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Abstract: Errors in the extracted key parameters directly influence the errors in the temperature and
strain measured by fiber Brillouin distributed sensors. Existing key parameter extraction algorithms
for Brillouin gain spectra are mainly based on simplified models, therefore, the extracted parameters
may have significant errors. To ensure high accuracy in the extracted key parameters in different cases,
and consequently to measure temperature and strain with high accuracy, a key parameter extraction
algorithm based on the exact Voigt profile is proposed. The objective function is proposed using
the least-squares method. The Levenberg-Marquardt algorithm is used to minimize the objective
function and consequently extract the key parameters. The optimization process is presented in
detail, at the same time the initial values obtainment method and the convergence criterion are
given. The influences of the number of sample points in Gauss-Hermite quadrature on the accuracy
and the computation time of the algorithm are investigated and a suggestion about the selection
of the number of sample points is given. The direct algorithm, the random algorithm and the
proposed algorithm are implemented in Matlab and are used to extract key parameters for abundant
numerically generated and measured Brillouin gain spectral signals. The results reveal that the
direct algorithm requires less computation time, but its errors are considerably larger than that of the
proposed algorithm. The convergence rate of the random algorithm is about 80~90%. The proposed
algorithm can converge in all cases. Even for the convergence cases, the computation time and the
fitting error of the random algorithm are 1~2 times larger than those of the proposed algorithm.

Keywords: fiber distributed sensors; Brillouin gain spectrum; key parameter extraction; Voigt profile;
Gauss-Hermite quadrature; convergence criteria

1. Introduction

Changes in fiber temperature or strain will alter the corresponding peak values of gain, frequency
shift and line width (full width at half maximum, FWHM) of Brillouin gain spectra. The temperature
or strain along the fiber can be measured by analysis of the Brillouin gain spectrum, therefore,
fiber distributed sensing based on Brillouin scattering is extensively used in diverse industrial and
scientific fields [1–6]. The most intensively investigated topics with regard to the fiber distributed
temperature and strain measurement based on Brillouin scattering include how to improve the accuracy,
spatial resolution and widen the measurement range. There are hardware-based methods [7–10] and
software-based methods [11–13]. This work is concerned with improvement of the sensing performance
by use of data processing. The accuracy in the extracted Brillouin frequency shift, line width and
peak value of gain directly influences the accuracy of the measured temperature and strain. Machine
learning techniques have been well demonstrated and have better performance [11,12]. Additionally,
the cross-correlation technique employs an elegant and exciting approach to extract the Brillouin
frequency shift [13]. Its accuracy is quite similar to that of the fitting algorithms. Its paramount
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advantage is its extremely low computational burden. However, the line width cannot be extracted by
this technique. In summary, the fitting algorithms are mainstream ones and the principal objective of
this work is to improve the performance of the fitting ones, therefore, fitting algorithms are mainly
reviewed below.

The parameters of the incident light have an important effect on the Brillouin gain spectrum.
If the pulse width of the incident light is significantly greater than 10 ns, the Brillouin gain spectrum
has a Lorentzian spectral shape [14,15]. To improve the spatial resolution, a narrower pulse will be
used and the spectrum will close to a Gaussian spectral shape [16] because of the Doppler broadening.
Generally, the Brillouin gain spectrum is considered as a Voigt spectral shape [17–19]. Because the
Lorentzian and Gaussian profiles are algebraic equations, key parameter extraction algorithms based
on the Lorentzian or Gaussian profiles are easy to implement and the relative algorithm studies
have now reached a certain maturity [20,21]. If the profiles are centered, the Voigt profile is a line
profile resulting from the convolution of a Gaussian profile and a Lorentzian profile [18]. It is not
an algebraic equation. The convolution operation is relatively slower to compute than the numerical
generation of the Gaussian and Lorentzian profiles, not to mention fitting a Voigt profile to the
measured Brillouin gain spectrum to extract key parameters. To avoid the computational expense of
the convolution operation, the Voigt profile is often approximated by a pseudo-Voigt profile which is
a linear combination of a Gaussian profile and a Lorentzian profile [22,23]. Similar to the Gaussian and
Lorentzian profiles, the pseudo-Voigt profile is an algebraic equation. Therefore, the key parameter
extraction algorithm based on the pseudo-Voigt profile is computationally easier to implement and
is nowadays the mainstream algorithm for key parameter extraction [22–24]. However, the above
Lorentzian, Gaussian and pseudo-Voigt profiles are all simplified models of the Brillouin gain spectrum,
therefore the algorithms based on them inevitably introduce errors. To improve the adaptability of the
key parameter extraction algorithm, in this work, the Voigt profile rather than the other simplified
one is used to approximate the Brillouin gain spectrum. Accordingly, the optimization algorithm,
the initial values obtainment method and the convergence criterion for the exact model must be
investigated. Related works are scarce. Reference [17] approximated the Brillouin gain spectrum along
a 36 km long-range optical fiber by use of the Voigt profile to extract the Brillouin frequency shift.
However, no technical details about the fitting algorithm were presented. According to the features
of the Voigt profile, the line width of the corresponding Lorentzian profile can be estimated from
the 20-dB spectrum width [19]. Then the line width of the corresponding Guassian profile is readily
estimated from the relationship among line widths of the Lorentzian, Guassian and Voigt profiles.
This algorithm may reduce the total computation time. However, many approximation formulas are
used in the algorithm, therefore, significant errors may be introduced in some situations. To sum up,
to date, there is still a lack of an effective algorithm to extract the key parameters from the Brillouin
gain spectrum. This topic needs to be studied further.

To fix the above problems, the errors in the key parameters extracted by the algorithms based on
different models are compared and the necessity to use the Voigt profile is confirmed. On the basis of
such analysis, the objective function of the key parameters extraction algorithm based on the Voigt
profile is determined by use of the least-squares method. The objective function is minimized using
the Levenberg-Marquardt algorithm and consequently the key parameters are extracted. The initial
values obtainment method and the convergence criterion are presented. The influence of the number
of sample points in Gauss-Hermite quadrature on the accuracy and computation time of the algorithm
is investigated and suggestions about the selection of the number of sample points are given. Based
on the abovementioned investigations, a key parameters extraction algorithm based on the exact
Voigt profile is proposed. The proposed algorithm is validated by extracting the key parameters for
numerous numerically generated and measured Brillouin gain spectra.
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2. Adaptability of Different Models for Key Parameters Extraction

2.1. Voigt Profile

If the profiles are centered, the Voigt profile is a line profile resulting from the convolution of
a Gaussian profile and a Lorentzian profile [25] which can be expressed by:

gB(ν) = A
2 ln 2
π3/2

∆νBL

∆ν2
BG

∫ +∞

−∞

e−x2[√
ln 2 ∆νBL

∆νBG

]2
+
[
2
√

ln 2 ν − νB
∆νBG

− x
]2 dx (1)

where gB is the Brillouin gain; v is the frequency; vB is the Brillouin frequency shift; ∆vBL and ∆vBG

respectively are the line widths of the Lorentzian and Gaussian profiles [17]. Assume that ∆vB is the
line width of Brillouin gain spectrum; gBM is the maximum value of Brillouin gain.

2.2. Adaptability of Different Models

Before development of the key parameter extraction algorithm based on the Voigt profile,
we should check the adaptability of the existing different models. Without loss of generality,
vB = 10.7 GHz, A = 0.2, ∆vBL = 0.01 GHz. ∆vBG ranges from 0.01 GHz to 0.15 GHz. Fifteen sets
of Brillouin gain spectra are numerically generated according to Equation (1). To avoid the errors
caused by not having enough sample points in Gauss-Hermite quadrature, the number of sample
points is set to 1000. Three key parameters extraction algorithms based on Lorentzian profile [14],
Gaussian profile [16] and pseudo-Voigt profile models [22], respectively, are implemented in Matlab,
and the statistical results of the relative errors in gBM, vB and ∆vB extracted by the different model-based
algorithms are presented in Table 1. Emax means the maximum value of the error. Emean means the
mean value of the error magnitude. For example, the second column of Table 1 are the maximum
errors in gBM, vB and ∆vB extracted by the Lorentzian profile.

Table 1. Statistical results of relative errors in the key parameters extracted by different model-based
algorithms/%.

