38–40].

Overall, current practice views the SOP in a binary semantic

framework, and analyzes behavioral and physiological data

independently. In this paper, we place the SOP within a

physiologically and statistically principled model framework,

which allows us to explicitly characterize the dynamic interaction

of multiple physiological and behavioral experimental observa-

tions. Specifically, given the behavioral task and our experimental

setup, we simultaneously acquired three modalities of observations

related to sleep initiation: behavioral responses, EMG activity, and

EEG spectral power. These observation types each contribute

information across multiple time scales about different compo-

nents of a subject’s neural state. By combining the information

from of all of these different types of observations, we can create a

more robust and principled estimate of wakefulness during the

process of sleep initiation that takes advantage of both behavioral

and physiological data.

Results

A Novel Breathing-Based Behavioral Task to Track the
Sleep Onset Process

In order to track the course of sleep initiation, our goal is to

create a continuous-valued metric of wakefulness that is based on

simultaneously observed data from multiple modalities, and for

which statistical confidence can be computed. To do so, we must

create a task that consists of multiple objective behavioral

observations related to wakefulness, which can be tracked across

the sleep initiation process. Standard behavioral response tasks

that have been used previously, involving external audio, visual, or

tactile stimuli, are potentially arousing and may perturb sleep

initiation [17–19,41]. We therefore require a paradigm free of

arousing external stimuli, yet with repeated trials that can persist

throughout the sleep initiation process. To solve this problem, we

designed a self-regulated behavioral task centering on breathing.

Subjects were given a small, 2oz, gel-filled stress ball to hold in

their dominant hand. They were instructed to breathe normally

with eyes closed, and to gently squeeze the ball on each inhale and

release on each exhale. Thus, each breath acts as a stimulus, and

each corresponding squeeze (or lack thereof) is the corresponding

response. A correct response is defined as squeeze centered on a

respiratory inhale, and an incorrect response is either a lack of

response or an incorrectly timed squeeze. Subjects were instructed

to start the task as soon as the lights were turned out.

An additional bipolar adhesive EMG sensor recorded activity of

the flexor digitorum profundus (FDP) responsible for finger

flexion. Subjects also were fit with a glove designed with a force

sensitive resistor (FSR) embedded in the middle finger, to measure

finger flexion during the behavioral task (Fig. 1a). Both the glove

and FDP EMG sensors detect even gentle squeezes (on the order

of the force required for a mouse click), thereby allowing subjects

to perform the task with minimal effort or muscle fatigue.

The traces from the glove and FDP EMG were time-aligned

with simultaneously recorded PSG respiratory metrics (PTAF,

airflow, and abdominal belt) (Fig. 1b,c). These recordings were

then visually scored in the following manner: The apex of each

respiratory inhale was considered a trial. If a squeeze (visually

scored using the EMG/glove activity) was present during an inhale

(visually scored using the PTAF, airflow, and abdominal belt), the

trial was scored as correct (Fig. 1b, green regions). If there was no

visible response or a misaligned squeeze, the trial was scored as

incorrect (Fig. 1b, red regions). Periods including motion artifacts,

signal degradation due to temporary sensor disconnection, or any

other uncertainties in the signal were left unscored and treated as

missing data in subsequent analyses. Scoring was started at the first

sequence of trials following lights out that began with at least 3

consecutive correct responses. Scoring was stopped 10 minutes

following the last correct response. Some subjects reported

difficulty performing the task while they adjusted to wearing the

full EEG/EMG/PSG montage. After excluding data from four

nights with poor task compliance due to difficulty habituating to

the extensive sensor montage, the remaining 16 nights from 9

subjects were processed using our algorithm. A wake probability

curve was generated for each night.

Simultaneous Observations Provide a Robust Framework
for Tracking the Sleep Onset Process

Along with each behavioral response, we simultaneously

observed the EMG activity in the FDP muscle—including the

amplitude of each squeeze accompanying a correct response

(Fig. 1d). To measure the magnitude of the squeeze, we computed

the amplitude envelope of the EMG using a Hilbert transform,

then calculated the mean amplitude in a 1 second window

centered around the trial time. In tracking EMG data over the

course of the SOP, we see that, like a continuous measurement of

the muscle activity during a dead man’s switch paradigm [1] the

EMG squeeze amplitudes decay until the correct responses stop

entirely (Fig. 1d, bottom panel). Thus, the EMG squeeze

amplitudes provide a continuous-valued metric of both muscle

tone and of wakefulness.

Paired with the behavioral task, we simultaneously recorded

EEG data from each of the subjects. For our analysis, we chose to

focus on the most straightforward, continuous correlates of sleep in

the EEG: the power in delta, theta, and alpha bands. The power

in these bands contributes information about different neurophys-

iological systems in play during the SOP.

With all these sources of information, we can devise a method

for integrating them into a single, statistically principled model of

wakefulness during the SOP.

An Empirical Wake Probability Model of Sleep Onset
Process Dynamics

Our modeling approach centers on the idea that the EMG,

EEG, and behavioral observations each provide information

related to the activity of different physiological systems involved in

different aspects of the SOP. By integrating the information across

these systems, we can create a robust framework for tracking the

Tracking the Sleep Onset Process
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dynamic changes in a subject’s wakefulness as they fall asleep. In

this section, we provide a non-technical summary of our modeling

methodology and its rationale. We describe the mathematical

formulation of our approach in detail in the Materials and
Methods section, Formulation of the Wake Probability Model of the
Sleep Onset Process.

We model sleep onset dynamics relative to the observed

behavioral, EEG, and EMG data. Our wake probability model
states that as the SOP progresses from wake to sleep:

N Probability of a correct behavioral response decreases

N EMG squeeze amplitude decreases

N Alpha power decreases

N Theta power increases

N Delta power increases

A schematic of this model is shown in Figure 2A.

In our model, we define the wake probability Pr(Wake) as the

distribution of the posterior probability (the probability of the

model given the observed data) that the conditions necessary for

the wake state are met: the subject is responding correctly, the

EMG amplitude and alpha power are at their highest, and delta

power and theta power are at their lowest. Therefore, as these

conditions are met, the mode of Pr(Wake) approaches 1. This

allows us to use Pr(Wake) as a metric representing the degree to

which we believe the subject is awake. Moreover, we have

formulated Pr(Wake) so that it also represents the distribution of

the instantaneous probability a correct behavioral response, and

Figure 1. Tracking the sleep onset process with a behavioral task mediated by breathing. (A) In addition to a high-density EEG cap and
standard PSG sensor array, subjects were fitted with a force-sensing glove, bipolar EMG electrodes on their flexor digitorum profundus (FDP), and a
small gel-filled stress ball. Subjects were instructed to breathe normally with eyes closed as they fell asleep, and to gently squeeze the stress ball on
each inhale, releasing it on each exhale. (B) Times at which a squeeze was aligned with a corresponding inhale were scored as correct trials (green
regions). Times with an inhale and no squeeze (or a misaligned squeeze) were scored as incorrect trials. (C) By scoring this task across the sleep
initiation period, we can track behavioral dynamics during the transition from wake to sleep, without using any external task stimuli that could
produce arousal. (D) EMG amplitude during squeezes decays during the SOP. Over the course of the experiment, the FDP traces (top panel) were
processed to extract the median amplitudes of each squeeze (bottom panel), which can be used as a correlate of wakefulness during the SOP.
doi:10.1371/journal.pcbi.1003866.g001
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thus directly interpretable in terms of standard behavioral

paradigms. The wake probability model can be fit to experimental

EEG, EMG, and behavioral data to track Pr(Wake)over time. We

call the time-varying estimate of Pr(Wake) the wake probability
curve. We describe wake probability in the Materials and Methods
section, Interpreting Wake Probability.

