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Abstract: Carvone is a monoterpene ketone contained in the essential oils of several aromatic and
medicinal plants of the Lamiaceae and Asteraceae families. From aromatic plants, this monoterpene
is secreted at different concentrations depending on the species, the parts used, and the extraction
methods. Currently, pharmacological investigations showed that carvone exhibits multiple pharma-
cological properties such as antibacterial, antifungal, antiparasitic, antineuraminidase, antioxidant,
anti-inflammatory, and anticancer activities. These studies were carried out in vitro and in vivo and
involved a great deal of knowledge on the mechanisms of action. Indeed, the antimicrobial effects
are related to the action of carvone on the cell membrane and to ultrastructural changes, while the
anti-inflammatory, antidiabetic, and anticancer effects involve the action on cellular and molecular
targets such as inducing of apoptosis, autophagy, and senescence. With its multiple mechanisms,
carvone can be considered as natural compounds to develop therapeutic drugs. However, other
investigations regarding its precise mechanisms of action as well as its acute and chronic toxicities
are needed to validate its applications. Therefore, this review discusses the principal studies investi-
gating the pharmacological properties of carvone, and the mechanism of action underlying some of
these properties. Moreover, further investigations of major pharmacodynamic and pharmacokinetic
studies were also suggested.

Keywords: carvone; pharmacological properties; mechanism of action

1. Introduction

Carvone is a monoterpene ketone (2-methyl-5-(1-méthylethenyl)-2-cyclohexen-1-one)
(C10H14O) (Figure 1) with a boiling point of 230 ◦C, which has an asymmetric carbon.
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Chemically, carvone exists in two forms (enantiomers (+)-carvone and (−)-carvone) with
the same chemical and physical properties and which differ only in their rotatory power.
This monoterpene is present in the essential oils of some plant species, including Mentha
spp., Origanum spp., Rosmarinus spp., Thymus spp., and many others [1–8]. The concentra-
tion of this volatile compound differs according to the species and is related to parameters
such as the species, the geographical location, the phenological stages, and the parts of
the plant. It is synthetized and secreted as a secondary metabolite from essential oils,
and its major role in the plant remains unclear. Currently, many studies have proven that
carvone has promising pharmacological properties. Indeed, it has shown neuroprotective
effects, and can therefore be developed as a drug against certain disorders such as depres-
sion, sedation, nociception, and seizure [9–12]. This molecule has also demonstrated an
antidiabetic effect, through its role in the prevention of obesity and metabolic problems
associated with high-fat diets, achieved by improving glycoprotein component abnormali-
ties and controlling glucose metabolism [13–15]. The use of carvone as an antifungal has
also been investigated against various fungi strains (Candida spp.), mycotoxigenic fungi
(Fusarium spp., Aspergillus spp., and Penicillium spp.), and dermatophytes (Trichophyton
spp., Epidermophyton floccosum, and Microsporum spp.) [16–21]. The action of carvone on
germ tube formation and fungi biofilm was reported. Additionally, carvone can be used
as an antibacterial agent against many strains of bacteria, including methicillin-resistant
Staphylococcus aureus (MRSA) [20,22–28]. Its antibacterial effects are often related to its
capacity to penetrate into bacterial cells thus inducing an increase in cell permeability
and a decrease in cell membrane integrity. It also exhibited an antibiofilm effect against
S. aureus. On the other hand, carvone had anticancer activity against different cancer cell
lines, including myeloma and melanoma cells, and breast cancer cells [29–32]. The antipro-
liferative mechanism of action has also been elucidated. Moreover, some studies proved
the anti-inflammatory property of carvone and investigated the underlying molecular
mechanism [33–36]. Anticancer mechanisms of carvone are due to its different actions
against checkpoints of cancer cells such as inducing apoptosis and cell cycle arrest. Other
pharmacological activities have also been reported, including antioxidant activity [37],
neuraminidase inhibitory activity against the influenza virus [38], and antiparasitic activity
against Culex quinque, Cx. pipiens, Aedes aegypti, and Haemonchus contortus [39–42]. All
these properties have enabled the use of carvone in other fields, such as the disinfection
of food packaging and medical devices. In addition, to improve its action and extend
its industrial use, carvone has been included in poly(lactic acid) films [16], antibacterial
coating (ppCar) [23], and poly (lactic-co-glycolic acid) (PLGA) nanoparticles [25]. Therefore,
the main objective of this paper is to report the pharmacological properties of carvone, and
to highlight the mechanism(s) of action responsible for these activities.
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Figure 1. Chemical structure of carvone.