Models Lorentzian Gaussian Pseudo-Voigt

Errors Emax Emean Emax Emean Emax Emean
gBM 7.55 5.95 −4.33 1.03 1.51 0.3

vB/MHz 0 0 0 0 0 0
∆vB/MHz −14.85 12.93 10.43 2.23 −1.76 0.31

From Table 1 it can be seen that vB extracted by the three models contains no error in different
cases. However, the three models introduce varying degrees of errors in the extracted gBM and
∆vB. The maximum errors in gBM extracted by the three models are up to 7.55%, −4.33% and 1.51%,
respectively. The maximum errors in the extracted ∆vB are −14.85%, 10.43% and −1.76%, respectively.
The above results reveal that the key parameters extracted by the extensively used three simplified
model (the Lorentzian profile, Gaussian profile and pseudo-Voigt profile)-based algorithms, in theory,
may contain significant errors. The exact model must be used. Therefore, the key parameter extraction
algorithm based on the exact model (Voigt profile) needs to be urgently studied, which is the core part
of this work.

3. Key Parameters Extraction Algorithm Based on Voigt Profile

3.1. Objective Function

Because Equation (1) does not have an analytical solution, it must be numerically solved.
Gauss-Hermite quadrature [26] is particularly suitable for approximating the value of integrals
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containing e−x2
, therefore, it is used to calculate Equation (1). The Gauss-Hermite quadrature with

number of sample points of M can be expressed as follows:

∫ +∞

−∞
e−x2

f (x)dx ≈
M

∑
m = 1

wm f (xm) (2)

where xm is the root of the physicists’ version of the Hermite polynomial HM(x) with an order of M,
(m = 1, 2, ..., M) and the associated weight wm is given by Equation (3) [27]:

wm =
2M − 1M!

√
π

M2 [H M − 1(x m
)
]
2 (3)

According to Equation (2), Equation (1) can be rearranged as:

gB(ν) ≈ A
2 ln 2
π3/2

∆νBL

∆ν2
BG

M

∑
m = 1

wm
1[√

ln 2 ∆νBL
∆νBG

]2
+
[
2
√

ln 2 ν − νB
∆νBG

− xm

]2 (4)

Assume that vi and gBi respectively are the ith scanning frequency and the corresponding Brillouin
gain, where i = 0, 1, 2, . . . , N − 1, N is the number of frequency scanning. Then the objective function
determined by use of the least-squares method as follows:

E =
N − 1

∑
i = 0

e2
i (5)

where E is the sum of the squared normal distances between the measured or numerically generated
profile coordinates and the expected profile:

ei = gB(νi) − gBi = A 2 ln 2
π3/2

∆νBL
∆ν2

BG
∑M

m = 1 wm
1[√

ln 2 ∆νBL
∆νBG

]2
+
[
2
√

ln 2 νi−νB
∆νBG

− xm

]2− gBi, i = 0, 1, 2, . . . , N − 1 (6)

3.2. Optimization Algorithm

The above objective function belongs to a nonlinear least-squares problem.
The Levenberg-Marquardt algorithm is most appropriate for minimization of the nonlinear
least-squares problem. Therefore, it is chosen and the variables can be updated by:

W(l + 1) = W(l)− (J(l)TJ(l) + λI)
−1

J(l)Te(l) (7)

where e = [e0, e1, . . . , eN−1]T is the error vector, and W = [W1, W2, W3, W4]T = [A, vB, ∆vBL, ∆vBG]T is
the variable vector. I is a 4 × 4 unit matrix. l is the iteration number. Superscript T means transposition.
When a step increases E, λ is multiplied by 10. At the same time, the change in W is disregarded,
and the previous values of W are retained. λ is divided by 10 whenever a step would result in
a decreased E. The initial value of λ is set to 1.

J is a N × 4 Jacobian matrix, Jij = ∂ei/∂Wj, 0 ≤ i ≤ N − 1, 1 ≤ j ≤ 4, is an element of the Jacobian
matrix which is represented as follows:

Ji1 =
∂ei
∂A

=
2 ln 2
π3/2

∆νBL

∆ν2
BG

M

∑
m = 1

wm
1[√

ln 2 ∆νBL
∆νBG

]2
+
[
2
√

ln 2 νi − νB
∆νBG

− xm

]2 . (8)
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Ji4 = ∂ei
∂νBG

= A− 4 ln 2
π3/2

∆νBL
∆ν3

BG

M
∑

m = 1
wm

1[√
ln 2 ∆νBL

∆νBG

]2
+
[
2
√

ln 2 νi−νB
∆νBG

− xm

]2

+A 2 ln 2
π3/2

∆νBL
∆2

νBG

M
∑

m=1
wm

2 ln 2
∆2

νBL
∆3

νBG
+4
√

ln 2 νi−νB
∆2

νBG

[
2
√

ln 2 νi−νB
∆νBG

−xm

]
{[√

ln 2 ∆νBL
∆νBG

]2
+
[
2
√

ln 2 νi−νB
∆νBG

−xm

]2
}2

(11)

3.3. Initial Values Obtainment

The initial guesses of A, vB, ∆vBL and ∆vBG have a big influence on the rate of the objective
function optimization. If the initial guesses are close to a local maxima, the Levenberg-Marquardt
algorithm may converge to the local maxima and significant errors will be introduced. Therefore, a fast
and accurate method of obtaining the initial values is needed.

For the Voigt profile, ∆vB can be found from the widths of the associated Gaussian and Lorentzian
widths. A better approximation [28] is given by:

∆νB ≈ 0.5346∆νBL +
√

0.2166∆ν2
BL + ∆ν2

BG (12)

Since we don’t know the values of ∆vBL and ∆vBG in advance, let us assume that ∆vBL = ∆vBG,
thus the initial guesses of ∆vBL and ∆vBG can be calculated by Equation (13):

∆vBL = ∆vBG = ∆vB/1.6376 (13)

gB(v) reaches the maximum value at v = vB which can be calculated by Equation (14) [29]:

gB(νB) = 2A

√
ln 2
π

1
∆νBG

e(
√

ln 2 ∆νBL
∆νBG

)
2

(1 − 2√
π

∫ √ln 2 ∆νBL
∆νBG

0
e−x2

dx) (14)

Assume that the gain in the measured spectrum reaches the maximum value when v = vP and the
corresponding maximum gain is gBM. According to Equation (14), the initial guesses of vB and A can
be calculated by Equations (15) and (16), respectively:

vB = vP (15)

A =
gBM

2
√

ln 2
π

1
∆νBG

e(
√

ln 2 ∆νBL
∆νBG

)
2

(1 − 2√
π

∫ √ln 2 ∆νBL
∆νBG

0 e−x2dx)

(16)

3.4. Convergence Criterion

Due to the computational expense of the convolution operation in Equation (1), the key
parameter extraction algorithm based on the Voigt profile requires more computation time than
that of the Lorentzian profile-based one. Therefore, the computation time is the key factor in the
algorithm. Although good initial guesses can reduce the computational burden, an appropriate
convergence criterion can further decrease the number of iterations and the computational expense,
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and consequently, it is needed. After repeated tries, the result indicates that if the variation among
successive iterations is less than a certain value, then the algorithm converges. Assume that
W(i) = [W1(i), W2(i), W3(i), W4(i)]T, the stopping condition is defined as follows:∣∣∣∣∣Wj(i)−W j(i − 1)

Wj(i − 1)

∣∣∣∣∣ ≤ 10−5; i = l − 4, l − 3, · · · , l; j = 1, 2, 3, 4 (17)

The maximum iteration number lmax is set to 500. Certainly lmax can be adjusted according to
the practical situations. Once Equation (17) is satisfied or the iteration number is not more than lmax,
the algorithm stops iterating. The iteration number is l and W(l) is taken as the final solution.