To implement this approach, we use a Bayesian state-space

modeling framework [6,42–44] (Fig. 2B). State-space modeling

allows us to estimate something that is not directly observable (in

this case, the probability of the subject being awake) from

observations that can be directly measured (in this case, the EEG,

EMG, and behavioral data). We first model the observations as a

function of state processes that represent, in abstract, the level of

activity in each of these systems (see Materials and Methods, State
Models). These state processes are not directly observable, but

their values can be inferred from the data given the structure of the

model. We create three state processes: a motor activity process

state xm, an alpha process state xa, and a delta-theta process state

xDh. For each of the state processes, we define a state equation,

which describes the way the states evolve over time. The state

equations are designed to reflect the notion that states cannot

change instantaneously, and that they are related to their past

values.

The motor activity process xm represents the degree of

wakefulness estimated from the amplitude of the EMG during

the behavioral task (Fig. 1d). As the subject becomes drowsy, the

force of the squeezes will decrease and eventually revert to the

underlying muscle tone.

The alpha process xa represents the degree of wakefulness

estimated from the spectral power in the EEG alpha band. As the

subject falls asleep, the alpha power will decrease. If the subject

awakens, the alpha will return (subjects are told to maintain eyes

closed).

In our model, the delta-theta process xDh represents the degree

of wakefulness estimated from the spectral power in the EEG delta

and theta bands. As the subject enters NREM sleep, the delta and

theta will increase. If the subject awakens, the power in delta and

theta will rapidly decrease.

Each of the state processes can change independently, reflecting

the asynchronous dynamics of the cortical and subcortical systems

generating these EEG rhythms throughout the SOP. We

formulate our model of wake probability to be a function of the

linear combination of the three states such that xm and xa have a

direct relationship to Pr(Wake), while xDh will have an inverse

relationship to Pr(Wake).

We next define the observation equations (Fig. 2A), which describe

mathematically the relationship between the experimental observa-

tions (EMG, alpha, delta, theta, and binary responses) and the

underlying state processes (see Materials and Methods, Observation
Models). Each observation equation is constructed so that the value of

the state process is high when the data indicates high activity, and low

when the data indicates low activity. We also define an observation

equation relating behavioral response to wakefulness, such that

response probability is directly proportional to Pr(Wake).

Together, the state and observations define a framework

relating our experimental observations to the underlying behav-

ioral and physiological processes, and provide an explicit model

for how the aggregate activity of these processes relates to changes

in behavior.

Using the state and observation equations together with the

data, we simultaneously estimate the hidden states and model

parameters at each time, using a particle filter, which is a Bayesian

sequential importance resampling method (see Supplementary
Materials, Particle Filter). The particle filter evaluates all the data

observations in context with model equations and computes the

maximum-likelihood state and parameter values. The particle

filter output is an estimate the full distribution of the posterior

probability of the wake probability model, given the observed

EEG, EMG, and behavioral data.

In summary, our approach takes basic assumptions about the

way experimental data evolves during the SOP and explicitly

models them in a state-space framework. From this model, we can

estimate the wake probability curve, which tracks the dynamics of

the SOP by integrating simultaneously observed behavioral and

physiological data. Thus, our method provides a robust, statisti-

cally-principled, and physiologically-motivated method for char-

acterizing SOP.

Comparing SOP Dynamics for Subjects and Populations
Since subjects fall asleep at different rates with different

dynamics, comparing physiological activity between subjects

and populations has been a difficult problem. As a result,

previous studies have been limited to anecdotal analyses or static

statistical analysis using categorical bins for data. Fortunately,

the wake probability now allows us to compare the SOP of

different subjects in a principled manner. This is because the

value of Pr(Wake) provides a common point of wakefulness for

the alignment of the physiological data across subjects. To

characterize the population dynamics of the EEG during the

SOP, we estimated the EEG spectrum of the population as a

function of Pr(Wake). Specifically we calculated the median

spectrum over all subjects and nights at each value of Pr(Wake).

We considered values of Pr(Wake) in discrete bins of width

0.0025 between 0 and 1. We then plotted this group-level

spectrum as a function of Pr(Wake). The result is a visualization

that looks like a spectrogram, but displays median population

spectral power as a function of frequency and Pr(Wake), rather

than frequency and time. We refer to this plot as the SOP
population spectrogram. Since Pr(Wake) also represents response

probability, this analysis therefore characterizes the average

EEG spectrum dynamics during the SOP as the behavioral

response probability declines during the transition from

wakefulness to sleep.

The SOP population spectrogram allows us to summarize an

SOP phenotype for a given population of subjects. Furthermore,

we can characterize the difference in the SOP phenotype of two

populations by comparing their population spectrograms. To do

so, we performed a bootstrap procedure [45,46] to compute the

difference distribution for each frequency-Pr(Wake) bin using

10,000 iterations per bin. A frequence 6Pr(Wake) bin was said to

be significantly different between populations if zero fell outside

the 2.5th and 97.5th percentiles of the difference distribution.

Figure 2. A data-driven model of sleep onset process dynamics. (A) As the SOP progresses, Pr(Wake), the probability that the subject is
awake, decreases. As Pr(Wake) decreases, the probability of a correct behavioral response, the EMG squeeze amplitude, and the alpha power will also
decrease, while the delta and theta power will increase. (B) We can then use experimental data to estimate Pr(Wake) over time. We define state
processes representing the activity of the systems underlying the motor, alpha power, and delta-theta power observations. The combined
information from all states represents the level of all activity related to waking, and is used along with the behavioral task responses to estimate the
wake probability curve, which tracks Pr(Wake) over time.
doi:10.1371/journal.pcbi.1003866.g002
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The procedure for constructing an SOP population spectro-

gram is described in detail in the Materials and Methods section,

Computing SOP Population Spectrograms.

