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Removal of pharmaceutical ingredients such as tetracycline from
aqueous solution has a great importance. The aim of the current
study was to investigate the degradation of tetracycline antibiotic in
the presence of a triode semiconductor oxide as well as modeling of
the photocatalytic degradation process in order to determine optimal
condition Zinc stannate nanoflower (Zn2SnO4) was synthesized by
hydrothermal process and characterized by X-ray diffraction (XRD),
Fourier transform infrared (FT-IR), and scanning electron microscopy
(SEM) techniques. Response surface methodology (RSM) was used to
model and optimize four key independent variables, including pho-
tocatalyst dosage, initial concentration of tetracycline antibiotic (TC)
as model pollutant, pH and reaction time of photocatalytic degra-
dation. The proposed quadratic model was in accordance with the
experimental results with a correlation coefficient of 98%. The
obtained optimal experimental conditions for the photodegradation
process were the following: zinc stannate (ZTO) dosage¼300mg L-1,
initial concentration of TC¼ 10mg L-1, reaction time¼ 100min and
vier Inc. This is an open access article under the CC BY license
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pH¼4.5. Under the optimal conditions, the predicted degradation
efficiency was 95.45% determined by the proposed model. In order to
evaluate the accuracy of the optimization procedure, the con-
firmatory experiment was carried out under the optimal conditions
and the degradation efficiency of 93.54% was observed, which closely
agreed with the predicted value.
& 2018 The Authors. Published by Elsevier Inc. This is an open access

article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
Specifications Table
ubject area
 Environmental sciences

ore specific subject area
 Environmental chemistry

ype of data
 Tables and figures

ow data was acquired
 In this study, Firstly, Zn2SnO4 was synthesized and investigated for

TC removal in aqueous solution. After that, it characterized by XRD,
FT-IR, and SEM techniques. Response surface methodology (RSM)
was used to model and optimize four independent variables,
including photocatalyst dosage, initial concentration of TC, pH and
reaction time of photocatalytic degradation
ata format
 Raw, analyzed

xperimental factors
 Zinc stannate nanoflower (Zn2SnO4) was synthesized by hydro-

thermal process.

xperimental features
 The samples preparation and analysis of them were performed

according to standard method that provided invalid and similar
references.
ata source location
 Isfahan city, Iran

ata accessibility
 Data are included in this article
D

Value of the data

� The treatment of wastewater containing TC by suitable and efficient ways (before entering the
aquatic ecosystem) is very necessary. Based on this necessity, the data in this study provides
information on the effectiveness of a new method for removal of TC from aqueous solutions.

� The obtained data showed the prepared ZTO has suitable efficiency for the removal of TC from
aqueous solution. Accordingly, more research can be done with more hope and confidence on the
present treatment method.

� The obtained data can be useful for future similar studies especially in terms of study design about
removal survey of TC from aqueous solution.
1. Data

1.1. Modeling and optimization of the tetracycline degradation process during the (UV/ZTO) process via
the response procedure method

The CCD method is used to design the experiments to achieve optimized conditions of tetracycline
degradation. The designed experiments (31 experiments) are done on the proposed condition based on the
CCD and the results are presented in Table 1. According to the data collected for determination of the
degradation level, according to Table 1, a quadratic polynomial equation is obtained. The following equation
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shows a general model for prediction of the tetracycline degradation level according to real values:

Y¼ 52:5714�30:6050 Að Þþ5:4833 Bð Þ�3:5783 Cð Þþ20:8317 Dð Þþ8:0806 A2
� �

�7:0306 B2
� �

þ1:8694 C2
� �

–9:1806 D2
� �

–13:1450 A� Bð Þ–2:5450 A� Cð Þþ1:3350 A� Dð Þ–1:3550 B� Cð Þ

–0:1350 B� Dð Þþ9:5650 C� Dð Þ

Where Y is the TC degradation degree, and A, B, C, and D are the real values of pH, photocatalyst dosage,
initial concentration of TC, and reaction time. The predicted values of the tetracycline degradation are
presented in Table 1 with a model. Drawing the predicted values with a model, according to the real values
(Fig. 1), a line was achieved with the correlation coefficient of 0.98, which shows that the model is
satisfactory.

The results obtained from the ANOVA, which are driven from the Mini Tab software, are presented
in Table 2.

P values related to the terms of the proposed model for the TC degradation process during the UV/
ZTO process are presented in Table 3.

The optimized values of the chosen variables and the maximum predicted value for the tetra-
cycline degradation are presented in Table 4. To evaluate the validity of the predicted value, the
experimental would be done via CCD in the same proposed condition and with a value of 95.45% for
the TC degradation in the optimized conditions.
Table 1
Experimental design matrix and the value of responses based on experiment run.