To validate the proposed convergence criterion, two other convergence criteria are introduced and
are used to validate the proposed one (Equation (18)). The stopping condition corresponding to the first
one can be expressed by Equation (18). In the second criterion, the iteration number is fixed at 500:∣∣∣∣∣Wj(i) −W j(i − 1)

Wj(i − 1)

∣∣∣∣∣ ≤ 10−5; i = l − 2, l − 1, l; j = 1, 2, 3, 4 (18)

A large amount of noise-free Brillouin gain spectra are numerically generated. According to the
single-mode fiber properties, vB is set to a random value from 10 GHz to 13 GHz and A is a random
value from 0 to 0.3. Both ∆vBL and ∆vBG are random values from 0.01 GHz to 0.15 GHz. The number
of sample points in Gauss-Hermite quadrature is 1000 which is the same as in Section 2.2. 10,000 sets
of Brillouin gain spectra are numerically generated based on Equation (4). The frequency is scanned
in the range from vB − (∆vBL + ∆vBG) to vB + (∆vBL + ∆vBG) and the scanned frequency interval
is (∆vBL + ∆vBG)/20. In the key parameters extraction algorithm, the number of sample points is
set to 100 which is validated in Section 4.2. Egmean, Evmean and E∆vmean are the mean values of the
error magnitude in the extracted gBM, vB and ∆vB, respectively. EM is the mean value of the sum
of the squared normal distances between the profile coordinates and the expected profile. TM and
lM respectively are the mean values of the computation time and the iteration number. The key
parameters extraction algorithm based on the Voigt profile is used. If the iteration number is fixed at
500 (l = 500), the algorithm will converge in all cases. Therefore, the corresponding results are taken as
the exact values. The statistical results of errors in the extracted key parameters, the sum squared error,
the computation time and the iteration number corresponding to different convergence criterions are
summarized in Table 2. Note however that once the correction terms of the variables are NaN (not
a number), the algorithm will stop. Therefore, even the iteration number is set to 500, the real iteration
number is less than 500.

Table 2. Statistical results of errors in the extracted key parameters corresponding to different
convergence criterions and the corresponding computation times.

Convergence Criterions Evmean/GHz E∆vmean/GHz Egmean EM TM/s lM

Equation (17) 0 8.08 × 10−5 3.01 × 10−4 1.36 × 10−4 2.70 × 10−2 9.74
Equation (18) 0 8.08 × 10−5 3.01 × 10−4 1.36 × 10−4 2.48 × 10−2 7.74

l = 500 0 8.08 × 10−5 3.01 × 10−4 1.36 × 10−4 1.2 × 10−1 3.27 × 102

As shown in Table 2, the extracted key parameters according to Equation (17) are the same as the
extracted parameters with the fixed iteration number of 500 (500 is large enough). The mean value of
iteration number corresponding to Equation (17) is 9.74 which is much less than 500 and 3.27 × 102.
At the same time, the corresponding computation time is only 2.70 × 10−2 s and is considerably
less than 1.28 × 10−1 s corresponding to the fixed iteration number of 500. The mean values of the
iteration number and the computation time corresponding to Equation (18) are 7.74 and 2.48 × 10−2 s,
respectively. Although the errors in the extracted parameters and the sum squared error corresponding
to Equations (17) and (18) are the same, the iteration number and the computation time of Equation (18)
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respectively are less than those of Equation (17). According to Table 2, it seems that Equation (18)
rather than Equation (17) should be taken as the stopping condition.

Not only noise-free Brillouin gain spectra but also noisy ones need to be investigated. The noisy
Brillouin gain spectra along a single-mode 9/125 µm fiber are measured by a Brillouin optical
time-domain reflectometer (BOTDR, model AV6419, China Electronics Technology Instruments Co.,
Ltd., Tsingtao, China). The wavelength of the incident light is 1550 nm. The pulse width is 10 ns.
The average number of waveforms is 210. The mean SNR is 15.18 dB. For a typical case, change of the
extracted key parameters corresponding to different convergence criterions with iteration number is
shown in Figure 1.
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From Figure 1 we discover that the extracted parameters remain constant in four successive
iterations even though the extracted key parameters are quite different from the optimal solution.
However, in Equation (18), whether or not the algorithm converges is determined according to
variation in the extracted parameters in successive four iterations. Therefore, Equation (18) is not
reliable. Therefore, if the inappropriate convergence criterion is used, such as Equation (18), significant
errors may be introduced. Generally, if the extracted parameters remain nearly constant in successive
six iterations, the algorithm has converged. Therefore, in the proposed convergence criterion (Equation
(17)), the variation in the extracted parameters in successive six iterations is used to judge convergence
or not. At the same time, according to the convergence criterion, the unnecessary iterations are avoided.
Therefore, the established convergence criterion can not only ensure converge but also corresponds to
less computational burden. Therefore, Equation (17) is reliable.
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3.5. Flowchart of the Proposed Algorithm

The flowchart of the proposed algorithm is illustrated in Figure 2.Sensors 2018, 18, x 8 of 20 
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4. Influence of Number of Sample Points in Gauss-Hermite Quadrature

The number of sample points in Gauss-Hermite quadrature has an important effect on the accuracy
and computation time of the algorithm. These influences are investigated in this section.

4.1. Influence on Spectrum Approximation

In this section, the influence of the number of sample points on the error in the Voigt
profile numerically generated according to Equation (4) (Gauss-Hermite quadrature) is investigated.
The number of sample points ranges from 5 to 1000. Similar to Section 3.4, the Voigt profile with
number of sample points of 1000 is considered as the exact one. The other parameters are the same
as in Section 3.4. The statistical results of errors in the numerically generated Voigt waveshape with
different numbers of sample points are presented in Table 3.

Table 3. Statistical results of errors in the Voigt waveshape numerically generated by Gauss-Hermite
quadrature with different numbers of sample points.

M E1min E1max E1mean E1std E2min E2max E2mean E2std

5 4.36 × 10−11 8.68 × 10−1 1.30 × 10−1 1.94 × 10−1 5.40 × 10−12 1.20 × 10−1 2.64 × 10−2 3.71 × 10−2

10 1.01 × 10−15 5.16 × 10−1 5.25 × 10−2 9.90 × 10−2 1.73 × 10−16 8.93 × 10−2 1.28 × 10−2 2.35 × 10−2

30 1.00 × 10−15 2.62 × 10−1 1.31 × 10−2 3.65 × 10−2 1.63 × 10−16 5.36 × 10−2 3.39 × 10−3 9.27 × 10−3

60 9.81 × 10−16 1.51 × 10−1 4.65 × 10−3 1.65 × 10−2 1.62 × 10−16 3.57 × 10−2 1.27 × 10−3 4.43 × 10−3

100 9.81 × 10−16 9.03 × 10−2 1.95 × 10−3 8.24 × 10−3 1.65 × 10−16 2.41 × 10−2 5.51 × 10−4 2.33 × 10−3

200 1.01 × 10−15 4.21 × 10−2 5.06 × 10−4 2.80 × 10−3 1.69 × 10−16 1.17 × 10−2 1.47 × 10−4 8.12 × 10−4

600 1.38 × 10−15 7.89 × 10−3 3.59 × 10−5 3.22 × 10−4 2.62 × 10−16 1.99 × 10−3 9.52 × 10−6 8.37 × 10−5

Assume that E1 is the ratio of the maximum error magnitude in the Brillouin gain within the
whole frequency scanning range to the maximum value of the Brillouin gain. E1min, E1max, E1mean and
E1std respectively are the minimum, maximum, mean values and the standard deviation of E1. Let E2
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is the ratio of the mean value of error magnitude in the Brillouin gain within the whole frequency
scanning range to the maximum value of the Brillouin gain. E2min, E2max, E2mean and E2std respectively
are the minimum, maximum, mean values and the standard deviation of E2. To clearly demonstrate the
influence of the number of sample points on accuracy in numerically generated spectrum, four typical
cases are chosen. A and vB are set to 0.1 and 10.5 GHz, respectively. ∆vBL and ∆vBG are respectively set
to 0.02 GHz and 0.02 GHz, 0.04 GHz and 0.08 GHz, 0.08 GHz and 0.04 GHz, 0.12 GHz and 0.12 GHz.
Four typical Voigt waveshapes are displayed in Figure 3. To present them clearly, the scanned frequency
interval in Figure 3 is set to (∆vBL + ∆vBG)/2000. Brillouin gain is a dimensionless parameter. The order
of magnitude of Brillouin gain is of little value to the fiber distributed sensing based on Brillouin gain.
Most of the related literature doesn’t care about the order of magnitude of Brillouin gain. Therefore, its
real magnitude is not presented in the paper. The unit for the vertical axes in the paper is a.u. which
means arbitrary unit [30,31].
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Figure 3. Four typical Voigt waveshapes numerically generated by Gauss-Hermite quadrature with
different numbers of sample points. (a) ∆vBL = 0.02 GHz, ∆vBG = 0.02 GHz; (b) ∆vBL = 0.04 GHz,
∆vBG = 0.08 GHz; (c) ∆vBL = 0.08 GHz, ∆vBG = 0.04 GHz; (d) ∆vBL = 0.12 GHz, ∆vBG = 0.12 GHz.