Goodness-of-Fit
Since wake probability is a useful abstract quantity not directly

observable during the SOP, standard analyses of measurement

error are not possible, as there is no ground truth against which

Pr(Wake)can be compared. Instead, we can perform a likelihood

analysis to assess how well a particular model of the SOP of

describes the behavioral task data. We used Bayesian Monte Carlo

procedures to compute the likelihood of a given model as well as

compare the likelihoods of two competing models. These

procedures are described in detail in the Supplementary Materials
section, Bayesian Goodness-of-Fit.

Clinically, the SOP is typically characterized by hypnogram-

based definitions of a single moment of sleep onset. By definition,

any characterization of a ‘‘sleep onset point’’ cleaves SOP

dynamics into a unitary wake state prior to the sleep onset point

and a unitary sleep following that point. Thus, while never stated

outright, any definition of a sleep onset point imposes an

instantaneous transition model on the SOP. Since these models

assume an instantaneous wake/sleep transition, it follows that they

also assume an instantaneous change in behavioral task perfor-

mance. We can therefore construct a probability curve analogous

to the wake probability curve for any instantaneous transition

model by conservatively assuming that the subject should respond

correctly with significance (95% accuracy) when deemed awake,

and incorrectly with significance (5% accuracy) when deemed

asleep. We can then compare these curves to the wake probability

curve in order to assess the relative goodness-of-fit. The specifics of

the Bayesian construction are also detailed in the Models section.

To perform the goodness-of-fit analysis, we computed the

likelihood distributions for the wake probability model and four

different instantaneous transition models using the behavioral data

across all subjects for all nights. We then computed the confidence

(Bayesian credible interval) with which the wake probability model

likelihood differed from that of each instantaneous transition

model. Since the wake probability model incorporates information

from the behavioral data, we used the posterior distribution from

the time step prior to the behavioral observation in all of the

goodness-of-fit analyses to insure that use of true behavioral

response in the wake probability model formulation did not

unfairly affect the results.

Modeling the Dynamics of Behavioral and Physiological
Observations during Sleep Onset Process

In our model of the SOP, a subject’s probability of wakefulness

is based the combined information from both behavioral and

physiological observations. Figure 3 shows an example of the

model fit to data from one of our experimental subjects. The wake

probability curve (Fig. 3B) is estimated using information from

both behavioral and physiological data (Fig. 3A, EMG: black dots,

alpha, delta, theta power: black curves), and therefore integrates

features of both modalities. This is most clearly demonstrated by

comparing the wake probability curve with the corresponding raw

data (Fig. 3A), EEG spectrogram (Fig. 3C), and clinical hypno-

gram (Fig. 3D).

The behavioral data starts with a train of correct responses

while the subject is awake with eyes closed. This period is followed

by increasing numbers of incorrect responses, which coalesce into

a train of incorrect responses. Correspondingly, the EEG data

transitions from a pattern with a strong alpha oscillation and

minimal delta or theta during high wakefulness, to a pattern with

intermittent alpha and rising energy in delta and theta bands.

Eventually, the EEG is dominated by delta and theta power, and

the alpha oscillation disappears. During the SOP, we observe the

alpha power decreasing in a sigmoidal fashion, and the delta and

theta power increasing in a sigmoidal fashion. The EMG

amplitude decays exponentially at first, followed by a sigmoidal

trajectory. These trajectories are in line with our model

observation equations, depicted in (Fig. 2A). Consequently, the

model estimates (Fig. 3A, colored curves and regions) track the

raw data (black) closely.

The structure of the wake probability curve (Fig. 3B) appears to

successfully integrate features of the behavioral and physiological

observations. For roughly the first 13 minutes of the SOP, the

wake probability curve is close to 1, with a narrow confidence

interval. This agrees with large number of correct behavioral

responses, strong alpha mode in the spectrogram, and hypnogram

score of wake. Shortly after 13 minutes into the SOP, the

probability curve fluctuates several times before settling into a low

Pr(Wake) median at around 17 minutes. After 17 minutes, the

behavioral responses are exclusively incorrect, the EEG alpha

power has dropped out, there is a sharp rise in delta and theta

power, and Pr(Wake) is low. Moreover, the rise in Pr(Wake)

between 21 and 22 minutes aligns directly with the hypnogram,

which goes from Stage 2 to Stage 1 and back during the same

interval.

The Wake Probability Model Tracks the Dynamic
Transition between Wake and Sleep

By examining the transition period in this same subject in

greater detail, we can gain further insights into how the behavioral

and EEG data are combined to estimate the wake probability

curve. Figure 4 shows a close up of the data from Figure 3 on a

time scale of 6 minutes. This period begins with a string of 22

consecutive correct behavioral responses (Fig. 4B). Since correct

responses indicate wakefulness, this information pushes Pr(Wake)

towards 1. During the same time, however, the alpha power

(Fig. 4A) is sporadically present, supplying support that the subject

is more ambiguously awake (i.e., less than 1). Given our model,

low alpha and high delta-theta power pull Pr(Wake) towards 0.

While the behavioral responses are correct, loss of alpha power

indicates reduced wakefulness, resulting in a lowering of Pr(Wake)

and an increase in the uncertainty of the estimate (as indicated by

wider confidence bounds).

As the subject transitions through the SOP, the number of

incorrect responses increases, the alpha diminishes progressively,

and delta and theta appear and begin to coalesce into prominent

oscillations. This period is marked by an alternation between

alpha and delta/theta activity [12,26,32], and continues until the

alpha is gone, the delta/theta is high, and all the responses are

incorrect. Consequently, we see peaks in Pr(Wake) where there is

high alpha power, low delta/theta power, and correct responses,

and troughs in Pr(Wake) where the opposite is true. The

magnitude of these peaks and troughs are based on the degree

to which the aggregate data indicates that the subject is awake.

The confidence bounds are related to the degree to which all of the

data is in agreement. In comparison to the clinical hypnogram

(scored in 30 s epochs) (Fig. 4D), the wake probability curve

characterizes this transitional period of the SOP with a much

higher temporal resolution. Additionally, the wake probability

curve describes a continuum of wakefulness, whereas the

hypnogram discretizes this transitional period into three catego-

ries: Wake, Stage N1, and Stage N2 states.

The transition from wake to sleep can be fragmented—most

notably in patients suffering from difficulties with sleep initiation,
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but also in healthy people. Figure 5 shows data from the second

experimental night from the same subject shown in Figures 3 and

4. Rather than the smooth transition seen the first experimental

night, we observe that this night the subject had brief arousal

period in the middle of the SOP. The wake probability curve

captures both the slow transition from wake to sleep, as well as the

rapid changes in wakefulness during the arousal period.

As in the subject’s first night, the SOP begins with trains of

correct responses (Fig. 5B), a strong alpha mode, and low delta

and theta (Fig. 5A), which results a high Pr(Wake) (Fig. 5C). The

alpha mode then becomes sporadic, which coincides with an

increase in incorrect responses. Next, there is a train of consecutive

incorrect responses, the alpha mode disappears, and there is a

dramatic increase in the theta power and rising delta power.

