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Abstract

Background: Leptin is an adipocyte-derived hormone that plays a critical role in energy homeostasis and lipid metabolism.
Overnutrition-associated obesity is known to be accompanied by hyperleptinemia. However, the physiological actions of
leptin in the metabolic responses to high-fat diet (HFD) intake remain to be completely elucidated. Here we characterized
the metabolic features of mice fed high-fat diets and investigated the impact of leptin upon the lipogenic program which
was found to be suppressed by HFD feeding through a proteomics approach.

Results: When maintained on two types of high-fat diets for up to 16 weeks, mice with a higher fat intake exhibited
increased body fat accumulation at a greater pace, developing more severely impaired glucose tolerance. Notably, HFD
feeding at 4 weeks elicited the onset of marked hyperleptinemia, prior to the occurrence of apparent insulin resistance and
hyperinsulinemia. Proteomic analysis revealed dramatically decreased expression of lipogenic enzymes in the white adipose
tissue (WAT) from HFD-fed mice, including ATP-citrate lyase (ACL) and fatty acid synthase (FAS). The expression of ACL and
FAS in the liver was similarly suppressed in response to HFD feeding. By contrast, HFD-induced downregulation of hepatic
ACL and FAS was significantly attenuated in leptin receptor-deficient db/db mice. Furthermore, in the liver and WAT of wild
type animals, intraperitoneal leptin administration was able to directly suppress the expression of these two lipogenic
enzymes, accompanied by reduced triglyceride levels both in the liver and serum.

Conclusions: These results suggest that leptin contributes to the metabolic responses in adaptation to overnutrition
through suppressing the expression of lipogenic enzymes, and that the lipogenic pathway represents a key targeted
peripheral component in exerting leptin’s liporegulatory actions.
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Introduction

As a major risk factor for type 2 diabetes and cardiovascular

complications, obesity is currently reaching epidemic proportions

worldwide [1], largely stemming from complex interactions

between genetic factors and environmental influences such as

overnutrition. In mammals, multiple mechanisms act in an

integrated manner to balance energy storage and expenditure,

and chronic disruption of energy balance leads to excessive

accumulation of fat in the adipose tissue [2]. In addition to energy

storage, the adipose tissue is also known to serve as a critical

endocrine organ that releases a variety of adipokines, eliciting an

array of metabolic effects on lipid and glucose metabolism [3].

Leptin is an adipocyte-secreted hormone that plays a critical role

in energy homeostasis [4–6]. Primarily acting through activation

of leptin receptor-expressing neurons in the hypothalamus [7–11],

leptin functions to control energy balance and the fat mass via

reducing food intake and increasing energy expenditure. On the

other hand, leptin can also exert crucial metabolic effects upon

lipid metabolism, preventing triglyceride (TG) accumulation in

peripheral tissues [12]. For instance, it has been shown that leptin

is able to stimulate fatty acid oxidation through activation of AMP-

activated protein kinase (AMPK), subsequently inhibiting acetyl-

CoA carboxylase (ACC) activity, in the skeletal muscle [13].

Increased circulating levels of leptin (i.e. hyperleptinemia) have

been found to be associated with obesity induced by overnutrition,

as in the case of chronic intake of high-fat diet [14]. However,

whether hyperleptinemia exerts its metabolic liporegulatory

actions and represents an adaptive response to chronic overnutri-

tion has yet to be completely understood.
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De novo lipogenesis in the liver and WAT plays a key role in

body’s energy storage and is coordinately controlled in response to

nutritional, hormonal and metabolic stimuli [15,16]. This cytosolic

process occurs with the initial conversion of citrate to acetyl-CoA

catalyzed by ATP-citrate lyase (ACL) [17,18]. Acetyl-CoA is

further converted to malonyl-CoA by ACC, the rate-limiting step

in de novo fatty acid synthesis [19]. Malonyl-CoA is then used as the

substrate of fatty acid synthase (FAS) for fatty acid synthesis [20].

Recently, adipose tissue lipogenesis has been shown to be

controlled by leptin via STAT3-independent central mechanisms

[21]; whereas a liporegulatory role of hyperleptinemia has been

implicated in non-adipose tissues, affecting lipogenesis and fatty

acid oxidation [22]. Therefore, it is likely that leptin may act upon

the peripheral lipogenic program in the face of overnutrition to

mediate body’s metabolic adaptation responses.