As seen in Table 3 the errors in the numerically generated Voigt profile decrease with increasing
number of sample points. At the same time, the decline rate also decreases with increasing number
of sample points. Finally, the errors will tend to zero. E1mean and E2mean corresponding to number of
sample points of 100 are 1.95 × 10−3 and 5.51 × 10−4, respectively. The accuracy is acceptable. Note
however that the Voigt profile with number of sample points of 1000 is considered as the exact one.
Therefore, no corresponding errors data are presented in Table 3.
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4.2. Influence on the Computation Time and Accuracy of the Voigt Profile-Based Algorithm

The number of sample points is set to 1000 and the other parameters are the same as in Section 3.4.
A large number of Brillouin gain spectra are numerically generated based on Equation (4). For the
noise-free cases, the statistical results of errors in the key parameters extracted by the Voigt profile-based
algorithm with different numbers of sample points are included in Table 4. Egmean, Evmean and E∆vmean
respectively are the mean value of the error magnitude in the extracted gBM, vB and ∆vB. Similarly, Egstd,
Evstd and E∆vstd are the standard deviation of the error in the extracted gBM, vB and ∆vB, respectively.

Table 4. Statistical results of errors in the key parameters extracted by the Voigt profile-based algorithm
with different numbers of sample points, noise-free.

M 5 10 30 60 100 200 600 1000

Evmean/GHz 0 0 0 0 0 0 2.58 × 10−17 0
Evstd/GHz 0 0 0 0 0 0 1.84 × 10−15 0
E∆vmean/GHz 2.47 × 10−3 1.18 × 10−3 3.53 × 10−4 1.62 × 10−4 8.92 × 10−5 3.64 × 10−5 5.31 × 10−6 1.76 × 10−15

E∆vstd/GHz 2.65 × 10−3 1.75 × 10−3 8.32 × 10−4 4.92 × 10−4 3.27 × 10−4 1.80 × 10−4 3.92 × 10−5 3.31 × 10−14

Egmean 7.53 × 10−3 3.93 × 10−3 1.27 × 10−3 5.82 × 10−4 3.12 × 10−4 1.18 × 10−4 1.73 × 10−4 1.50 × 10−14

Egstd 1.20 × 10−2 7.78 × 10−3 3.54 × 10−3 2.00 × 10−3 1.26 × 10−3 6.19 × 10−4 2.03 × 10−3 2.73 × 10−13

TM/s 8.80 × 10−3 9.06 × 10−3 1.34 × 10−2 1.96 × 10−2 2.77 × 10−2 4.79 × 10−2 1.36 × 10−1 2.29 × 10−1

According to Table 4, the errors in the extracted parameters decrease with increasing number
of sample points. Finally, it tends to zero for the noise-free cases. The noise-free case is to simulate
the case with large enough average number of waveforms. However, the noise is inevitable in the
measured Brillouin gain spectrum. The SNR should not be set to a too low value. Otherwise, a too
low value of the number of sample points will be selected. Then, for high SNR cases, significant
errors will be introduced. Therefore, the SNR is set to 40 dB and the other parameters are the same as
the noise-free cases. The statistical results of errors in the extracted key parameters are presented in
Table 5.

Table 5. Statistical results of errors in the key parameters extracted by the Voigt profile-based algorithm
with different numbers of sample points, SNR = 40 dB.

M 5 10 30 60 100 200 600 1000

Evmean/GHz 1.12 × 10−4 1.11 × 10−4 1.11 × 10−4 1.11 × 10−4 1.11 × 10−4 1.11 × 10−4 1.11 × 10−4 1.11 × 10−4

Evstd/GHz 1.48 × 10−4 1.47 × 10−4 1.47 × 10−4 1.47 × 10−4 1.47 × 10−4 1.47 × 10−4 1.46 × 10−4 1.46 × 10−4

E∆vmean/GHz 2.63 × 10−3 1.46 × 10−3 7.40 × 10−4 5.78 × 10−4 5.18 × 10−4 4.80 × 10−4 4.63 × 10−4 4.60 × 10−4

E∆vstd/GHz 2.93 × 10−3 2.16 × 10−3 1.52 × 10−3 1.37 × 10−3 1.32 × 10−3 1.29 × 10−3 1.29 × 10−3 1.28 × 10−3

Egmean 8.95 × 10−3 5.63 × 10−3 3.32 × 10−3 2.76 × 10−3 2.56 × 10−3 2.45 × 10−3 2.70 × 10−3 2.41 × 10−3

Egstd 1.76 × 10−2 1.47 × 10−2 1.28 × 10−2 1.24 × 10−2 1.23 × 10−2 1.22 × 10−2 1.42 × 10−2 1.22 × 10−2

TM/s 9.17 × 10−3 9.26 × 10−3 1.40 × 10−2 2.10 × 10−2 3.08 × 10−2 5.22 × 10−2 1.41 × 10−1 2.33 × 10−1

From Table 5 we discover that the errors in the extracted key parameters decrease with increasing
number of sample points. Because of noise, the rate of decrease is slower than that of the noise-free
spectra in Table 4. For the noisy spectra, the errors corresponding to the number of sample points of
100 are very close to the errors corresponding to the number of sample points of 1000. vB possesses
the highest accuracy among the three parameters and is less sensitive to the number of sample points.
This is beneficial for temperature and strain measurement based on Brillouin scattering. This is due
to the fact that temperature and strain are measured mainly according to vB. However, to achieve
simultaneous measurement of temperature and strain, ∆vB may be needed. ∆vB depends solely on
∆vBL and ∆vBG. The errors of ∆vBL and ∆vBG decrease with increasing number of sample points.
This is the main reason why too low number of sample points is inappropriate. According to Tables 4
and 5, the proposed algorithm can converge in all cases independent of which number of sample points
is used and no matter on whether or not noise-free spectra are used. The errors in the extracted key
parameters are mainly caused by noise and are not large enough number of sample points. The above
results validate the proposed optimization algorithm, the initial values obtainment method and the
convergence criterion.
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To further present the relationship between the number of sample points and the computation time,
change of mean computation time of noisy and noise-free cases with the number of sample points are
shown in Figure 4. From Figure 4 it can be seen that the computation time increases linearly with the
number of sample points irrespective of noisy and noise-free cases. To improve the accuracy, more sample
points should be used. To improve real-time performance, less number of sample points should be used.
Selection of the number of sample points in Gauss-Hermite quadrature is thus a balance between the
accuracy and the computation time. At the same time, the error increases with decreasing SNR. Therefore,
less number of sample points should be selected for noisy spectra. To sum up, the number of sample points
in Gauss-Hermite quadrature is generally suggested to choose 100. In comparison with the number of
sample points of 1000, the selection of number of sample points of 100 can not only ensure high accuracy
but also decrease computation time to about one eighth of the original value. Of course, this number can
be adjusted according to the practical situations.
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5. Validation

5.1. Numerically Generated Signals

To compare with the proposed algorithm, the algorithm proposed by [19] (called the direct algorithm
in the paper) and the random algorithm are also implemented in Matlab. In the random algorithm,
the initial guesses of the variables are set to some random values within a certain range. According to
single-mode fiber properties, the initial guesses of ∆vBL and ∆vBG are random values from 0.01 GHz to
0.15 GHz. The initial guess of vB is a random value from 10 GHz to 13 GHz. The initial guess of A is
a random value from 0 to 0.3. The objective function, the optimization algorithm and the convergence
criterion are the same as the proposed algorithm. Equation (4) must be solved in both the numerical
generation of Voigt profiles and the Voigt-profile based key parameters extraction algorithm. It means that
the number of sample points in Gauss-Hermite quadrature must be determined. Similar to Section 4.2,
a large number of Brillouin gain spectra are numerically generated based on Equation (4) with the number
of sample points of 1000. According to Section 4.2, the number of sample points in the Voigt profile-based
parameters extraction algorithm is set to 100. For the noisy signals, the SNR is set to 20 dB and the other
parameters are the same as in Section 3.4. For a typical noisy and noise-free Brillouin gain spectra, change
of the sum of the squared normal distances with iteration number is displayed in Figure 5. In the direct
algorithm, no iteration process is needed. Therefore, no data about it is presented in Figure 5. From
Figure 5, the proposed algorithm not only can ensure convergence but also requires less computation
time. At the same time, the aforementioned results validate the proposed initial values obtainment
method (Equations (13), (15) and (16)), objective function (Equations (5) and (6)) and convergence criterion
(Equation (17)). The statistical results of errors in the key parameters extracted by different algorithms
are presented in Table 6 and at the same time the computation time is included. It is noted that the direct
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algorithm uses the 20-dB Brillouin gain to calculate ∆vBL which imposes a very high requirement on its
frequency scanning range. Consequently, more frequency scans are needed.
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Table 6. Statistical results of errors in the key parameters extracted by different algorithms, numerically
generated signals.