Consequently, the median of Pr(Wake) drops towards 0.

Suddenly the correct responses begin again, the alpha mode

returns, and the delta and theta drop off. Given this information,

Pr(Wake) then ascends rapidly towards 1. After approximately 1

minute, the responses become exclusively incorrect, the alpha

power disappears. The delta and theta power rapidly return to

their pre-arousal levels, continuing to increase for the rest of the

SOP. The wake probability curve tracks the drop in Pr(Wake) and

the dynamics for the rest of the SOP. Again, the wake probability

curve structure agrees strongly with the structure of the

Figure 3. Fitting the model to experimental data during the course of sleep initiation. (A) The simultaneously observed EMG (black dots),
and EEG observations (black curves), and behavioral responses (green = correct, red = incorrect) from the experiment are used to estimate the wake
probability curve (B), which shows Pr(Wake), the probability of a correct response given the EEG and EMG data, over time. The wake probability curve
acts as a statistically principled means of tracking the dynamics sleep initiation, and agrees well with features of the EEG spectrogram (C), the clinical
hypnogram (D). In (A) the model estimates of the EMG and EEG mean (curves) and 95% confidence intervals (shaded regions) are shown (EMG: red,
alpha: cyan, theta: magenta, delta: green). For all state estimates, we compute the distribution medians (colored curves), and 95% confidence
intervals (shaded regions) of the model estimates.
doi:10.1371/journal.pcbi.1003866.g003

Figure 4. A close up of the sleep/wake transition period of the SOP from the same subject from Figure 3 illustrates the interplay of
the EEG and behavior during the SOP. The corresponding (A) spectrogram, (B) behavioral responses, (C) the wake probability curve, (D) and the
clinical hypnogram are shown. In (C), the distribution median (curve), and 95% confidence intervals (shaded region) are shown.
doi:10.1371/journal.pcbi.1003866.g004
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hypnogram (Fig. 5D), but provides greater temporal resolution

and finer granularity in the state estimate.

Characterizing Heterogeneity of Sleep Onset
Phenotypes: Alpha Dropout Prior to Cessation of
Behavioral Response

In the preceding illustrative examples, there is strong agreement

between the behavioral and physiological data. In practice,

however, there is neurophysiological heterogeneity observed—

even within healthy subjects—such that there is often a great

disparity between behavioral and physiological metrics of sleep

onset. In this section, we show how the wake probability curve

characterizes such situations.

Figure 6 shows the results from another healthy subject with a

dramatically different SOP phenotype. As in the previous case, the

experiment begins with a strong alpha oscillation, which eventu-

ally disappears (Fig. 6A). In this case, however, the correct

responses persist long after the alpha has diminished (Fig. 6A).

Moreover, there is a roughly 5-minute interval between the time

the alpha mode declines and the time the theta and delta power

increase.

This SOP alpha dropout phenotype with a long interval

between alpha power decline and delta/theta power rise results

in disagreement between standard sleep scoring and a

behavioral analysis. In this period between the loss of alpha

and loss of response, the hypnogram (Fig. 6D) describes the

subject as being predominantly in Stage N1, with a brief period

of Stage N2, and a short period of Wake when there is a short

increase in alpha. Thus a standard interpretation of the

hypnogram would place sleep onset at the first epoch of Stage

N1, approximately 3 minutes into the SOP. This is in contrast

to the behavioral data, which continues to indicate wakefulness

for another 5 minutes past the first epoch of Stage N1. The

wake probability curve (Fig. 6C), however, integrates all the

data such that the estimated median of Pr(Wake) is still high

during this period, declines slightly, and has a large uncertainty

as a result of the contradicting observations.

By combining both the behavioral and physiological data into

the estimate of Pr(Wake), we can bridge the disparity seen between

metrics that exclusively rely on ether behavior or EEG alone. The

result is a model that can represent deviation from the population

norm as increased uncertainty.

Figure 5. Tracking a fragmented SOP. A comparison of the (A) spectrogram, (B) behavioral responses, (C) the wake probability
curve, (D) and the clinical hypnogram. In (C), the distribution median (curve), and 95% confidence intervals (shaded region) are shown. The
probability of wakefulness tracks both the gradual time course of the initial descent into sleep, as well as the rapid changes during the arousal period.
doi:10.1371/journal.pcbi.1003866.g005
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In this analysis, 2 of the 9 subjects (Supporting Information
Figures S1 and S2) clearly exhibited this alpha dropout phenotype, in

which alpha power declined up to several minutes prior to the

termination of correct responses and the increase of delta and theta

power. For both subjects, this phenotype was present on both

experimental nights. Three of the four nights had periods of scored

Stage N1 during which there were correct behavioral responses. In

none of the cases did we observe correct responses in the presence of

strong delta and theta. This suggests that loss of alpha power, while

necessary, is not sufficient for the loss of behavioral responses.

Wake Probability Outperforms Clinical Models of Sleep
Onset

In clinical practice, the most common definitions for the

moment of sleep onset are: the first epoch of Stage N1, the first

epoch of Stage N2, the first of any 3 consecutive NREM (N1 or

deeper) epochs, and the first of any 10 consecutive epochs of

NREM. Though not stated explicitly, any characterization of a

point of sleep onset actually imposes a model on the SOP with an

instantaneous sleep/wake transition, which does not agree with the

continuous, dynamic transitions observed in the data. We

performed a likelihood analysis comparing how well of the wake

probability model and instantaneous transition models fit the

behavioral data. Likelihood is a relative estimate of goodness-of-fit,

and given two competing models, the one with the better fit will

have a higher likelihood.

The comparative likelihood analysis showed that the wake

probability model significantly outperformed each of the instan-

taneous transition models with at least 99.99% confidence. These

results are summarized in Figure 7 and in Table 1. Overall, the

wake probability model fit the data the best with the largest

median loglikelihood (21589), followed by, in order of goodness-

of-fit, the first epoch of N1 model (22781), the first of 3 NREM

model (22852), the first of 10 NREM model (23191), and by the

first epoch of N2 model (25828).

To illustrate the way in which the wake probability model

improves upon the instantaneous transition models, we performed

the goodness-of-fit analysis on a single night of data. Figure 6E

and F show, respectively, the instantaneous transition model

response probabilities generated from the hypnogram, and the

resultant goodness-of-fit analysis for that experimental session.

This clearly shows the way in which the instantaneous transition

models implicitly discretize complex dynamics of the SOP into

unitary ‘‘wake’’ and ‘‘sleep’’ states, thus losing the ability to

capture any nuances in state throughout. Furthermore, since

current EEG-based definitions of sleep onset do not include

behavioral information, the assumption that Stage N1 is equitable

with ‘‘sleep’’ can be misleading [1], particularly for those subjects

(like this one) in which behavior persists past the alpha dropout.