Using the well-established HFD-induced obesity mouse model,

we employed a proteomic approach to examine the global protein

expression changes in the WAT as associated with the progression

of adiposity. We found that, among protein enzymes involved in

lipid metabolism, the lipogenic enzymes ACL and FAS were

predominantly suppressed in both the WAT and liver in mice

challenged by HFD feeding, in parallel with concomitant onset of

hyperleptinemia. Then we further investigated the impact of leptin

upon the control of lipogenic enzyme expression in the liver and

WAT.

Results

High-fat diet feeding induces hyperleptinemia prior to
hyperinsulinemia and insulin resistance

To characterize the metabolic features that accompany the

progression of adiposity, male C57BL/6 mice were fed low (LFD,

10% fat), high (HFD, 45% fat) and very high (VHFD, 60% fat) fat

diets, respectively. In comparison with control mice fed LFD, mice

fed HFD or VHFD developed overt obesity at 16 weeks, with their

body fat content increased by ,2.5-fold and ,3.8-fold, respectively

(Figure 1A). Whereas HFD feeding for 4 weeks did not show

significant effects, VHFD feeding considerably increased adiposity

(by 1.7-fold as compared to LFD), indicating that intake of higher

dietary fat (60% fat) induces a higher degree of obesity at a faster

pace. Moreover, supporting the close correlation between insulin

resistance and obesity, mice fed VHFD exhibited more pronounced

glucose intolerance at 16 weeks but not at 4 weeks when compared

with LFD-fed animals (Figure 1B). Consistently, marked hyper-

insulinemia was found at 16 weeks in HFD-fed mice, but not at 4

weeks (Figure 1C). In contrast, despite modest increases in body fat

mass (by ,70%) in VHFD-fed mice at 4 weeks, a ,7-fold upsurge

in circulating leptin levels was observed relative to LFD-fed mice;

whereas at 16 weeks both HFD and VHFD feeding led to

prominent degrees of hyperleptinemia (Figure 1D). These data

demonstrate that the onset of hyperleptinemia occurs prior to that of

hyperinsulinemia and insulin resistance during the progressive

development of diet-induced obesity, which may exert metabolic

actions in response to HFD feeding.

Lipogenic enzymes are predominantly suppressed in
response to HFD feeding

To explore the global protein expression features in the WAT of

mice that may manifest the metabolic impact of HFD feeding, we

took a proteomic approach to analyze the adipose protein extracts

from mice fed LFD versus VHFD by quantitative two-dimensional

(2D) polyacrylamide gel electrophoresis (PAGE) (Figure 2A).

Subsequent tryptic peptide analysis by LC-mass spectrometry

identified a total of 33 proteins in mice fed VHFD for 4 weeks and

of 22 proteins in mice fed VHFD for 16 weeks, respectively, that

exhibited significantly altered expression levels (Table 1 and
Supporting Information Table S1). Included among the

proteins upregulated are several stress response- or detoxification-

related proteins (such as heat shock cognate 71 kDa protein) and

cytoskeleton/structural proteins, whereas most of the proteins

showing decreased expression levels were involved in lipid, fatty

acid and carbohydrate metabolism. Notably, lipogenesis-related

enzymes, including ACL, FAS, transketolase and malic enzyme 1

(ME1), displayed the most prominent suppression in response to

VHFD feeding. These enzymes catalyze critical steps in de novo

fatty acid synthesis, either responsible for production of cytosolic

Figure 1. High-fat diet feeding elicits hyperleptinemia prior to hyperinsulimia. C57BL/6 male mice at 6 weeks of age were fed LFD, HFD
and VHFD, respectively. (A) Body fat accumulation was monitored monthly by nuclear magnetic resonance (NMR) and shown as percentage of total
body weight (n = 15/group). (B) Glucose tolerance tests were performed in mice at 4 weeks (n = 10/group) or 16 weeks (n = 15/group) as indicated. (C,
D) Serum concentrations of (C) insulin and (D) leptin were determined in mice maintained on the diets for 4 or 16 weeks (n = 3–4/group). All data are
presented as mean6SEM. *p,0.05 vs. LFD-fed mice.
doi:10.1371/journal.pone.0006884.g001
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acetyl-CoA, catalysis of fatty acid synthesis from malonyl-CoA, or