Algorithm Signal Type Evmean
/GHz

Evstd
/GHz

E∆vmean
/GHz

E∆vmax
/GHz Egmean Egstd TM/s

Direct
Noise-free 2.00 × 10−3 2.46 × 10−3 2.34 × 10−4 1.57 × 10−4 1.22 × 10−2 1.12 × 10−1 7.46 × 10−3

Noisy 8.16 × 10−3 1.07 × 10−2 7.61 × 10−3 8.84 × 10−3 5.02 × 10−2 6.55 × 10−2 6.34 × 10−3

Random
Noise-free 2.33 × 104 1.23 × 105 1.90 × 104 2.35 × 105 5.03 × 10−2 2.38 × 10−1 1.07 × 10−1

Noisy 4.21 × 108 3.55 × 109 2.26 × 108 2.00 × 109 9.04 × 10−2 4.73 × 10−1 1.24 × 10−1

Proposed Noise-free 0 0 8.92 × 10−5 3.27 × 10−4 3.12 × 10−4 1.26 × 10−3 2.77 × 10−2

Noisy 1.12 × 10−3 1.49 × 10−3 3.90 × 10−3 5.30 × 10−3 1.88 × 10−2 3.22 × 10−2 4.85 × 10−2

From Table 6, we can see that the mean values of the error magnitude of the random algorithm are
quite significant. For the noise-free cases, the errors of the random algorithm are about 106~109 times
larger than that of the proposed one. For the noisy cases, the errors of the random algorithm are about
10~1012 times larger than that of the proposed one. The above results validate the proposed initial values
obtainment method (Equations (13), (15) and (16)). In practice, the parameters extracted by the random
algorithm do not have to contain such appreciable errors. Once converged, the parameters extracted by the
random algorithm may be the same as the proposed algorithm. For 10,000 sets of noise-free and noisy
Brillouin gain spectra, the convergence rates of the random algorithm are 88.16% and 77.95%, respectively.
The errors in the parameters extracted by the direct algorithm are considerably larger than that of the
proposed algorithm. For the noise-free cases, vB extracted by the proposed algorithm contains no error.
However, the error in vB extracted by the direct algorithm is about 10−3 GHz. The errors in ∆vB and gBM

extracted by the direct algorithm are considerably larger than those of the proposed algorithm. The errors
in the parameters extracted by the three algorithms for the noisy cases are larger than that of the noise-free
cases. Anyhow, the accuracy of the proposed algorithm is significantly higher than that of the other
two algorithms.

Not only is the error in the extracted parameters but also the computation time of the random
algorithm is larger than that of the proposed algorithm. The computation times of the random
algorithm for the noise-free and noisy cases respectively are 3.86 and 2.56 times that of the proposed
algorithm. This is most likely because the initial guesses provided by the random algorithm are quite
different from the optimal solution. Generally, a greater number of iterations is needed. The direct
algorithm requires the least computational effort among the three algorithms and its computation time
is only one-third of that of the proposed algorithm. However, it has a high requirement on the scanned
frequency interval and the frequency scanning range which will increase the measurement time.
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5.2. Measured Signals

5.2.1. Adaptability of Different Models

The experimental setup is sketched in Figure 6. Brillouin gain spectra along a single-mode
9/125 µm fiber with a length of 1 km are measured by the model AV6419 BOTDR.
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Figure 6. The schematic diagram of Brillouin gain spectrum measurement for a single-mode fiber.

The sampling resolution and the frequency scanning interval are set to 0.1 m and 1 MHz, respectively.
The wavelength of the incident light is 1550 nm. The pulse width is set to a value ranging from 10 ns to
200 ns. The frequency scanning ranges from 10.52 GHz to 10.92 GHz. The average number of waveforms
is 218. The SNR of the measured spectra ranges from 32.76 dB to 35.84 dB. These signals are spectra
with high SNR. For any pulse width, a typical set of Brillouin gain spectrum is chosen. The fitting and
calculation results by the Lorentzian, Gaussian, pseudo-Voigt and Voigt profile-based algorithms are shown
diagrammatically in Figure 7. The extracted gBM, vB, ∆vB, and E are included in Table 7. gBMM, vBM and
∆vBM are the mean values of the extracted gBM, vB and ∆vB, respectively. From Figure 7 it can be seen
that there is a considerable difference between the curves fitted by the Lorentzian, Gaussian profile-based
algorithms and the measured one whatever the pulse width is employed. Therefore, the parameters
extracted by the Lorentzian, Gaussian profile-based algorithms in Table 7 may contain errors. The difference
between the curves fitted by the Lorentzian increases with decreasing pulse width and at the same time,
the difference between the curves fitted by the Gaussian increases with increasing pulse width which is
consistent with [32].
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Table 7. Mean value of the key parameters, E and T by different models for spectra with different pulse
widths, measured signals with average number of 218.

Models Pulse Widths 10 ns 20 ns 50 ns 100 ns 200 ns

Lorentzian

gBMM 2.95 × 10−1 9.42 × 10−1 2.23 3.66 5.06
vBM/GHz 1.07 × 101 1.07 × 101 1.07 × 101 1.07 × 101 1.07 × 101

∆vBM/GHz 8.22 × 10−2 4.97 × 10−2 3.69 × 10−2 3.55 × 10−2 3.60 × 10−2

EM 1.03 × 10−1 4.72 × 10−1 1.03 2.44 4.57
TM/s 2.41 × 10−3 2.19 × 10−3 1.97 × 10−3 1.93 × 10−3 1.89 × 10−3

Gaussian

gBMM 2.73 × 10−1 8.64 × 10−1 2.02 3.32 4.59
vBM/GHz 1.07 × 101 1.07 × 101 1.07 × 101 1.07 × 101 1.07 × 101

∆vBM/GHz 1.02 × 10−1 6.22 × 10−2 4.66 × 10−2 4.48 × 10−2 4.54 × 10−2

EM 8.23 × 10−3 1.14 × 10−1 1.1 3.1 6.3
TM/s 1.74 × 10−3 1.83 × 10−3 2.22 × 10−3 2.24 × 10−3 2.23 × 10−3

Pseudo-Voigt

gBMM 2.75 × 10−1 8.81 × 10−1 2.13 3.5 4.84
vBM/GHz 1.07 × 101 1.07 × 101 1.07 × 101 1.07 × 101 1.07 × 101

∆vBM/GHz 9.99 × 10−2 5.96 × 10−2 4.23 × 10−2 4.04 × 10−2 4.09 × 10−2

EM 1.61 × 10−3 6.56 × 10−3 4.48 × 10−2 1.25 × 10−1 2.66 × 10−1

TM/s 9.83 × 10−3 6.34 × 10−3 3.48 × 10−3 3.59 × 10−3 3.57 × 10−3

Voigt

gBMM 2.74 × 10−1 8.82 × 10−1 2.11 3.46 4.79
vBM/GHz 1.07 × 101 1.07 × 101 1.07 × 101 1.07 × 101 1.07 × 101

∆vBM/GHz 9.86 × 10−2 5.93 × 10−2 4.26 × 10−2 4.07 × 10−2 4.12 × 10−2

EM 3.09 × 10−3 5.66 × 10−3 3.36 × 10−2 9.55 × 10−2 1.93 × 10−1

TM/s 1.33 × 10−1 7.24 × 10−2 6.54 × 10−2 6.46 × 10−2 6.27 × 10−2

According to Table 7, the values of vB extracted by different models are quite similar. If the pulse
width is 10 ns, the mean values of the differences in the extracted Brillouin frequency shift between the
Lorentzian, Gaussian, pseudo-Voigt profile-based algorithms and the Voigt profile-based algorithm are
only 0.07 MHz, 0.02 MHz and 0.01 MHz, respectively.