Run pH ZTO dosage, mg/l TC concentration, mg/l Reaction time, min Actual removal, % Predicted removal, %

1 6 150 25 40 42.8 42.91
2 9 250 25 40 13 15.25
3 7.5 200 20 70 51 52.57
4 7.5 200 20 130 64.7 64.22
5 7.5 300 20 70 52.1 51.02
6 6 150 15 40 48.6 49.32
7 6 250 25 100 77.12 79.24
8 7.5 200 30 70 52 50.86
9 9 250 25 100 43.6 41.16
10 9 150 15 40 27 25.9
11 9 200 20 70 11.8 13.88
12 6 250 15 40 62.1 62.13
13 4.5 200 20 70 76.8 75.09
14 9 150 25 40 19 16.94
15 6 250 25 40 54.4 54.36
16 7.5 100 20 70 38.6 40.01
17 9 250 15 100 41.3 21.42
18 7.5 200 20 10 21.7 22.55
19 7.5 200 20 70 51.8 22.55
20 9 150 25 100 42.3 43.29
21 6 150 25 100 67.3 67.93
22 7.5 200 20 70 50.5 52.57
23 9 250 15 40 27.6 25.5
24 9 150 15 100 44.06 42.68
25 7.5 200 20 70 51.7 52.57
26 7.5 200 20 70 50.3 52.57
27 7.5 200 10 70 56.5 58.01
28 6 200 15 100 76.8 77.44
29 7.5 200 20 70 60.1 52.57
30 6 150 15 100 66 64.77
31 7.5 200 20 70 52.6 52.57



Table 2
Analysis of variance (ANOVA) for the selected quadratic model.

Source DOF Adj SS Adj MS F-value P-value

Regression 14 9079.61 648.54 89.96 0.000
Residual 16 115.34 7.21 – –

Total 30 9194.96 – – –

SS: Sum of squares.
MS: Mean squares.

Table 3
The ANOVA results for the coefficients of variables of quadratic model.

Factor Coefficient P-Value

A �30.605 0.000
B 5.4883 0.000
C �3.5783 0.005
D 20.8317 0.000
A2 �8.0806 0.001
B2 �7.0306 0.001
C2 1.8694 0.336
D2 �9.1806 0.000
A�B �13.145 0.000
A�C �2.545 0.000
A�D 1.335 0.626
B�C �1.355 0.621
B�D �0.135 0.961
C�D 9.565 0.003

Fig. 1. The relationship between the predicted and actual responses.
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1.2. Evaluation of synthesized nano-particles properties

FT-IR studies on the synthesized ZTO via the 500–4000 cm�1 hydrothermal method are evaluated
and the result is shown in Fig. 2.

Position and relative intensity of peaks in the XRD pattern of the synthesized ZTO indicates the
presence of crystal phases (with the cart No. of 2184-074-01) in the structure of the synthesized
photocatalyst (Fig. 3).

The SEM images of the synthesized ZTO via the hydrothermal method are presented in Fig. 4. It
was observed that the ZTO is in the form of nano flowers.



Table 4
Optimized values of parameters effective on the tetracycline degradation.

Parameters Optimized amounts

ZTO (mg/L) 300
pH 4.5
mg/L) )TC 10
Time(min) 100
Removal Percent 93.54
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Fig. 2. FT-IR spectrum of prepared ZTO.

Fig. 3. XRD pattern spectrum of prepared ZTO.
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Fig. 4. SME images of prepared ZTO.
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1.3. The effect of different parameters on the photocatalytic degradation of TC

1.3.1. Effect of initial concentration of pollutant and contact time on the tetracycline degradation
Fig. 5-a shows the effect of initial concentration of pollutant and contact time on the tetracycline

degradation (pH is 7.5 and the photocatalyst dosage is 200mg L�1). The tetracycline degradation
efficiency increases with an increase in contact time and the pollutant concentration.

1.3.2. Effect of initial concentration of pollutant and photocatalyst dosage on the tetracycline degradation
The tetracycline degradation degree for the reaction time of 70min and pH of 7.5, as a function of

photocatalyst dosage, is shown in Fig. 6-b. The obtained results from the diagram indicate that in the
low concentration of pollutant, the degradation degree increases as a result of the existence of
numerous absorption sites.

1.3.3. Effects of pH and initial concentration of pollutant on tetracycline degradation
In Fig. 5-b in the conditions that the time is equal to 70min and pollutant concentration is 20mg

L�1 in the acidic medium the highest amount of degradation occurs as a result of the electrostatic
attraction between the pollutant and the photocatalyst surface.
2. Experimental design, materials and methods

2.1. Properties of tetracycline antibiotic

The properties of the tetracycline antibiotic as pollutant sample are shown in Table 5.

2.2. Materials

The materials used in this investigation are tetracycline antibiotic (C22H24O8N2HCl), tin tetra-
chloride (pentahydrate) 98%, hexahydrate zinc nitrate, 98% (Sigma-Aldrich Co.), sodium hydroxide,
ammonia, 32%, ethanol (Merck Co.).