generation of NADPH to be consumed in fatty acid synthesis

(Figure 2B). Of interesting note, as analyzed by 2D-PAGE, ACL

protein migrated as differentially charged species, likely arising

from multiple modifications (e.g. phosphorylation). To verify the

downregulated expression of lipogenic enzymes as detected by the

proteomic analysis, quantitative RT-PCR assessment was per-

formed. The mRNA expression levels of both ACL and FAS were

similarly reduced by ,80% in mice fed HFD or VHFD for 4

weeks (Figure 2C).

Then we further examined by immunoblotting the HFD-

induced suppression of ACL and FAS proteins in the WAT, both

of which were markedly reduced at 4 or 16 weeks in HFD- or

VHFD-fed mice (Figure 3A), consistent with their downregulated

mRNA expression levels. Similarly in the liver, the other major

lipogenic organ responsible for fuel conversion and storage, HFD

feeding also led to dramatically suppressed expression of ACL and

FAS proteins (Figure 3B).

Collectively, these data demonstrate that in response to high

dietary fat intake, hyperleptinemia occurs at an early stage during

the progressive accumulation of fat mass, concurrent with marked

suppression of the lipogenic program in the adipose tissues as well

as in the liver. This indicates that leptin may contribute to eliciting

these metabolic changes in an adaptive response to overnutrition.

Leptin signaling deficiency attenuates HFD-induced
suppression of hepatic lipogenic enzymes

To investigate the link between the metabolic effects of hyperlepti-

nemia and the suppression of lipogenic enzymes upon the challenge of

HFD, we examined the impact of HFD feeding in leptin receptor-

Table 1. Proteins with altered expression in the WAT of the HFD-fed mice at 4 weeks.

Accession No. Gene name Description Fold

NP_598798 ATP citrate lyase lipid, fatty acid and isoprenoid metabolism 210.68

NP_032014 Fatty acid synthase lipid, fatty acid and isoprenoid metabolism 24.83

NP_033414 Transketolase pentose-phosphate pathway 22.93

NP_032641 NADP-dependent malic enzyme lipid, fatty acid and isoprenoid metabolism 22.78

NP_034079 Carnitine O-palmitoyltransferase II lipid, fatty acid and isoprenoid metabolism 22.65

NP_033788 Aldose reductase C-compound and carbohydrate metabolism 22.31

AAH94462 Aconitate hydratase, mitochondrial precursor C-compound and carbohydrate metabolism 22.13

NP_031407 Long-chain specific acyl-CoA dehydrogenase lipid, fatty acid and isoprenoid metabolism 22.04

NP_035164 Peroxiredoxin-1 stress response,detoxification 21.90

AAH16619 Pyruvate kinase 3 C-compound and carbohydrate metabolism 21.88

AAF67667 Isovaleryl-CoA dehydrogenase amino acid metabolism 21.79

NP_031409 Short-chain specific acyl-CoA dehydrogenase lipid, fatty acid and isoprenoid metabolism 21.77

NP_032823 Pyruvate carboxylase lipid, fatty acid and isoprenoid metabolism 21.69

AAH39925 Bifunctional purine biosynthesis protein PURH nucleotide/nucleoside/nucleobase metabolism 21.65

NP_080455 Abhydrolase domain-containing protein 5 protein modification 21.55

NP_083060 Coagulation factor XIII A chain precursor protein modification 1.65

NP_033375 Indolethylamine N-methyltransferase C-compound and carbohydrate metabolism 1.68

NP_666232 Gelsolin cytoskeleton/structural proteins 1.69

NP_694708 EH-domain containing 2 cytoskeleton/structural proteins 1.71

NP_036167 Synaptic vesicle membrane protein VAT-1 homolog intracellular transport vesicles 1.72

NP_038534 Eukaryotic initiation factor 4A-II DNA/RNA processing 1.76

AAH66191 Heat shock cognate 71 kDa protein stress response,detoxification 1.80

NP_067248 Creatine kinase B-type amino acid metabolism 1.81

AAH55341 Rab GDP dissociation inhibitor beta-2 cytoskeleton/structural proteins 1.94