Consequently, the wake probability model (C) fit the behavioral

response data the best (F) with median loglikelihood of 241—

significantly outperforming the instantaneous transition models

with at least 99.99% confidence. Within the class of the

instantaneous transition models (E), the first of any 10 consecutive

NREM epochs model performed the best in this particular case,

with a median loglikelihood of 268. In this case, the first epoch of

N1 model and first of 3 consecutive NREM epochs model both

provided the same response probability estimates, and each had a

median loglikelihood of 2113. Finally, the first epoch of N2 model

performed the worst, with a median loglikelihood of 2199.

Overall, these results suggest that the wake probability model is

a more mathematically and physiologically appropriate metric

with which to track the SOP than are the current hypnogram-

based metrics.

Population Analyses Quantify SOP Phenotype Differences
One of the key strengths of the wake probability model is that it

can characterize the EEG activity for groups of subjects across the

entire SOP, rather than at a single point of alignment. Using the

wake probability curves from multiple subjects, we can compute

an SOP population spectrogram, which plots the median cross-

subject EEG power spectrum as a function of the behavioral

response probability (see Materials and Methods: Computing SOP

Population Spectrograms). By using these techniques, we can

Figure 6. Heterogeneity in healthy subjects: An SOP phenotype with alpha power dropout before the cessation of behavioral
activity. The (A) spectrogram, (B) behavioral responses, (C) the wake probability curve, (D) and the clinical hypnogram are shown for a subject with
this SOP. The wake probability curve captures persistence of behavioral responses after alpha power declines, a feature that is not evident in
hypnogram-based binary models of sleep onset (E). The Bayesian likelihood analysis (F) shows that wake probability significantly outperforms
(99.99% Bayesian credible interval of the difference distribution falls above zero) all of the instantaneous transition models in the ability to correctly
predict the behavioral responses for this subject.
doi:10.1371/journal.pcbi.1003866.g006

Figure 7. Goodness-of-fit analysis of the wake probability model versus instantaneous transition models. (A) Using a Bayesian Monte
Carlo analysis, we compute the distribution of the total loglikelihood of each of the models given the behavioral task data across all subjects and all
nights. The wake probability model significantly outperformed all of the instantaneous transition models (99.99% Bayesian credible interval of the
difference distribution fell above for all models).
doi:10.1371/journal.pcbi.1003866.g007
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group the SOP data of multiple subjects on a continuum, from

which we make rigorous statistical statements about the differences

between populations. As an example, we quantify, for the first

time, the differences in the EEG between subjects with ‘‘normal’’

and ‘‘alpha dropout’’ SOP phenotypes on a continuum of wake/

response probability.

We computed the SOP population spectrogram using the data

from all the subjects and nights (Fig. 8A). These results clearly

show the dynamic transition from a strong alpha mode to

increasing delta/theta power as the probability of response

progresses from 1 to 0 as the subject falls asleep. As the SOP

progresses, the alpha power reduces amplitude, dropping out near

a response probability of 0.55. The delta/theta mode emerges at

around a response probability of 0.4, increasing its bandwidth and

amplitude as the response probability approaches 0.

We can also use the SOP population spectrogram to

characterize difference the average EEG activity from different

populations at moments at which their behavior is identical. As an

illustrative example, we computed an SOP population spectro-

gram using the data from the two subjects (2 nights/subject, 4

nights total) that showed a clear alpha dropout phenotype

(Fig. 8B). The analysis reveals a different spectral structure, with

the alpha mode dropping out near a response probability of 0.85,

and delta/theta power emerging around a response probability of

0.2.

We then used a bootstrap procedure to compare the SOP

population spectrograms of the subsets of subjects with normal and

alpha dropout phenotypes (Fig. 8C). This analysis revealed a

region of 95% significant difference (red areas) covering the

bounds of the alpha mode of the standard phenotype. These

results suggest that are indeed subjects that possess significantly

reduced alpha power yet can maintain behavior response levels

identical to other subjects with a strong alpha oscillation. Analyses

such as these therefore provide a principled mathematical

framework for characterizing individual SOP phenotypes, as well

as for quantifying SOP heterogeneity.

Discussion

The Breathing Task Could Facilitate Behavioral Tracking
during the Wake/Sleep Transition

There is currently is no behavioral monitoring standard in sleep

medicine.

In experimental sleep studies, active behavioral monitoring

requires potentially arousing auditory stimuli. Our new breathing

task presents a new paradigm for behavioral monitoring free of

external stimuli. Moreover, with our new paradigm, all that is

required is a respiration monitor and EMG leads on the subject’s

forearm, both of which are already part of the standard clinical

setup. There is also no need to tackle the difficult problem of

determining the correct stimulus volume that best balances

salience with the potential for subject arousal.

Further experimentation is needed to definitively ascertain the

comparative benefits of the breathing task over standard active

behavioral measures. However, there is significant evidence in the

literature suggesting that this paradigm has major advantages.

While the breathing task is like all other active tasks in the sense

that it requires repeated behavioral responses to stimuli, it is

innovative in that there are no external sensory stimuli, which can

cause arousal from sleep [18,19,41,47]. Rather, this task could be

said to rely on ‘‘internal stimuli’’ generated from the act of

breathing. The breathing task therefore acts as a bridge between

active and passive behavioral measures of sleep onset—providing

high temporal resolution while minimizing the effects from the

stimuli.

It is then a question as to whether the act of concentrating on

breathing is arousing in and of itself. On the contrary, focused

repeated breathing has been shown to reduce anxiety and tension

[48], to decrease heart rate and blood pressure [49], to increase

parasympathetic and decrease sympathetic activation [50], to

decrease oxygen consumption [51], and has been correlated with

reduction in EEG alpha power [52]. Since many of these effects

are physiological hallmarks of the SOP, the act of attending to the

breathing task would be unlikely to arouse subjects by itself, and

could even potentially facilitate the wake/sleep transition.

Additionally, interventional cued breathing studies have been

shown to reduce the duration apnea events [7].

The Wake Probability Model
In our model, we compute wake probability, an estimate of the

probability that the subject is awake given evidence from

simultaneously observed EEG, EMG, and behavioral data. This

approach improves on contemporary staging of data, where a

choice needs to be made between wake and sleep. Here we

produce a continuous-valued metric that tracks the full spectrum

of states during the SOP. In so doing, we more accurately

characterize the SOP as a dynamic system, and can therefore

make more precise observations and predictions about the

underlying physiology. There are several key factors in this

analysis that enable this dynamic, multimodal characterization.

Table 1. Bayesian goodness-of-fit analysis results.