The other cases have similar results. However, the differences in the extracted ∆vB between the
Lorentzian, Gaussian profiles and the pseudo-Voigt, Voigt profiles are remarkable. There is a very
good agreement between the curves fitted by the pseudo-Voigt, Voigt profile-based algorithms and the
measured ones. Therefore, ∆vB extracted by the Lorentzian and Gaussian profile-based algorithms has
significant errors. The sum squared errors E of the Lorentzian and Gaussian profile-based algorithms
are much larger than that of the pseudo-Voigt and Voigt profile-based algorithms. However, in theory,
the parameters extracted by the pseudo-Voigt profile-based algorithm may contain errors (Table 1).
From the accuracy point of view, the Voigt model is the best one. However, the computation time of the
Voigt profile-based algorithm is much more than that of the Lorentzian, Gaussian and pseudo-Voigt
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profile-based algorithms. The Voigt profile-based algorithm suffers from the weakness of low arithmetic
efficiency. Therefore, the computation time is the key factor of the algorithm.

In addition to the spectra with high SNR, the key parameters in the spectra with low SNR also
need to be extracted. The average number of waveforms is set to 210 and the pulse width is set to
10 ns. The other parameters are the same as the high SNR ones. 8501 sets of Brillouin gain spectra are
acquired by AV6419. The mean SNR of the measured spectra is 15.18 dB. The fitting and calculation
results by the four models are shown in Figure 8. The statistical results of gBM, vB, ∆vB and E extracted
by different models are summarized in Table 8 and the statistical results of the extracted model
parameters [14,17,22,33] are presented in Table 9.
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(a) Pseudo-Voigt model converges to an erroneous solution; (b) Pseudo-Voigt model converges to
a correct solution.

Table 8. Statistical results of gBM, vB, ∆vB, E and T extracted by different models, measured signals
with average number of 210.

Models Parameters Max Min Mean Std

Lorentzian

gBM 3.59 × 10−1 2.82 × 10−1 3.19 × 10−1 1.23 × 10−2

vB/GHz 1.07 × 101 1.07 × 101 1.07 × 101 1.76 × 10−3

∆vB/GHz 8.98 × 10−2 7.50 × 10−2 8.30 × 10−2 1.67 × 10−3

E 4.46 × 10−1 2.16 × 10−1 3.12 × 10−1 3.20 × 10−2

T/s 1.37 × 10−2 1.46 × 10−3 2.07 × 10−3 2.81 × 10−4

Gaussian

gBM 3.31 × 10−1 2.62 × 10−1 2.95 × 10−1 1.11 × 10−2

vB/GHz 1.07 × 101 1.07 × 101 1.07 × 101 1.66 × 10−3

∆vB/GHz 1.09 × 10−1 9.55 × 10−2 1.02 × 10−1 1.61 × 10−3

E 3.06 × 10−1 1.43 × 10−1 2.14 × 10−1 2.42 × 10−2

T/s 7.91 × 10−3 1.41 × 10−3 1.91 × 10−3 2.18 × 10−4

Pseudo-Voigt

gBM 1.76 1.53 × 10−1 2.98 × 10−1 1.99 × 10−2

vB/GHz 1.07 × 101 1.07 × 101 1.07 × 101 1.67 × 10−3

∆vB/GHz 1.08 × 10−1 7.39 × 10−2 9.98 × 10−2 2.52 × 10−3

E 3.62 × 10−1 1.32 × 10−1 2.03 × 10−1 2.52 × 10−2

T/s 8.87 × 10−2 2.98 × 10−3 8.51 × 10−3 3.57 × 10−3

Voigt

gBM 3.34 × 10−1 2.50 × 10−1 2.95 × 10−1 1.23 × 10−2

vB/GHz 1.07 × 101 1.07 × 101 1.07 × 101 1.70 × 10−3

∆vB/GHz 1.06 × 10−1 8.97 × 10−2 9.85 × 10−2 1.95 × 10−3

E 2.97 × 10−1 1.34 × 10−1 2.03 × 10−1 2.39 × 10−2

T/s 3.82 3.79 × 10−2 2.52 × 10−1 3.83 × 10−1
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Table 9. Statistical results of model parameters extracted by different models, measured signals with
average number of 210.

Models Parameters Max Min Mean Std

Lorentzian
gBM 3.59 × 10−1 2.82 × 10−1 3.19 × 10−1 1.23 × 10−2

vB/GHz 1.07 × 101 1.07 × 101 1.07 × 101 1.76 × 10−3

∆vB/GHz 8.98 × 10−2 7.50 × 10−2 8.30 × 10−2 1.67 × 10−3

Gaussian
gBM 3.31 × 10−1 2.62 × 10−1 2.95 × 10−1 1.11 × 10−2

vB/GHz 1.07 × 101 1.07 × 101 1.07 × 101 1.66 × 10−3

∆vB/GHz 1.09 × 10−1 9.55 × 10−2 1.02 × 10−1 1.61 × 10−3

Pseudo-Voigt

gBL 1.12 −1.37 × 10−1 3.59 × 10−2 1.22 × 10−1

vB/GHz 1.07 × 101 1.07 × 101 1.07 × 101 1.67 × 10−3

∆vBL/GHz 2.23 × 107 1.46 × 10−4 5.36 × 105 1.19 × 106

gBG 1.44 −7.96 × 10−1 2.62 × 10−1 1.22 × 10−1

∆vBG/GHz 2.70 × 10−1 2.04 × 10−6 9.72 × 10−2 1.44 × 10−2

Voigt

A 3.86 × 10−2 3.09 × 10−2 3.46 × 10−2 1.33 × 10−3

vB/GHz 1.07 × 101 1.07 × 101 1.07 × 101 1.70 × 10−3

∆vBL/GHz 3.58 × 10−2 1.27 × 10−2 2.23 × 10−2 3.79 × 10−3

∆vBG/GHz 9.92 × 10−2 7.04 × 10−2 8.68 × 10−2 3.66 × 10−3

According to Tables 8 and 9, the values of vB extracted by different models are quite similar.
The mean values of the differences in the extracted Brillouin frequency shift between the Lorentzian,
Gaussian, pseudo-Voigt profile-based algorithms and the Voigt profile-based algorithm are only
0.32 MHz, 0.17 MHz and 0.17 MHz, respectively. However, there is varying degrees difference in E and
the extracted gBM, ∆vB between different models. From Section 5.1, the Voigt profile-based algorithm
can extract parameters with the highest accuracy. Therefore, the other profile-based algorithms will
introduce more significant errors. In Figure 8a, the pseudo-Voigt profile-based algorithm converges
to an erroneous solution. Therefore, the significant errors are inevitable in the extracted parameters.
The results for the noisy measured spectra (Figure 8 and Tables 8 and 9) are similar to the results for the
measured spectra with high SNR (Figure 7 and Table 7). The results further validate the high accuracy
of the Voigt profile-based algorithm. The errors in gBM extracted by the pseudo-Voigt profile-based
algorithm in Table 8 are significant. However, the corresponding sum of the squared normal distances
E is not so large. This is due to the fact that E is calculated based on discrete spectra signal. Significant
errors in gBG and gBL do not necessarily correspond to significant error in E. gBM is calculated by:

gBM = gBG + gBL (19)

It means that the error in gBM depends solely on the errors in gBG and gBL.
The above results for measured spectra are consistent with the results for numerically generated

spectra in Section 5.1.

5.2.2. Comparison of different algorithms based on Voigt profile

The same 8501 sets of Brillouin gain spectra with low SNR are used in this part. The statistical
results of errors in the extracted key parameters, the computation time, the iteration number and the
sum of the squared normal distances corresponding to the direct algorithm, the random algorithm and
the proposed algorithm are presented in Table 10. The measured spectra and the waveshapes fitted by
the three Voigt profile-based algorithms are shown in Figure 9.
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Table 10. Statistical results of errors in the extracted key parameters, computation time, iteration
number and sum of the squared normal distances corresponding to three Voigt profile-based algorithms,
measured signals with average number of 210.