2. Research Methodology

Literature data for all carvone studies was collected using different scientific search en-
gines, including Scopus, Wiley Online, Web of Science, Scifnder, Google Scholar, PubMed,
ScienceDirect, and SpringerLink. They were organized in tables and then analyzed, high-
lighted, and discussed. The chemical structure of carvone was drawn using ChemDraw
Pro 8.0 software.
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3. Results and Discussion
3.1. Natural Sources of Carvone

Carvone is the major compound of the essential oil (EO) of many species of the Lami-
aceae family; Mentha [43–46], Mentha spicata [22,43,44,47–60], Mentha × villoso-nervata [43],
Mentha piperita L. [48,53,61], Mentha crispa L. [61,62], and Mentha cardiaca L. [60]. Moreover,
carvone is the major compound of the EO of Anethum graveolens [50,53,63–68], Thymus
vulgaris [45], Majorana hortensis [45], Carum carvi [50,52,63,66,67,69–73], Anethum sowa [22],
and Solanum tuberosum L. [74,75]. In addition, other species belonging to the Orchidaceae
family have been characterized by their richness in carvone; Catasetum discolor, Catase-
tum longifolium, Catasetum integerrimu, Catasetum macroglossu, Catasetum tabular, Catasetum
veracruz, Catasetum viridiflavu [76], and Lippia alba [18,28,77–81]. Secondary metabolites
in EOs are variable depending on certain factors, including geographic origin, stages of
development, and parts of the plant. Indeed, some studies have proven this variability
between geographic locations and suggest the fluctuation of these phytochemicals in plants
for responding to environmental situations [18,77,78].

3.2. Pharmacological Properties of Carvone

With its varied actions on subcellular, cellular, and molecular actions, carvone ex-
hibits several biological properties such as antimicrobial, anticancer, anti-inflammatory,
antidiabetic, neurological, and many other pharmacological effects (Figure 2).
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3.2.1. Neurological Activity

Several authors have attempted to study the effect of the use of carvone on some
neurological disorders such as depression, sedation, nociception, seizure, local anesthesia,
as well as its effect on some receptors and on the action potential [9–12]. To study these
effects, different models are used such as Swiss mice [9], Wistar rats [11], frog’s sciatic
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nerve [10], and cortical neurons prepared from the cerebral cortices of rat fetuses [12]
(Table 1).

Table 1. Neurological activities of carvone.

Molecules Origins Models Used Experimental Approaches Key Results References

(S)-(+)-Carvone
and

(R)-(−)-carvone
Purchased Male Swiss

mice

Pentobarbital-induced
sleeping time

Locomotor activity assessed
in an activity cage

PTZ-induced convulsions
Pentobarbital-induced

hypnosis
PTZ-induced seizure
PIC-induced seizure

LD50 = 484.2 mg/kg for
(S)-(+)-carvone

LD50 = 426.6 mg/kg for
(R)-(−)-carvone

Both enantiomers induced
depressive effects

Both enantiomers significantly
reduced ambulation

At 100 mg/kg, (R)-(−)-carvone
was more effective than

(S)-(+)-carvone in increasing
pentobarbital sleeping duration
At 200 mg/kg, (S)-(+)-carvone

improved the latency of
convulsions produced by PTZ

and PIC
(S)-(+)-carvone and

(R)-(−)-carvone have
depressant effects in the CNS

(S)-(+)-carvone has
anticonvulsant-like activity

[9]

(+)-carvone,
(−)-carvone

Not
reported

The sciatic
nerve of the
frog (Rana

ridibunda) from
both sex

Three-chambered recording
bath for the assessment of

local anesthetic activity

Both carvone enantiomers
elicited comparable responses

The action potential of the
evoked compound was

abolished in 6 to 7 min and had
an immediate recovery of 83%

to 87%
Both carvones acted in the same

way as lidocaine (10 mM)
No recovery of the action
potential of the elicited

compound, when nerves have
been exposed to carvones for

more than 6–7 min
The unusual neurotoxic effect of

C+ and C− may be a
disadvantage for their use in

clinical practice

[10]