NP_075608 Alpha-enolase C-compound and carbohydrate metabolism 2.06

AAC53295 Proteasome activator complex subunit 1 protein/peptide degradation 2.29

NP_031978 Protein disulfide isomerase associated 3 signal transduction 2.35

AAA69475 Peroxiredoxin-2 stress response,detoxification 2.37

CAA31455 Gamma actin-like protein cytoskeleton/structural proteins 2.54

NP_058662 D-3-phosphoglycerate dehydrogenase amino acid metabolism +

AAI08387 Actin-like protein 3 cytoskeleton/structural proteins +

NP_033768 Cysteine-rich secretory protein 1 precursor extracellular matrix component +

NP_033861 Aldose reductase-related protein 1 lipid, fatty acid and isoprenoid metabolism +

Numbers with ‘‘2’’ indicate fold decreases in the VHFD-fed group, or fold increases otherwise. ‘‘+’’ indicates that the protein was only detectable in the WAT from the
VHFD-fed mice. Quantitation was done using the ImageMasterTM 2D Elite Software (Amersham Biosciences).
doi:10.1371/journal.pone.0006884.t001
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deficient, hyperphagic and obese db/db mice. When fed VHFD versus

LFD for 4 weeks, db/db mice displayed body weight gain and fat mass

accumulation to a greater extent than their WT littermates (data not

shown). Consistently, hepatic expression of ACL and FAS was

markedly reduced in VHFD-fed WT mice; in contrast, suppression of

hepatic ACL and FAS expression was prominently blunted in VHFD-

fed db/db mice (Figure 4). Thus, these results suggest that fully

functional leptin actions are required for HFD-induced suppression of

the lipogenic enzymes in the liver, further supporting the involvement

of leptin in adaptive responses to overnutrition through its suppressing

action on the lipogenic program.

Leptin administration directly suppresses the expression
of lipogenic enzymes

Leptin has been reported to reduce triglyceride content in

peripheral tissues, including liver, muscle and pancreas [22]. To

determine whether leptin exerts its liporegulatory effects through,

at least in part, direct downregulation of lipogenic enzymes, we

injected wild type mice maintained on a normal chow diet

intraperitoneally (i.p.) with leptin twice a day for 4 days. Consistent

with previously documented studies [23], leptin administration

resulted in considerable reductions in food intake and body weight

(Figure 5A, B). At 5 hours post the last injection with leptin,

marked phosphorylation/activation of signal transducer and

activator of transcription 3 (STAT3) were detected in the

hypothalamus as well as in the WAT and liver (Figure 5C). In

parallel, leptin treatment significantly decreased the triglyceride

(TG) levels both in the serum and liver (Figure 5D). Immunoblot

analysis showed that leptin significantly reduced the protein

expression levels of ACL (by ,46%) and FAS (by ,56%) in the

liver (Figure 5E); more dramatic suppression of ACL and FAS

protein expression was also observed in the WAT (Figure 5F).

Figure 2. Identification by proteomic analysis of lipogenic enzymes suppressed in the white adipose tissue in response to the high-
fat diet challenge. (A) Protein extracts of the epididymal fat pad from mice fed LFD vs. VHFD for 4 weeks (n = 3/group) were fractionated by 2D
SDS-PAGE. Proteins of interest were subsequently subjected to tryptic peptide identification analysis using LC-mass spectrometry. Shown is a
representative section of the silver-stained 10% 2D SDS-PAGE gel with the migration of ACL protein indicated by the arrows. (B) Schematic diagram of
the sequential steps in de novo lipogenesis as related to the TCA cycle in the mitochondrion. Highlighted by circles are the identified enzymes
displaying predominantly decreased expression levels. (C) Real-time quantitative RT-PCR analysis of the mRNA expression levels of ACL and FAS in the
WAT of mice fed LFD vs. VHFD for 4 weeks, shown as mean6SEM (n = 3/group). *p,0.05 vs. LFD-fed mice.
doi:10.1371/journal.pone.0006884.g002
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Together, these data further indicate that peripheral lipogenic

pathway represents a key targeted component in exerting leptin’s

liporegulatory actions.