Algorithms Egmean Egmax Evmean/GHz Evmax/GHz E∆vmean/GHz E∆vmax/GHz lM TM/s EM

Direct 4.31 × 10−2 1.02 × 10−1 8.48 × 10−3 3.48 × 10−2 2.62 × 10−2 8.38 × 10−2 - 6.36 × 10−3 2.37 × 10−1

Random,
convergence 8.67 × 10−3 1.28 × 10−1 8.91 × 10−3 8.25 × 10−1 6.07 × 10−2 4.5 1.55 × 102 8.12 × 10−1 1.25 × 10−1

Proposed - - - - - - 4.06 × 101 2.77 × 10−1 5.09 × 10−2
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Figure 9. The measured spectra and the waveshapes fitted by three Voigt profile-based algorithms,
measured signals with average number of 210. (a) Random algorithm converges; (b) Random
algorithm diverges.

The proposed algorithm can converge in all cases and the convergence rate of the random
algorithm is 84.08%. Once diverged, the error in the parameters extracted by the random algorithm
is quite large, which will hide the accuracy of the converged cases. Therefore, for the random
algorithm, only the errors corresponding to the convergence cases are included in Table 10. For the
direct algorithm, the extracted parameters for six sets of spectra are complex numbers and they are
excluded in Table 10. According to the previous investigations, the proposed algorithm can converge
to the optimal solution in all cases. Therefore, the extracted parameters can be taken as the exact
values. The corresponding maximum differences in the extracted parameters gM, vB and ∆vB between
the proposed algorithm and the other two algorithms are represented by Egmax, Evmax and E∆vmax,
respectively. It is noted in Table 10 that the parameters extracted by the random algorithm and the
direct algorithm have significant errors even if the divergence cases have been eliminated. If the
temperature coefficient is 1.29 MHz/◦C, the mean errors in the temperature measured by the two
algorithms are 6.57 ◦C and 6.91 ◦C, respectively. The maximum errors in the temperature measurement
respectively are 26.95 ◦C and 639.78 ◦C. Not only the accuracy, but the computation time of the random
algorithm is also more than that of the proposed algorithm. The computation time and the sum
squared error of the random algorithm are about one and two times larger than that of the proposed
algorithm even for the converged cases.

To sum up, the proposed algorithm can converge to the optimal solution in all cases, regardless
of the numerically generated or measured signals, the values of pulse width and SNR used.
The parameters can be extracted by the proposed algorithm with the highest accuracy. The proposed
algorithm is a little hard to program. At the same time, the computation time is more than those of
the Lorentzian, Gaussian and pseudo-Voigt profile-based algorithms. Certainly, we can reduce the
computation time by use of a high-performance computer.

Although the fiber is not deployed in real equipment or the real civil infrastructure and at the
same time, the spectra are measured at ambient temperature, the wrapped fiber is subject to strain.
Changes of the extracted Brillouin frequency shift with fiber position for the measured spectra in
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Figures 7a and 8 are provided in Figure 10. The Brillouin frequency shift varies significantly with
fiber position. Additionally, the pulse width and SNR are different for the different measured spectra.
In fact, the variation of Brillouin frequency shift along the fiber may be a little more complex than that
of real conditions. Therefore, it can simulate well the influence caused by the temperature and strain in
practical cases. The proposed algorithm has been fully validated by a large number of representative
and typical numerically generated spectra and measured spectra. Therefore, it can effectively extract
key parameters from measured spectra in practical cases.Sensors 2018, 18, x 18 of 20 
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6. Conclusions

Existing key parameters extraction algorithms for Brillouin gain spectra are mainly based on
simplified models, and the extracted parameters may have significant errors. Based on the exact model
(Voigt profile), the key parameters extraction for fiber Brillouin distributed sensors is systematically
investigated in the paper. The conclusions are as follows:

(1) The parameters extracted by the Lorentzian, Gaussian profile-based algorithms easily contain
significant errors at different values of pulse width. The existing pseudo-Voigt profile-based
algorithm may introduce significant error for the case with low SNR. The proposed Voigt
profile-based algorithm is the most accurate one among all four tested profile-based algorithms.

(2) To improve the real-time performance of fiber Brillouin distributed sensing, a key parameter
extraction algorithm for Brillouin gain spectrum based on the exact Voigt profile is proposed.
The objective function is presented using the least-squares method. The Levenberg-Marquardt
algorithm is used to minimize the objective function and consequently extract the key parameters.
The initial values obtainment method and the convergence criterion are simultaneously given.
The number of sample points in Gauss-Hermite quadrature is suggested to choose 100.
The proposed Voigt profile-based algorithm can converge in all cases. It is more accurate than
that of the random algorithm and the direct algorithm. It also requires less computational effort
than the direct algorithm.

Author Contributions: Conceptualization, L.Z.; Methodology, L.Z.; Software, Z.X.; Validation, L.Z.; Formal
Analysis, Z.X.; Investigation, Z.X.; Resources, Z.X. Data Curation, Z.X.; Writing-Original Draft Preparation, Z.X.;
Writing-Review & Editing, L.Z.; Visualization, Z.X.; Supervision, L.Z.; Project Administration, L.Z.; Funding
Acquisition, L.Z.

Funding: National Natural Science Foundation of China (NSFC) (51607066, 61775057); Fundamental Research
Funds for the Central Universities (2017MS110, 2017MS196).

Conflicts of Interest: The authors declare no conflict of interest.



Sensors 2018, 18, 2419 19 of 20

References

1. Zhao, L.; Li, Y.; Xu, Z.; Yang, Z.; Lu, A. On-line monitoring system of 110kV submarine cable based on
BOTDR. Sensors Actuators A. Phys. 2014, 216, 28–35. [CrossRef]

2. Coscetta, A.; Minardo, A.; Olivares, L.; Mirabile, M.; Longo, M.; Damiano, M.; Zeni, L. Wind turbine blade
monitoring with Brillouin-based fiber-optic sensors. J. Sens. 2017, 2017, 9175342. [CrossRef]

3. Madjdabadi, B.; Valley, B.; Dusseault, M.B. Experimental evaluation of a distributed Brillouin sensing system
for measuring extensional and shear deformation in rock. Measurement 2016, 77, 54–66. [CrossRef]

4. Zheng, H.; Fang, Z.; Wang, Z.; Lu, B.; Cao, Y.; Ye, Q.; Qu, R.; Cai, H. Brillouin frequency shift of fiber
distributed sensors extracted from noisy signals by quadratic fitting. Sensors 2018, 18, 409. [CrossRef]
[PubMed]

5. Wada, D.; Sugiyama, J.I.; Zushi, H.; Murayama, H. An optical fiber sensing technique for temperature
distribution measurements in microwave heating. Meas. Sci. Technol. 2015, 26. [CrossRef]

6. Uva, G.; Francesco, P.; Andrea, F.; Giacinto, P. Structural monitoring using fiber optic sensors of a pre-stressed
concrete viaduct during construction phases. Case Studies Nondestruct. Test. Eval. 2014, 2, 27–37. [CrossRef]

7. Bao, Y.; Chen, G. High temperature measurement with Brillouin optical time domain analysis. Opt. Lett.
2016, 41, 3177–3180. [CrossRef] [PubMed]

8. Bao, Y.; Meng, W.; Chen, Y.; Chen, G.; Khayat, K.H. Measuring mortar shrinkage and cracking by pulse
pre-pump Brillouin optical time domain analysis with a single optical fiber. Mater. Lett. 2015, 145, 344–346.
[CrossRef]

9. Song, K.Y.; Chin, S.; Primerov, N.; Thévenaz, L. Time-domain distributed fiber sensor with 1 cm spatial
resolution based on Brillouin dynamic grating. J. Lightw. Technol. 2010, 28, 2062–2067. [CrossRef]

10. Jia, X.H.; Chang, H.Q.; Lin, K.; Xu, C.; Wu, J.G. Frequency-comb-based BOTDA sensors for
high-spatial-resolution/long-distance sensing. Opt. Express 2017, 25, 6997–7007. [CrossRef] [PubMed]

11. Azad, A.K.; Wang, L.; Guo, N.; Tam, H.Y.; Lu, C. Signal processing using artificial neural network for BOTDA
sensor system. Opt. Express 2016, 24, 6769–6782. [CrossRef] [PubMed]

12. Qian, X.Y.; Jia, X.H.; Wang, Z.N.; Zhang, B.; Xue, N.T.; Sun, W.; He, Q.H.; Wu, H. Noise level estimation of
BOTDA for optimal non-local means denoising. Appl. Opt. 2017, 56, 4727–4734. [CrossRef] [PubMed]