The used equipment includes the following: the digital pH meter (Metrohm 780/Swiss) was used
to adjust the pH of the solution, the spectrophotometer (Shimadzu UV-160/japan), magnetic stirrer
(Helidolph Mr 3001, k/Germany), ultrasonic bath (CD-4820), autoclave, digital oven (Pars Azma),
electronic furnace (Syborn Thermolyne, 1500 Furnace) with precision of þ0.00001.

2.3. Synthesis of Zn2SnO4

The following steps were taken to synthesize Zn2SnO4:1.5mg of SnCl4.5H2O and 3mg of Zn
(NO3)2.6H2O were separately dissolved in 20ml of double distilled water. Then, 20ml of sodium



Fig. 5. Surface and counter plots of the photocatalytic degradation of tetracycline.
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Fig. 6. The schematic of UV photoreactor.

Table 5
The properties of TCA.

Parameters Properties

Molecular formula C22H24O8N2HCl
Molecular weight (g/mol) 480.9
Solubility (mol/L) 0.041
λ max (nm) 359

Chemical structure

Table 6
Factors and levels of designing experiments via the CCD method.

Parameters Level

-2 1- 0 1þ 2þ

(X1) pH 4.5 6 7.5 9 10.5
(X2) ZTO 100 150 200 250 300
(X3) TC 10 15 20 25 30
(X4) Time 10 40 70 100 130
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hydroxide (1M) was added drop by drop to the stirring solution of SnCl4.5H2O. Finally, the zinc nitrate
solution was added to the above solution to caused formation of white dye hybrid sediment. The
obtained sediment was transported to Teflon autoclave (200–220 °C) for 48 h. At the end, the sedi-
ment was filtered and washed with water and ethanol, then was dried in oven at 80 °C for 20 h [1,2].



Table 7
Designing of experiment via the CCD method based on the real values of the variables.

Run X1 X2(mg L�1) X3(mg L�1) X4(min)

1 6 150 25 40
2 9 250 25 40
3 7.5 200 20 70
4 7.5 200 20 130
5 7.5 300 20 70
6 6 150 15 40
7 6 250 25 100
8 7.5 200 30 70
9 9 250 25 100
10 9 150 15 40
11 10.5 200 20 70
12 6 250 15 40
13 4.5 200 25 70
14 9 150 25 40
15 6 250 20 40
16 7.5 100 15 70
17 9 250 20 100
18 7.5 200 20 10
19 7.5 200 25 70
20 9 150 25 100
21 6 150 25 100
22 7.5 200 25 70
23 9 250 25 40
24 9 150 15 100
25 7.5 200 20 70
26 7.5 200 20 70
27 7.5 200 10 70
28 6 200 15 100
29 7.5 200 20 70
30 6 150 15 100
31 7.5 200 20 70

S. Taherkhani et al. / Data in Brief 19 (2018) 1997–2007 2005
2.4. Evaluation of the photocatalytic destruction of the synthesized nanoparticle

A Photocatalytic activity of the synthesized ZTO for destruction of the TC was evaluated under
irradiation of UV light (30W) (UV-C). In order to carry out the experiment, 100ml of the solution of
the pollutant was poured in 200ml Bécher as a reactor with magnetic stirrer (Fig. 6).

In order to determine the concentration of pollutant at any time, the sampling accrued in intervals
of 0–100min and the absorption of antibiotic solution was recorded with the spectrophotometer in
the wavelength of 359 nm. The removal degree was calculated using the following equation [3–9].

Removal;%¼ C0�Ctð Þ=C0
� �� 100

Where C0 is initial concentration of TC and Ct is the concentration of TC at time t.

2.5. Optimizing the photocatalytic degradation process

To optimize the process of the photocatalytic degradation, central composite design (CCD) was
used- RSM's common form [10–14]. Considering the initial experiments, the four factors of pH, initial
density, photocatalyst dosage and reaction time, were investigated as the main effective factors and
the antibiotic degradation degree was considered as the response. Table 6 shows Levels of inde-
pendent variables for photocatalytic degradation of TC. The intended design, presented in Table 7 is
based on CCD and considers the four variable including 31 experiments with various conditions.

These experiments include 16 factorial experiment at factor levels of -1 and þ1, seven experi-
ments at central levels (0), and eight experiments at axial points (α¼2). To create connection between
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independent and dependent variables (presenting a model, introducing the process) the following
Quadratic polynomial equation is used [15–20].

y¼ boþ
Xn

i ¼ 1

ðbixiÞþ
Xn

i ¼ 1

ðbiix2iiÞþ
Xn

i;j ¼ 1

ðbijxixjÞ

Where, y is the response predicted by the model, xi is the encoded amount of levels of variables and
bo, bi, bii, and bij are the coefficients of the model.
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