Model
Goodness-of-fit
Rank

Loglikelihood
Median

Loglikelihood
95% Credible
Interval

Difference
Distribution
Median

Difference
95% Credible
Interval

Credible
Interval for
Difference.0

Wake Probability Model 1 21589 [21623 21556]

First N1 Epoch 2 22781 [22805 22757] 1191 [1149 1234] 99.99%

First of 3 NREM Epochs 3 22852 [22877 22828] 1263 [1211 1306] 99.99%

First of 10 NREM Epochs 4 23191 [23217 23165] 1630 [1559 1645] 99.99%

First N2 Epoch 5 25828 [25864 25792] 4239 [4189 4288] 99.99%

Summary of Bayesian goodness-of-fit analysis using the data from all subjects and all nights, comparing the wake probability model vs. several common instantaneous
transition models of sleep onset. The analysis results are ranked in order of how well they fit the behavioral data (the greater the log-likelihood, the better the fit). The
loglikelihood distribution characterizes how well each model is able to the behavioral data. The difference distribution (wake probability loglikelihood – instantaneous
transition loglikelihood) describes the performance improvement of the wake probability model over the competing model. The credible interval with which the
difference distribution is above zero reflects the confidence in which we believe the wake probability model outperforms the competing model.
doi:10.1371/journal.pcbi.1003866.t001
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First, we designed the wake probability model with the goal of

tracking the dynamics of a gradually changing system. In his 2001

review, Ogilvie comprehensively and persuasively enumerated the

preponderance of scientific evidence supporting the notion that

the SOP is a gradual dynamic process, and decried the notion of

characterizing a single moment of sleep onset. In the decade

following, newer studies have only added more support to this

argument through the further analysis of cortical and subcortical

activity [27,30]. Moreover, our nightly experiences with falling

asleep tell us that the transition from wake to sleep is not an

instantaneous process. In spite of all this experimental and

empirical evidence, SOP dynamics have not been embodied in

previous quantitative analyses. By modeling wake probability as a

continuous-valued metric, we can now characterize the SOP as a

dynamic process, bridging the gap between the evidence and the

analysis techniques.

Second, our model incorporates data from both physiological

and behavioral observations. Often, there can disagreement

between EEG and behavioral metrics of in the estimation of sleep

onset, since changes in the EEG and behavior are not necessarily

time-locked to each other. Ogilvie observed that behavioral

responses could persist well into Stage N1—far beyond the point

at which many standard criteria for sleep onset would consider

sleep—and went so far as to suggest that N1 not be even

considered to be true sleep [1]. Additionally, visual scoring

paradigms have difficulty handling the heterogeneity observed in

the normal EEG population, and consequently will deem a subject

to be asleep due to diminished or missing alpha oscillations. It is

therefore is of vital importance to use both behavioral and

physiological data in any metric that characterizes the SOP.

Third, we model the SOP as a combination of multiple

independent components, which can evolve on different time

scales. In formulating the model, we designed the state equations

so that the alpha, delta/theta, and motor states could evolve

independently based on the data. This flexible setup reflects the

idea that interacting systems can activate or deactivate on different

timescales throughout the SOP, an idea substantiated through

intracranial studies of corticothalamic activity [27]. In our model,

is the superposition of these states that governs the behavioral

response data and vice versa. In our model, each observation type

reflects the activity of a systems-level neural component of the

SOP, and the aggregate effect of all the systems governs arousal

and consequently behavior.

Finally, our framework is statistically principled. Since the

model is Bayesian and computes the full posterior distribution of

Pr(Wake), we can perform many other rigorous statistical

comparisons between any set of points in a night for a single

subject, as well as comparisons between subjects [53,54].

Moreover, if a single point of alignment is indeed required, we

can now take a statistically principled approach by defining it

using Pr(Wake). For example, one could identify the first time

point at which Pr(Wake) was significantly less than 0.95.

Wake Probability vs. Sleep Probability
In this method, we frame the characterization of the SOP in

terms of the probability of wakefulness, rather than the probability

of sleep. We do this because the SOP is a complex multifocal

process [28,29,32], which is constantly evolving. Consequently,

trying to estimate the probability of sleep is the equivalent of

shooting at a moving target, since ‘‘sleep onset’’ could refer to any

point on a vast continuum of dynamic neural activity. To simplify

the problem, we therefore chose to create a simple model of the

waking state and track its disappearance rather than tackle a

complex model of sleep and track its initiation. It should be noted

that Pr(Wake) does not necessarily equal 12Pr(Sleep), as local

sleep-related processes can co-exist with wake-related processes in

the brain during the SOP [32]. Additionally, this framework lets us

define wake probability as equivalent to probability of a correct

response, so that Pr(Wake) can be discussed in terms of behavioral

responsiveness, given the additional data from the EEG and EMG.

Characterizing the SOP across Subjects and Phenotypes
Wake probability provides principled alignment for

quantitative cross-subject comparisons. A major innova-

tion of our method is the ability to make an apples-to-apples

quantitative comparison between sets of subjects using the SOP

population spectrogram. In our analyses, we observed a subset of

subjects for which behavioral responses persisted for several

minutes after loss of alpha power. While subjects with low or

missing alpha were first noted by the Davis group [26] in the late

1930s, and Ogilvie and Wilkinson observed subjects responding to

reaction-time tests during Stage N1 [12] in the 1980s, there has

been, until now, no formal statistical paradigm with which the

physiological and behavioral data could be aligned in a unified,

continuous framework for quantitative cross-subject analysis. By

using the SOP population spectrogram, we are finally able to state

with statistical certainty that, for periods with the same instanta-

neous behavioral response probability, there exists a subset of

healthy subjects with significantly lower alpha power than the

normal phenotype subjects.

Understanding alpha dropout. A possible mechanism for

the alpha dropout SOP phenotype could relate to work by Magnin

et al. (2010), in which intracranial EEG measurements during the

SOP revealed that thalamic circuits tend to change state several

minutes before cortical circuits. The latency between changes in

thalamic and cortical activity showed substantial variability

between subjects. Since it is well known that alpha oscillations

are generated when thalamic relay circuits are placed in a

depolarized state [55], the alpha dropout phenotype is consistent

with individuals possessing a high latency between changes in

thalamic and cortical SOP activity.

Overall, we see the following scenario playing out during the

SOP: As a subject falls asleep, alpha diminishes. At some time

following alpha dropout, there is an increase in delta and theta

activity. During this transition period [12,26,32], the rapid

tradeoff between the alpha and delta/theta power may occur.

The latency between the loss of alpha, and the rise of delta/theta,

is highly dependent on the individual. Behavioral responses may

persist after loss of alpha, but they cease completely in the

presence of strong delta/theta power. Therefore, we infer that

both the absence of alpha and the presence of delta/theta are

necessary for loss of behavioral response. This conclusion is

supported by studies relating high theta power to poor PVT task

performance [56].