Discussion

As major organs for energy conversion and storage, both the liver

and white adipose tissue play crucial roles in metabolic homeostasis

by responding to body’s nutritional and energy states. In this study,

we show that in an adaptive response to overnutrition (HFD intake),

the early onset of hyperleptinemia most likely contributes to the

suppression of the lipogenic program in the liver and white adipose

tissue; leptin exerts crucial liporegulatory functions via its metabolic

control of the peripheral lipogenic pathway.

Taking a proteomic approach, we attempted to characterize the

global protein expression profiles in the WAT of mice when

challenged with HFD feeding, leading to the identification of

lipogenic enzymes, including ACL and FAS, which exhibited most

predominantly decreased expression patterns. Despite the limited

number of proteins identified by the proteomic strategy that

allowed only for identification of those expressed at abundant

levels, our results are in line with the reported oligonucleotide

microarray profiling studies by Moraes RC et al. [24]. Similar to

the microarray results showing differentially expressed genes in the

WAT of HFD-fed mice after 8 weeks [24], many of the WAT

proteins identified were also found to be down-regulated in HFD-

fed mice, among which included enzymes involved in lipid

metabolism (e.g. FAS and transketolase) and detoxification

processes, as well as cytoskeleton structural components. There-

fore, our proteomic analysis of the WAT revealed similarly broad

changes in the gene expression spectrum in response to HFD

intake. Moreover, the observed suppression in the liver of the

protein expression of the two key lipogenic enzymes, ACL and

FAS, is also consistent with their reduced mRNA expression levels

documented by hepatic cDNA microarray analyses of HFD-fed

obese mice [25,26]. As HFD-induced changes in the WAT

expression of stress response proteins and cytoskeleton compo-

nents may reflect the coordinate response to meet the demand for

Figure 3. High-fat diet feeding suppresses the expression of lipogenic enzymes both in the white adipose tissue and liver. Western
immunoblot analysis of the expression of ACL and FAS in the (A) WAT or (B) liver from mice fed LFD, HFD and VHFD for 4 and 16 weeks, respectively.
Each lane represents the tissue extract from one animal. Bar graphs indicate the relative protein expression levels determined by densitometric
quantification of the immunoblots after normalization to actin or GAPDH. Data are shown as mean6SEM (n = 3/group). *p,0.05 vs. LFD-fed mice.
doi:10.1371/journal.pone.0006884.g003
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increased energy storage in adipocytes, our findings are in

accordance with the notion that transcriptional adaptation occurs

upon the challenge by high dietary fat intake. The observed

suppression of the endogenous lipogenic program in the adipose

tissue and liver most likely represents an important feature of the

early adaptive responses to the state of overnutrition, whereby

increased leptin levels may exert important regulatory actions.

Multiple mechanisms are thought to mediate the regulatory actions

of leptin on lipid metabolism. Direct peripheral actions by leptin have

been implicated in depleting fat content through increased fatty acid

oxidation as well as suppressed lipogenesis [12,22,27]. Upon HFD

feeding, we observed dramatically increased leptin but normal insulin

levels that paralleled the concurrent suppression of lipogenic enzymes

in the liver and WAT; on the other hand, abrogation of leptin

signaling in db/db mice abolished, at least partially, the suppressing

effects of HFD feeding on hepatic ACL and FAS expression. These

results suggest that HFD-induced hyperleptinemia contributes to the

suppression of the lipogenic program, consistent with previously

reported findings that indicate the requirement of functional leptin

actions for HFD-induced suppression of de novo lipogenesis using the

leptin receptor-defective Zucker diabetic fatty (ZDF) rats [28,29].

Moreover, we observed that direct leptin administration stimulated

the phosphorylation activation of STAT3 not only in the hypothal-

amus, but also in the liver and WAT, paralleled by reduced ACL and

FAS protein expression both in the liver and WAT. Whereas a central

action by leptin has been shown to be critical to its metabolic control of

lipid metabolism [21,30], it remains to be completely clarified whether

leptin exerts its suppressing effects upon the lipogenic program also

through autonomous peripheral mechanisms, or whether the

peripheral STAT3 activation is essentially involved in mediating

leptin’s liporegulatory actions. In addition, leptin has been demon-

strated to result in more pronounced suppression of the expression of

lipogenic genes, including ACL and FAS, as compared with pair-

feeding in leptin-deficient ob/ob mice via hepatic mciroarray analysis

[31], while another study by RT-PCR assessment showed similarly

repressed expression of lipogenic genes, such as ACC and FAS, upon

leptin treatment relative to pair-feeding in ob/ob mice [32]. Thus, it

remains to be completely deciphered whether leptin exerts its action

on the control of lipogenic program in a manner totally independent

of its regulation of food intake.