(+)-carvone,
(−)-carvone Purchased Adult male

Wistar rats

Sucrose-gap apparatus (ex
vivo assay) for

CAP-inhibitory effect

C- was less potent (IC50 = 10.7
± 0.07 mM) in reducing nerve
excitability than C+ (IC50 = 8.7

± 0.1 mM)
Both enantiomers acted in a

similar manner
The structure–function

relationship of the enantiomers
was linked to the CAP

inhibitory action

[11]
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Table 1. Cont.

Molecules Origins Models Used Experimental Approaches Key Results References

(R)-(−)- carvone
and

(S)-(+)-carvone
Purchased

Cultures of
cortical
neurons

prepared from
the cerebral

cortices of fetal
rats

[3H] Flunitrazepam Binding
Cell viability assay

Both isomers blocked
GABA-induced activation of
[3H] Flunitrazepam binding

The doses required to produce
negative receptor modulation

were not lethal
The insecticidal effect of

carvones can be explained by
their interaction with the

GABAA receptor at its
non-competitive blocker region

[12]

To assess the effect of carvone on disorders related to the central nervous system
(depression, convulsion), De Sousa et al. [9] conducted their study using different enan-
tiomers of carvone ((S)-(+)-carvone and (R)-(−)-carvone). The LD50 values of the enan-
tiomers varied between 400–500 mg/kg, and both enantiomers demonstrated depressive
effects, expressed as decreased ambulation and responsiveness to touch, as well as in-
creased sedation, palpebral ptosis, and antinociceptive effects. In addition, (S)-(+)- and
(R)-(−)-carvone reduce ambulation significantly. At 0.5 and 2.0 h after administration,
(R)-(−)-carvone appeared to be more effective than its equivalent enantiomer [9]. However,
at 1 h, (S)-(+)-carvone was slightly more powerful. To increase pentobarbital sleep duration,
(R)-(−)-carvone (100 mg/kg) was more effective than (S)-(+)-carvone but was less effective
at 200 mg/kg compared with its enantiomer, suggesting induction of a sedative effect. At
a dose of 200 mg/kg, (S)-(+)-carvone substantially improved the latency of convulsions
produced by PTZ and PIC, while (R)-(−)-carvone was ineffective against these convulsions.
These findings indicate that (S)-(+)- and (R)-(−)-carvone have a CNS depressant effect,
with an anticonvulsant property in (S)-(+)-carvone [9].

Faliagkas et al. [10] tested two enantiomers of carvone ((+)- and (−)-carvone) for their
local anesthetic activity at two concentrations, 10 and 20 mM. The authors used a nerve
preparation based on the frog’s sciatic nerve. They found that both enantiomers induce
similar responses. When rinsed out of the nerve preparation and replaced with normal
saline, they completely abolished the action potential of the evoked compound within
6–7 min, with an instantaneous recovery of 83–87%. Both carvones acted in the same
way as 10 mM lidocaine (a standard local anesthetic), although they were 3–4 times less
active in terms of reaction time. There was no recovery of the elicited compound action
potential when the nerves were exposed to carvones for more than 6–7 min, suggesting a
neurotoxic effect. In conclusion, the unique neurotoxic action of (+)- and (−)-carvone may
be a disadvantage in therapeutic practice.