13. Farahani, M.A.; Castillo-Guerra, E.; Colpitts, B.G. Accurate estimation of Brillouin frequency shift in Brillouin
optical time domain analysis sensors using cross correlation. Opt. Lett. 2011, 36, 4275–4277. [CrossRef]
[PubMed]

14. Naruse, H.; Tateda, M.; Ohno, H.; Shimada, A. Dependence of the Brillouin gain spectrum on linear strain
distribution for optical time-domain reflectometer-type strain sensors. Appl. Opt. 2002, 41, 7212–7217.
[CrossRef] [PubMed]

15. Smith, R.G. Optical power handling capacity of low loss optical fibers as determined by stimulated Raman
and Brillouin scattering. Appl. Opt. 1972, 11, 2489–2494. [CrossRef] [PubMed]

16. Afshar, S.; Graham, V.; Ferrier, A.; Bao, X.; Chen, L. Effect of the finite extinction ratio of an electro-optic
modulator on the performance of distributed probe-pump Brillouin sensor systems. Opt. Lett. 2003, 28,
1418–1420. [CrossRef] [PubMed]

17. Kwon, H.; Kim, S.; Yeom, S.; Kang, B.; Kim, K.; Kim, T.; Jang, H.; Kim, J.; Kang, S. Analysis of nonlinear
fitting methods for distributed measurement of temperature and strain over 36km optical fiber based on
spontaneous Brillouin backscattering. Opt. Commun. 2013, 294, 59–63. [CrossRef]

18. Kuhn, W.R.; London, J. Infrared radiative cooling in the middle atmosphere (30–110 km). J. Atmos. Sci. 1969,
26, 189–204. [CrossRef]

19. Chen, M.; Meng, Z.; Wang, J.; Chen, W. Ultra-narrow linewidth measurement based on Voigt profile fitting.
Opt. Express 2015, 23, 6803–6808. [CrossRef] [PubMed]

20. Zhao, L.; Li, Y.; Xu, Z. A fast and high accurate initial values obtainment method for Brillouin scattering
spectrum parameter estimation. Sens. Actuators A. Phys. 2014, 210, 141–146. [CrossRef]

21. Xu, Z.; Hu, Z.; Zhao, L.; Li, Y. Optimal frequency scanning range for parameters extraction from Brillouin
scattering spectrum. Optik 2018, 158, 1380–1393. [CrossRef]

22. Zhang, Y.; Li, D.; Fu, X.; Bi, W. An improved Levenberg-Marquardt algorithm for extracting the features of
Brillouin scattering spectrum. Meas. Sci. Technol. 2013, 24. [CrossRef]

http://dx.doi.org/10.1016/j.sna.2014.04.045
http://dx.doi.org/10.1155/2017/9175342
http://dx.doi.org/10.1016/j.measurement.2015.08.040
http://dx.doi.org/10.3390/s18020409
http://www.ncbi.nlm.nih.gov/pubmed/29385052
http://dx.doi.org/10.1088/0957-0233/26/8/085105
http://dx.doi.org/10.1016/j.csndt.2014.06.002
http://dx.doi.org/10.1364/OL.41.003177
http://www.ncbi.nlm.nih.gov/pubmed/27420489
http://dx.doi.org/10.1016/j.matlet.2015.01.140
http://dx.doi.org/10.1109/JLT.2010.2050763
http://dx.doi.org/10.1364/OE.25.006997
http://www.ncbi.nlm.nih.gov/pubmed/28381041
http://dx.doi.org/10.1364/OE.24.006769
http://www.ncbi.nlm.nih.gov/pubmed/27136863
http://dx.doi.org/10.1364/AO.56.004727
http://www.ncbi.nlm.nih.gov/pubmed/29047608
http://dx.doi.org/10.1364/OL.36.004275
http://www.ncbi.nlm.nih.gov/pubmed/22048389
http://dx.doi.org/10.1364/AO.41.007212
http://www.ncbi.nlm.nih.gov/pubmed/12477110
http://dx.doi.org/10.1364/AO.11.002489
http://www.ncbi.nlm.nih.gov/pubmed/20119362
http://dx.doi.org/10.1364/OL.28.001418
http://www.ncbi.nlm.nih.gov/pubmed/12943077
http://dx.doi.org/10.1016/j.optcom.2012.12.012
http://dx.doi.org/10.1175/1520-0469(1969)026&lt;0189:IRCITM&gt;2.0.CO;2
http://dx.doi.org/10.1364/OE.23.006803
http://www.ncbi.nlm.nih.gov/pubmed/25836899
http://dx.doi.org/10.1016/j.sna.2014.02.022
http://dx.doi.org/10.1016/j.ijleo.2018.01.016
http://dx.doi.org/10.1088/0957-0233/24/1/015204


Sensors 2018, 18, 2419 20 of 20

23. Zhang, Y.; Yu, C.; Fu, X.; Li, D.; Jia, W.; Bi, W. An improved Newton algorithm based on finite element
analysis for extracting the Brillouin scattering spectrum features. Measurement 2014, 51, 310–314. [CrossRef]

24. Zhang, Y.-J.; Liu, W.-Z.; Fu, X.-H.; Bi, W.-H. The high precision analysis research of multichannel BOTDR
scattering spectral information based on the TTDF and CNS algorithm. Spectrosc. Spectr. Anal. 2015, 35,
1802–1807.

25. Olver, F.W.J.; Lozier, D.W.; Boisvert, R.F.; Clark, C.W. NIST Handbook of Mathematical Functions; Cambridge
University Press: Cambridge, UK, 2010.

26. Steen, N.M.; Byrne, G.D.; Gelbard, E.M. Gaussian quadratures for the integrals
∫ ∞

0 exp(−x2) f (x)dx and∫ b
0 exp(−x2) f (x)dx. Math. Comput. 1969, 23, 661–671.

27. Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions; US Government Printing Office:
Washington, DC, USA, 1972.

28. Olivero, J.J.; Longbothum, R.L. Empirical fits to the Voigt line width: A brief review. J. Quant. Spectrosc.
Radiat. Trans. 1977, 17, 233–236. [CrossRef]

29. Yin, Z.-Q.; Wu, C.; Gong, W.-Y.; Gong, Z.-K.; Wang, Y.-J. Voigt profile function and its maximum.
Acta Phys. Sin. 2013, 62, 123301. [CrossRef]

30. Ferrier, G.A.; Afshar, S.; Bao, X.Y.; Chen, L. A new fitting method for spectral characterization of
Brillouin-based distributed sensors. In Proceedings of the SPIE Conference on Applications of Photonic
Technology, Quebec City, QC, Canada, 15 December 2003.

31. Bao, X.; Chen, L. Recent progress in Brillouin scattering based fiber sensors. Sensors 2011, 11, 4152–4187.
[CrossRef] [PubMed]

32. Bao, X.; Brown, A.; DeMerchant, M.; Smith, J. Characterization of the Brillouin-loss spectrum of single-mode
fibers by use of very short (<10-ns) pulses. Opt. Lett. 1999, 24, 510–512. [PubMed]

33. Zhang, S.G. Research on the Signal Processing Technology of the BOTDR sensing system. Master’s Thesis,
Yanshan University, Qinhuangdao, China, May 2013.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.measurement.2014.02.005
http://dx.doi.org/10.1016/0022-4073(77)90161-3
http://dx.doi.org/10.7498/aps.62.123301
http://dx.doi.org/10.3390/s110404152
http://www.ncbi.nlm.nih.gov/pubmed/22163842
http://www.ncbi.nlm.nih.gov/pubmed/18071555
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Adaptability of Different Models for Key Parameters Extraction 
	Voigt Profile 
	Adaptability of Different Models 

	Key Parameters Extraction Algorithm Based on Voigt Profile 
	Objective Function 
	Optimization Algorithm 
	Initial Values Obtainment 
	Convergence Criterion 
	Flowchart of the Proposed Algorithm 

	Influence of Number of Sample Points in Gauss-Hermite Quadrature 
	Influence on Spectrum Approximation 
	Influence on the Computation Time and Accuracy of the Voigt Profile-Based Algorithm 

	Validation 
	Numerically Generated Signals 
	Measured Signals 
	Adaptability of Different Models 
	Comparison of different algorithms based on Voigt profile 


	Conclusions 
	References