Obesity is pathogenically associated with the occurrence of

leptin resistance in human as well as in animal models [33,34].

Because our results support that leptin exerts its crucial metabolic

effects through controlling the expression of lipogenic enzymes, it

is conceivable that dysregulated lipogenic pathway may underlie

the deleterious effects of defective leptin signaling upon lipid

metabolism. Indeed, as we have previously demonstrated in db/db

mice, hepatic ACL is dysregulated in the absence of functional

leptin signaling; furthermore, hepatic ACL suppression leads to

marked protection of the obese mice against the development of

liver steatosis [35]. Thus, our results provide physiological

evidence that the lipogenic pathway serves as a key component

in mediating leptin’s regulatory actions in lipid homeostasis.

Materials and Methods

Animal studies
C57BL/6 male mice (Shanghai Laboratory Animal Co. Ltd) and

C57BL/6 db/db male mice (from Model Animal Research Center)

were housed in laboratory cages at a temperature of 2363uC and a

humidity of 3565% under a 12-hr dark/light cycle (lights on at 6:30

am) in accredited animal facilities at Shanghai Institutes for

Biological Sciences, CAS. For DIO mouse model, mice were

randomly grouped with free access to one of the three experimental

diets (n = 15/group) containing 10 kcal% (LFD), 45 kcal% (HFD)

and 60 kcal% (VHFD) fat, respectively (Research Diets). Total body

fat content was measured by nuclear magnetic resonance (NMR)

using the Minispec Mq7.5 (Bruker). For leptin administration,

individually caged 8-week-old male mice (n = 4–5 per group) on

chow diet were first acclimated by i.p. injection of PBS for 5 days,

followed by i.p. injection twice daily (6:00 pm and 8:00 am) with

PBS or recombinant mouse leptin (National Hormone and Peptide

Program) at a dose of 2 mg/kg for 4 days. Mice were sacrificed

5 hours after the eighth injection (at 1:00 pm). Tissues of interest

were snap-frozen in liquid nitrogen immediately after resection and

stored at 280uC. All experimental procedures and protocols were

approved by the Institutional Animal Care and Use Committee of

the Institute for Nutritional Sciences, CAS.

2D SDS-PAGE and protein identification by MS
Proteins extracts (30 mg) from epididymal fat pads were loaded

onto an Immobiline Drystrip IPG gel (Amersham Biosciences,

pH range 3–10 NL), and proteins were separated using the

IPGphor Isoelectric Focusing System (Amersham Biosciences)

according to manufacturer’s instructions. For the second

dimension analysis, the IPG strips were first equilibrated in a

buffer containing 50 mM Tris-HCl, pH 8.8, 6 M urea, 30%

glycerol, 2% SDS, 0.002% bromophenol blue and 1% dithio-

threitol, followed by incubation in the same buffer with 1% DTT

replaced by 2.5% iodoacetamide. Proteins were fractionated by

10% SDS-PAGE and visualized by silver staining, followed by

quantitative analysis using the ImageMasterTM 2D Elite

Software (Amersham Biosciences). Visualized protein spots of

interest were then excised from Coomassie-blue-stained gels and

subjected to in-gel digestion by trypsin. Recovered peptides for

each protein were analyzed by nanoelectrospray tandem mass

spectrometry using a quadrupole/time-of-flight (Q-TOF) hybrid

mass spectrometer (QSTAR-Pulsar, Applied Biosystems/Sciex

and Bruker-Daltonics AuoFlex TOF-TOF LIFT). The mass

profiles of tryptic peptides were subsequently analyzed via

Figure 4. Attenuation of high-fat diet-induced suppression of
hepatic lipogenic enzymes in db/db mice. (A) Western immunoblot
analysis of ACL and FAS protein levels in the liver of WT and db/db mice
fed LFD vs. VHFD for 4 weeks. (B) Quantification of the relative protein
levels in (A) after normalization to tubulin as the loading control, shown
as mean6SEM (n = 2–4/group). *p,0.05 vs. LFD-fed mice of the same
genotype.
doi:10.1371/journal.pone.0006884.g004
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searching protein sequence databases (NCBI Nonredundant

Protein Database).