Based on multiple previous reports regarding the insecticidal activity of carvone and
its effects on the nervous system, Sánchez-Borzone et al. [12] studied the effect of both
carvone enantiomers on the GABAA receptor as a major insecticidal target by determining
their effects on the recognition sites of benzodiazepines (BZD), belonging to the group
of sedatives and anxiolytics, using primary neuronal cultures. Both isomers were able to
block GABA-induced stimulation of (3H) flunitrazepam binding, suggesting that they act
as negative allosteric modulators on the GABAA receptor. Their action was equivalent
to that of thujone in this study, with the (R)-(−)- carvone stereoisomer being the most
potent. The unusual configuration of the isopropenyl group at position five appears to
be important for receptor engagement, whereas the structure of carvone does not appear
to be important for receptor recognition. In a mouse neuron culture system, the doses
required to produce negative receptor modulation were not lethal. These findings support
the theory that carvones’ insecticidal effect is explained, at least in part, by their interaction
with the non-competitive blocker site of the GABAA receptor.
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Gonçalves et al. [11] previously demonstrated that the in vivo antinociceptive activ-
ity of (−)-carvone is impaired by a decrease in nerve excitability. In their study, they
attempted to investigate and reveal the neuropharmacological effect of carvone to explain
the observed effect (compound action potential (CAP) inhibitory effect) [11]. Using a
modified single sucrose-gap technique (ex vivo), the effects of (+)- and (−)-carvone on
CAP properties were evaluated. The study findings showed that (−)-carvone was less
potent (IC50 = 10.70.07 mM) in reducing nerve excitability than its enantiomer, (+)-carvone
(IC50 = 8.70.1 mM), despite having a similar mode of action, as their effects were par-
tially counteracted by nerve washing and also by a reduction in depolarization velocity,
most likely due to voltage-gated sodium channel blockades. These findings suggest that
monoterpene suppression of CAP conduction in peripheral nerves may further enhance
knowledge about the pharmacology of natural bioactive substances. Furthermore, chang-
ing the chemical structures of such molecules may be used to activate or inhibit neuronal
excitability [11].

3.2.2. Antidiabetic Activity

Several studies showed the antidiabetic effects of volatile compounds including car-
vone [82]. Indeed, three separate studies were interested in the potential antidiabetic
activity of carvone by revealing its overall activity on in vivo models such as C57BL/6 mice
with high-fat diet-induced obesity and streptozotocin (STZ)-induced diabetes in Wistar rats.
Those studies have also focused on the main underlying mechanism of action exhibited
by this molecule following multiple biochemical, hematological, and histopathological
analyses [13–15] (Table 2).

Table 2. Antidiabetic activity of carvone.

Molecules Origins Models Used Experimental
Approaches Key Results References

S-carvone Purchased
C57BL/6 mice

(male, ten weeks
old)

GTT and ITT
Histological
examination

Determination of
hepatic triglyceride and

serum lipid levels
Determination of insulin

resistance
Gene expression

analysis

Prevented weight gain, fat buildup in
the liver, and insulin resistance

Increased expression of macrophage
marker genes in white adipose tissue,
including F4/80, Cd11b, Cd11c, Cd206,

and Tnf-α
Decreased expression of genes

involved for lipid production and
transport in the liver (Ppar2, Scd1,

Cd36)
Inhibited high-fat diet-induced
obesity and metabolic problems

[13]

Carvone Purchased

Male Wistar rats
weighing

approximately
180–200 g

STZ-induced diabetes
Estimation of blood
glucose and plasma

insulin levels
Extraction and

determination of
glycoproteins

Improved glycemic status in a
dose-dependent manner, in diabetic

rats (30 mg/kg b.w.)
Increased plasma insulin levels
Reduced plasma glucose levels

Restored the altered plasma and
tissue glycoprotein levels

Restored the abnormal levels of
plasma and tissue glycoprotein

components

[14]
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Table 2. Cont.

Molecules Origins Models Used Experimental
Approaches Key Results References

Carvone Purchased Male Wistar rats
(160–190 g)

STZ-induced diabetic
rats

Biochemical analysis
Histopathological study

of liver and pancreas
Immunohistochemical

examination of the
pancreas

Decreased plasma glucose and
HbA1c levels (50 mg/kg b.w.)