Figure 8. Comparing SOP phenotypes. The SOP population spectrogram visualizes EEG power spectrum as a function behavioral response
probability/wake probability. (A) Using the wake probability curves to align across subjects, the median EEG spectrum as a function of behavioral
response probability for the full population of subjects. (B) The population analysis is also performed for the two subjects (4 nights) showing the
alpha dropout phenotype. (C) A bootstrap analysis is performed to compute the time-frequency regions where response probabilities at which the
two groups differ in their spectral power.
doi:10.1371/journal.pcbi.1003866.g008
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Given this scenario, it follows that a subject’s individual

behavioral and physiological SOP phenotype is likely due to

natural or pathological variation the intrinsic factors governing the

sophisticated interplay of multiple thalamocortical systems. Our

model provides a framework for explicitly modeling the dynamics

of observations related to this interplay. It may therefore provide

an essential non-invasive tool for the characterization of the state

of the systems underlying SOP, as well as a means of quantifying

the factors responsible for various phenotypes.

The Wake Probability Framework as a Platform for
Further Study of SOP Dynamics

It is clear that alpha, delta, and theta are not the only

oscillations in play during the SOP, nor are they spatially static.

Fortunately, our framework provides a straightforward means of

implementing more sophisticated models of wakefulness. Future

models can incorporate additional physiological observations such

as slow (,1 Hz), beta (15–30 Hz), sigma (12–15 Hz) and gamma

(.30 Hz) power, EEG spatial and coherence dynamics, and other

biomarkers of sleep such as body temperature, heart rate, blood

pressure, and more. The model may also be augmented to include

other behavioral measures.

This model flexibility provides several major benefits. By adding

more observation modalities, we can develop a model that fully

captures our current understanding of the multiple systems

affected during the SOP. Furthermore, continued model adjust-

ments will allow SOP analysis to keep pace with new findings.

Finally, since the behavioral component of this framework can be

adjusted to characterize any other task or removed to account for

no behavioral data at all, we can therefore easily apply this analysis

to data previously collected in other experiments.

Practical Applications of Wake Probability Analysis
Future work will focus on the many practical applications of our

methods. Using our statistical framework, we can build models to

rigorously characterize and compare the SOP phenotypes of

different clinical populations, as well as to continue to characterize

the natural heterogeneity of healthy subjects. By relating model

component temporal dynamics to known linkages between

observations and their underlying neural systems, this sort of

analysis may help to shed further light on the pathophysiology of

sleep. Furthermore, we can use our likelihood analysis to assess the

relative goodness-of-fit of any set of proposed models, determining

which model best fits the data. In doing so, we can provide a

means of assigning any newly observed data to the phenotype or

pathology associated with the model with the maximum

likelihood, thus creating an efficient and principled means of

automated diagnosis or categorization.

Additionally, by characterizing the time course of the wake

probability curve itself, we can quantify differences in the rapidity

of sleep onset in a principled manner. This analysis could act as a

diagnostic tool for disorders of sleep onset, by comparing a

subject’s wake probability curve to those from population

possessing a known pathology. If we adapt techniques for

analyzing group behavior [57], the time course for sets of wake

probability curves could also be compared, providing a way to

analyze the influence of factors such as pharmacological agents,

pathology, and the first night effect on the SOP.

Furthermore, wake probability could be used to dynamically

track drowsiness in situations in which alertness is vital. Rather

than attempt to detect the onset of sleep, it may be more important

to detect the point at which wakefulness and the behavior

associated with it decline.

Materials and Methods

Ethics Statement
Human studies were approved by the Human Research

Committee of Massachusetts General Hospital, Boston, MA.

Subjects
Ten healthy right-handed subjects (5 men and 5 women) with

ages ranging 19–32 years (mean: 25.8, std: 5.09) and BMI ,30

slept for two consecutive nights in our sleep laboratory. Subjects

were screened to ensure a regular sleep schedule and no history of

sleep disorder, psychiatric problem, or neurological disease, as well

as to ensure no history of tobacco, or prescription/recreational

drug use. We performed one night of home monitoring to exclude

obstructive sleep apnea (OSA) screening (using a threshold of AHI

,5, and RDI ,15) (WatchPAT, Itamar Medical). A trained

technician analyzed the experimental PSG data following the first

experimental night, and one subject was excluded after failing to

meet the OSA criteria on the first night). Urine tests for drug use

(Xalex Multi Drug Kit for 10 Drugs) occurred at screening and

prior to each experimental night. Female subjects were also

screened for pregnancy.

Experimental Recording and Data Processing
Subjects were fit with a high-density (64-channel) EEG cap, as

well as standard clinical PSG sensors including PTAF, airflow,

abdominal belt, and eye, chin, and limb electrodes.

EMG data were bandpass filtered between 10 and 70 Hz with

the addition of a notch filter at 60 Hz. Airflow and abdominal belt

data were bandpass filtered between .1 and 12 Hz. EEG and DC

channel data were unfiltered. Multitaper spectrograms of the EEG

data from 8 occipital channels were computed with 6 s temporal

windows and 0.25 s overlap, a time-bandwidth product of 3, and 5

tapers. Delta, theta, and alpha power were defined as the total

multitaper spectral power between 0.5–5 Hz, 5–8 Hz, and 8–

12 Hz, respectively, of the median of the 8 occipital EEG channel

spectrograms. It should be noted that the frequency band

definitions for alpha, delta, and theta bands are not universally

standardized, and thus vary between subfields within in the

electroencephalography literature.

Visual staging of sleep data was performed prior to the statistical

analysis by an experienced clinical sleep technician using

contemporary AASM guidelines [5,58].

Formulation of the Wake Probability Model of the Sleep
Onset Process

Overview. To better characterize the dynamics of falling

asleep, we use a state-space framework [6,42–44] to model the

SOP in terms of a set of state variables that underlie our

experimental data observations. We wish to integrate information

from simultaneous measurements of task-related behavior, EMG,

occipital EEG alpha power, and EEG delta/theta power to

characterize the SOP. We begin by defining the random variables

xm, xa, and xDh, representing the activity in the systems underlying

our observations of EMG, occipital alpha oscillation power, and

delta/theta oscillation power, respectively. We model these state

processes such that they each represent the underlying activity

level of the related neural system given the corresponding EEG/

EMG observations. We then use the combined activity levels from

the three systems along with the behavioral task responses to

compute the probability that the subject is awake at each point in

time. All model parameters and states are fit simultaneously from

the experimental data with a particle filter. The resulting wake
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probability curve provides a continuous metric of wakefulness that

tracks and characterizes SOP dynamics.

The analysis is performed in discrete time, where Dt is the time

interval between each of the T observations t = {1,…,T}.

State Models
We first define the state equations, which model the temporal

evolution of the state processes xt[ xm
t ,xa

t ,xDh
t

� �
over time.