Glucose tolerance test (GTT)
After an overnight fast, mice were injected i.p. with glucose at

1 g/kg. Blood was collected from the tail vein at 0, 30, 60, and

120 min after glucose injection, and glucose concentrations were

measured by a glucometer (FreeStyle).

Blood measurements
Serum level of triglycerides was determined by the Serum

Triglyceride Determination Kit (Sigma). Serum concentrations of

Figure 5. Exogenous leptin suppresses the expression of lipogenic enzymes both in the liver and white adipose tissue. C57BL/6 male
mice at 8 weeks of age were treated with PBS vs. leptin (2 mg/kg) via intraperitoneal (i.p.) injection twice a day for 4 days, and were sacrificed 5 hours
after the last injection. (A) Food intake and (B) body weight were measured daily before the dark cycle, and arrows indicate the time points of leptin
injections. (C) Western immunoblots showing leptin-stimulated activation of STAT3 in the hypothalamus, liver and white adipose tissue, as detected
by the indicated antibodies. (D) The triglyceride (TG) levels both in the serum and liver were measured after leptin administration. (E–F) Protein levels
of ACL and FAS in the liver (E) and WAT (F) were analyzed by Western immunoblot, with quantification results shown in the bar graphs. Data in all
panels are presented as mean6SEM (n = 4–5/group); *p,0.05 vs. PBS-treatment group.
doi:10.1371/journal.pone.0006884.g005
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insulin, leptin were measured by the Mouse Insulin RIA Kit and

Mouse Adipocyte LINCOplex Kit (LINCO Research), respec-

tively, according to manufacturer’s instructions.

Antibodies and Western immunoblot analysis
Monoclonal FAS antibody was purchased from BD Biosciences;

ACL, STAT3 and phospho-STAT3 antibodies were from Cell

Signaling; GAPDH antibody was from KANGCHEN; Monoclo-

nal antibody against tubulin was from Sigma. For Western

immunoblotting, tissue extracts were prepared by lysis with

CelLyticTM MT (Sigma) and centrifuged for 20 min at 20,000 g

to remove the debris. Proteins (20,40 mg) were separated by

SDS-PAGE and transferred to PVDF filter membrane (Amersham

Biosciences). After incubation with the desired antibodies, the blots

were developed using Amersham’s ECL-plus Detection System.

Quantitative RT-PCR analysis
Epididymal fat pads from mice fed LFD vs. VHFD were

removed and snap-frozen immediately in liquid nitrogen for

subsequent RNA extraction with TRIzol reagent (Invitrogen,

Carlsbad, CA). Reverse transcription was done using M-MLV

reverse transcriptase and random hexamer primers (Invitrogen).

Real-time quantitative PCR was performed with ABI Prism 7500

Sequence Detection System according to manufacture’s recom-

mendations (Applied Biosystems), with GAPDH used as an

internal control for normalization and the following oligonucleo-

tide primers for each target gene:

ACL, 59-TGGATGCCACAGCTGACTAC-39 and 59-GGTT-

CAGCAAGGTCAGCTTC-39;

FAS, 59AAGTTGCCCGAGTCAGAGAA-39 and 59-CGTC-

GAACTTGGAGAGATCC-39;

Statistical analysis
Data are presented as mean6SEM. Differences were analyzed

by unpaired two-tailed t-test between two groups or otherwise by

one-way ANOVA.

Supporting Information

Table S1 Proteins with altered expression in the WAT of the

HFD-fed mice at 16 weeks Numbers with ‘‘-’’ indicate fold

decreases in the VHFD-fed group, or fold increases otherwise.

Quantification was done with the ImageMaster 2D Elite Software

(Amersham Biosciences).

Found at: doi:10.1371/journal.pone.0006884.s001 (0.05 MB

DOC)
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