Improved Hb and insulin levels
Restored the reversed activity of
carbohydrate metabolic enzymes,
enzymic antioxidants, and hepatic

marker enzymes
Decreased STZ-induced damage to

hepatic and pancreatic cells
Controlled glucose metabolism by

enhancing important enzymes in the
hepatic tissues of diabetic rats

[15]

To verify whether S-carvone can prevent obesity and metabolic problems caused
by a high-fat diet, Alsanea and Liu [13] conducted a study on ten-week-old C57BL/6
male mice fed a high-fat diet and injected, intraperitoneally twice a week, with benzyl
isothiocyanate (BITC), S-carvone, or vehicle for 8 weeks. Body weight, food consumption,
and body composition were all monitored, and glucose tolerance and insulin tolerance
tests were performed at the end of the study. Moreover, to determine the effects of BITC
and (S)-carvone therapies on lipid and glucose metabolism and inflammatory responses,
serum biochemistry, histology, and gene expression analyses were carried out. Therefore,
(S)-carvone and BITC inhibited the weight gain induced by a high fat diet, as well as the
insulin resistance and the accumulation of fat in the liver. The positive effects were related
to increased expression of macrophage marker genes in white adipose tissue, including
F4/80, Cd11b, Cd11c, Cd206, and Tnf-α, and decreased expression of genes involved in
production and transport of lipids in the liver (Ppar2, Scd1, and Cd36). In conclusion, this
study suggests that BITC and (S)-carvone block high-fat diet-induced obesity and metabolic
disorders and may be considered for the management of the obesity epidemic [13].

Muruganathan et al. [14] conducted their research to examine the impact of carvone
on glycoprotein disruption in the STZ-induced diabetes model. A single intraperitoneal
dose of STZ (40 mg/kg b.w.) induced diabetes in male Wistar rats. Glycoprotein levels
were altered in experimental diabetes mellitus. Carvone was administered intragastrically
to diabetic rats at doses of 25 mg/kg, 50 mg/kg, and 100 mg/kg for 30 days. Carvone’s
effects on plasma glucose, insulin, plasma, and tissue glycoproteins were evaluated. In
experimentally diabetic rats, oral treatment with carvone (50 mg/kg b.w.) for 30 days
improved glycemic status in a dose-dependent manner, with a substantial increase in
plasma insulin levels, and decrease in plasma glucose levels. The abnormal levels of plasma
and tissue glycoprotein components were nearly normalized. Current results indicate that
carvone, in addition to its antihyperglycemic action, may be able to improve glycoprotein
component abnormalities in experimental diabetes. In view of these encouraging results, it
is recommended to expand the scope of carvone usage in further studies to mitigate the
negative consequences of diabetes [14].

Muruganathan et al. [14] investigated the impact of carvone on carbohydrate metabolic
enzymes in the livers of normal and STZ-induced diabetic rats. A single intraperitoneal
dose of STZ (40 mg/kg b.w.) was used to induce diabetes. STZ injection caused a sub-
stantial increase in plasma glucose and glycosylated hemoglobin (HbA1c), as well as
a reduction in insulin and hemoglobin (Hb) levels. Carbohydrate metabolic enzymes,
glycogen, enzymatic antioxidants in the pancreas, and hepatic marker levels have all been
affected. Diabetic rats treated daily with a single oral dose of carvone (50 mg/kg b.w.) for
30 days, showed a substantial decrease in plasma glucose and HbA1c levels, as well as a
significant improvement in Hb and insulin levels [14]. Administration of carvone restored
the reversed activity of carbohydrate metabolic enzymes, enzymic antioxidants, and hep-
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atic marker enzymes in diabetic rats to near-normal levels. The results were compared
with gliclazide, a common oral hypoglycemic drug. Histopathological examination of the
liver and pancreas, as well as immunohistochemistry of the pancreas, showed that carvone
therapy decreases STZ-induced damage to liver and pancreatic cells. According to these
findings, carvone controls glucose metabolism by improving enzymes important in the
hepatic tissues of diabetic rats. Nevertheless, more research and safety studies are required
to further verify carvone’s benefits [14].

3.2.3. Antifungal Activity

Carvone has emerged as a promising antifungal compound. Its application extends
from the screening of basic properties against different fungi strains and mycotoxins, to an
application designed in the food industry, in particular food packaging [16–21] (Table 3).

Table 3. Antifungal activity of Carvone.