We define the random walk process at time t as

xm
t ~cxm

t{1zexm

xa
t ~cxa

t{1zexa ,

xDh
t ~cxDh

t{1zexDh

ð1Þ

where ext*N 0,s2
xt

� �
and c is a constant.

Probability of wake state. We define xw
t , the state process

related to waking at t, as a linear combination of the motor, alpha,

and delta-theta states

xw
t ~b0xm

t zb1xa
t {b2xDh

t : ð2Þ

where b = 1/3, so that xw
t is the mean of the observation state

distributions and

pWake
t ~exp xw

t

� �
1zexp xw

t

� �� 	{1
: ð3Þ

Observation Models
EMG squeeze amplitude. We define mt as the log of the

experimentally recorded EMG squeeze amplitude at time t, where

mt~log Atð Þ if there is a breath in t,tz1½ Þ
mt is missing data otherwise



: ð4Þ

We then set up a first order linear relationship between the state

and the log of the squeeze amplitudes, such that

mt~m0,tzm1xm
t zem, ð5Þ

where em*N 0,s2
m

� �
, m1 is a model coefficient, and

m0,t~

mrestz(msmin{mrest)exp mscalexm
t

� �
1zexp mscalexm

t

� �� 	{1
:
ð6Þ

EEG power. We define a the EEG observation model as a

sigmoidal function of the state, such that

ga
t ~

ga
minz(ga

max{ga
min)exp ga

scalexa
t

� �
1zexp ga

scalexa
t

� �� 	{1
z"ga ,

ð7Þ

for the alpha power process, and

gh
t ~

gh
minz(gh

max{gh
min)exp gh

scalexDh
t

� �
1zexp gh

scalexDh
t

� �� 	{1
z"

gh

gD
t ~

gD
minz(gD

max{gD
min)exp gD

scalexDh
t

� �
1zexp gD

scalexDh
t

� �� 	{1
z"

gD
,

ð8Þ

Behavioral binary responses.. We define bt as the binary

response at time t, where

bt~1 if there is a correct response in t,tz1½ Þ
bt~0 if there is an incorrect response in t,tz1½ Þ
bt is missing data otherwise

8><
>: : ð9Þ

We model the Pr(bt), the probability of the behavioral response

at t, as a binomial

Pr bt~kð Þ~ pWake
t

� �k
1{pWake

t

� �1{k
, ð10Þ

Model Coefficients
To estimate the value of the model coefficients that are not

time-varying c[ s2

x
m,a,Dhf g

t

,s2
m,s2

ga ,s2
gDh ,m1,g

a,h,Df g
min ,g

a,h,Df g
max ,g

a,h,Df g
scale


 �
,

we used a random walk

ct~ct{1zec ð11Þ

where ec*N 0,nð Þ and n is small. This leaves room for some

exploration of the parameter space without allowing for any large

changes in the parameter value.

The coefficients and priors used in this model can be found in

the Supplementary Materials, Implementation Details.

Likelihood
Given our state and observation models, we can construct ht, a

vector of the parameter values at t such that

ht~

state value

x
m,a,Dhf g

t ,

state and observation variances

s2

xm
t ,xa

t ,xDh
t ,m,ga ,gDhf g,

linear observation model coefficents

m1,m smin,rest,scalef g,g
a,h,Df g
min,max,scalef g

8<
:

9=
;ð12Þ

For each ht, we can estimate the posterior density

Pr htDbt,mt,g
a
t ,gD

t ,gh
t

� �
—the probability of all the model parame-

ters ht given the data. The posterior density is proportional

tolog(L(ht)), the joint log-likelihood of all the observations given the

parameters.

We sum the log-likelihoods of all the observation processes to

construct log(L(ht)). Given the binomial loglikelihood for the

binary responses

log L htð Þð Þ!btlog pWake
t

� �
z 1{btð Þlog 1{pWake

t

� �
ð13Þ

and using Gaussian likelihoods for the continuous-valued obser-

vations, the full log-likelihood becomes

24 2666666664 266666666666666664
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where Ib,t, Im,t, and I
g a,D,hf g,t

are indicator functions for each type

of observation at time t. These indicator functions take on the

value of 1 if the corresponding observation is present and 0 if it is

missing. This sets up a flexible likelihood function that is able to

deal with missing data for any of the observations. Furthermore,

any time there is missing data for any reason (such as a

disconnected EEG or a faulty connection), the log-likelihood can

be constructed from whatever remaining data is available.

Computing SOP Population Spectrograms
Given time-frequency observations from EEG data during the

SOP, from S subjects, over discrete times t [ 1,:::,Tf g, and fixed-

width frequency bins centered at frequencies f [ 1,:::,Ff g, we

define a matrix Ys as

Y s~

ys
1,i . . . ys

1,T

..

.
P

..

.

ys
F ,i � � � ys

F ,T

0
BB@

1
CCA, ð15Þ

such that ys
t,f is the magnitude of the power spectrum for subject s

at time t within the frequency bin f.
We also divide wake probability space into discrete bins

p [ 1,:::,Pf g, which divide the interval [0, 1] into P non-

overlapping bins.

We define the SOP population spectrogram W (p, f), as:

W p,fð Þ~E ~yyf

h i
ð16Þ

where ~yyf is the subset of all the ys
t,f for all subjects in which

E pWake
t

� 	
falls within bin p. In all cases, the median may be

substituted for the expectation.

Supporting Information

Code S1 Matlab code for estimating instantaneous wake

probability from simultaneously observed EEG, EMG, and

behavioral data.

(M)

Figure S1 Data from the first (A) and second (B) consecutive

experimental night for a subject with the alpha dropout

phenotype. In this subject, for both nights, alpha diminishes

before loss of behavioral response.

(EPS)

Figure S2 Data from the first (A) and second (B) consecutive

experimental night for a subject with the alpha dropout

phenotype. In this subject, for both nights, alpha diminishes

before loss of behavioral response.

(EPS)

Protocol S1 Technical details on the model implementation, the

particle filter algorithm, and the Bayesian goodness-of-fit proce-

dure.

(DOCX)

Acknowledgments

The authors would like to acknowledge Kathleen Lovell RPSGT, RRT,

Cheryl Crowley RPSGT, RRT, and Cynthia Fletcher PSGT in facilitating

the experimental procedures, and to thank Dr. Emery Brown for helpful

discussions.

Author Contributions

Conceived and designed the experiments: MJP PLP. Performed the

experiments: MJP KEH GOH AS MM KG PLP. Analyzed the data: MJP

AS KH KG PLP. Wrote the paper: MJP MTB JME PLP. Data

interpretation: MJP PLP MTB JME Facilitated use of the MGH Sleep

Laboratory: JME MTB.

References

1. Ogilvie RD (2001) The process of falling asleep. Sleep Med Rev 5: 247–270.

doi:10.1053/smrv.2001.0145.
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