Molecules Origins Strains Used Experimental
Approaches Key Results References

R-(−)-carvone Purchased
Poly (lactic acid) (PLA)

films for food
packaging applications

Inclusion of R-(−)-carvone
in the polymer matrix

Preparation and
determination of film

thickness
Determination of
remaining content

Determination of thermal,
mechanical and barrier

properties

Lower Tg and Tm
Higher gas permeability
Lower tensile strength

Higher elongation at break
of antifungal PLA films

Homogeneous and
transparent antifungal films

[16]

Carvone Purchased

Candida rugosa,
Candida lusitaniae,
Candida glabrata,

Candida utilis, Candida
krusei, Candida

guilliermondii, Candida
tropicalis, Candida
albicans, Candida
parapsilosis, and

Candida dubliniensis

Planktonic anti-candida
assay

Evaluation of the
inhibitory power of germ
tube formation Evaluation

of the anti-biofilm effect

MIC = 0.5 mg/mL
The concentration of 0.5

mg/mL inhibited at least
50% of the biofilm

Inhibited the polymorphism
up to 86%

Changes in yeast cell
envelope and cell viability

were greater than 50%
Induced important
antifungal activities

[17]

Carvone
chemotype Naturel

Candida parapsilosis,
Candida krusei,

Aspergillus flavus, and
Aspergillus fumigatus
Broth macro-dilution

method
AFST-EUCAST

method
CLSI M38-A method
MIC determination

Determination of GM-MIC

GM-MIC > 500 µg/mL
against the different strains

studied
No activity against selected

clinical strains

[18]
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Table 3. Cont.

Molecules Origins Strains Used Experimental
Approaches Key Results References

Carvone Purchased

Fusarium subglutinans,
Fusarium cerealis,

Fusarium verticillioides,
Fusarium proliferatum,
Fusarium oxysporum,

Fusarium
sporotrichioides,

Aspergillus tubingensis,
Aspergillus carbonarius,

Alternaria alternata,
and Penicillium sp.

In vitro antifungal activity
Evaluation of

deoxynivalenol
production

Evaluation of inhibitory
effects on plant seed

germination

Induced toxic effects on the
growth of the mycelium of

all fungal species
[19]

Carvone
Naturel
(Mentha
spicata)

Cryptococcus
neoformans,

dermatophytes
(Trichophyton spp.,

Epidermophyton
floccosum, and

Microsporum spp.), and
Aspergillus strains

In vitro antifungal activity
Evaluation of the

inhibitory activity of germ
tube formation

Mentha spicata EO was
effective against

Cryptococcus neoformans, as
well as the dermatophytes
Trichophyton rubrum and

Trichophyton verrucosum (0.32
µL/mL)

Inhibited the germ tube
development of Candida

albicans, at concentrations
below the MIC (0.16

µL/mL)

[21]

(+)-carvone
(C+)

(−)-carvone
(C−)
α,β-

epoxycarvone
(EP)

(+)-hydroxy-
dihydrocarvone

(HC+)
(−)-hydroxy-

dihydrocarvone
(HC−)

Purchased

Candida parapsilosis,
Candida tropicalis,

Candida krusei, and
Candida albicans

Determination of MIC by
microplate dilution
method and MFC

Low antifungal activity
against Candida tropicalis
and Candida parapsilosis

EP and C+ showed
moderate activity against

Candida krusei similar to C+
and C− against Candida

albicans
All the molecules tested
showed fungistatic and

fungicidal activity against
Candida yeasts, and the most

significant result was
recorded with C+, C−, and

EP

[20]

In their ultimate goal to develop antifungal poly(lactic acid) (PLA) films for food
packaging applications, Boonruang and collaborators [16] used (R)-(−)-carvone in their
study. The molecule was incorporated into PLA-based polymer at 10%, 15%, and 20%
by weight. The film conversion process consists of three steps, namely, melt blending,
sheet extrusion, and biaxial stretching. The incorporation of antifungal compounds into
the polymer matrix resulted in decreased Tg and Tm, increased gas permeability, reduced
tensile strength, and increased elongation at the break of the antifungal PLA films. The
antifungal films were homogeneous and transparent.

Giovana et al. [17] were interested in finding an effective antifungal drug in the fight
against candidiasis, an infection caused by Candida spp. which has developed significant
resistance to current therapies. Since it has already been documented that Mentha spp. has
antifungal properties, the authors of this research chose four main components present in
its EO, including carvone. They evaluated growth suppression by microdilution, biofilm
breakdown by electron microscopy, and germ tube formation inhibition by optical mi-
croscopy. The compounds tested had an antifungal activity with a MIC of 0.5 mg/mL, at
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least 50% biofilm inhibition at the 0.5 mg/mL concentration, polymorphism inhibition
at 86%, and changes in the cell envelope of yeast (SEM) and cell viability greater than
50% among the Candida strains tested. Due to the potential antifungal capacity of car-
vone, as well as its low cytotoxicity, it was considered a viable candidate to supplement
antifungal regimens.

Mesa-Arango et al. [18] selected two carvone chemotypes from Colombian L. alba
(Mill.) EOs to investigate their antifungal activity against multiple strains such as Candida
parapsilosis, Candida krusei, Aspergillus flavus, and Aspergillus fumigatus strains using stan-
dardized protocols. According to the research results, the GM-MIC values were greater
than 500 g/mL against the various strains tested, suggesting a weak antifungal activity.

In their study, Morcia et al. [19] selected certain natural EO compounds (including
carvone) on 10 species of mycotoxigenic fungi involved in several plant diseases, namely,
Fusarium subglutinans, Fusarium cerealis, Fusarium verticillioides, Fusarium proliferatum, Fusar-
ium oxysporum, Fusarium sporotrichioides, Aspergillus tubingensis, and Aspergillus carbonarius.
Carvone and the other chemicals examined had a toxic effect on mycelium development
in vitro on all fungal species, albeit at varying levels of activity, prompting additional
research on these compounds in the field of mycotoxins.

In a recent study, Piras et al. [21] examined the antifungal efficacy of Mentha spicata L.
EO, containing 62.9% carvone. Their primary objective was to test its effectiveness on the
virulence factors of Candida albicans, especially the suppression of germ tube development,
as well as their impact on other strains. Consequently, M. spicata EO showed a superior
effect against Cryptococcus neoformans and the dermatophytes Trichophyton rubrum and
Trichophyton verrucosum (0.32 µL/mL) and also inhibited germ tube formation in Candida
albicans up to 80% at concentrations eight times lower than the MIC. The results of the
study support and validate the use of this plant EO in traditional medicine.

Given the reported activity of carvone in the literature, Moro et al. [20] conducted
a research to assess the antifungal activities of (+)- and (−)-carvone, (+)- and (−)-hydroxydi-
hydrocarvone, and α,β-epoxycarvone. (+)-Hydroxydihydrocarvone (HC+), (−)-
Hydroxydihydrocarvone (HC−), and, α,β-epoxycarvone (EP) were synthesized from
(+)-carvone (C+) or (−)-carvone (C−). The antifungal activity (MIC and MFC) was tested
against Candida parapsilosis, Candida tropicalis, Candida krusei, and Candida albicans. All
compounds showed modest antifungal efficacy against Candida tropicalis and Candida
parapsilosis. Moreover, EP and C+ had modest antifungal activity against C. krusei. The
results indicate that carvones and their derivatives may be used as antifungal drugs against
Candida yeasts.

3.2.4. Antibacterial Activity

The antibacterial activity of carvone has been studied by several authors against multi-
ple strains such as Escherichia coli, S. aureus, Streptococcus faecalis, and Pseudomonas aeruginosa.
Different enantiomers were used in comparative studies to assess the structure–function
relationship. Some studies were interested in the antibacterial effect of the encapsulated
form (carvone loaded PLGA nanoparticles), others in its microbial transformation, while
others were interested in manufacture of carvone biofilms (antibacterial coating) to prevent
bacterial colonization of medical devices [20,22–28] (Table 4).
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Table 4. Antibacterial activity of carvone.

Molecules Origins Model Used Experimental
Approaches Key Results References

(S)-(−)-carvone
(R)-(+)-carvone

Naturel (Mentha
spicata and

Anethum sowa
Roxb.)

Bacillus subtilis,
Enterobacter aerogenes,
Enterococcus Faecalis,
Klebsiella pneumoniae,

Pseudomonas
aeruginosa,

Staphylococcus aureus,
Streptococcus mutans,
Yersinia enterocolitica,

Salmonella typhi,
Escherichia coli,
Staphylococcus

epidermidis, and
Mycobacterium

smegmatis

Disk diffusion
assay

Broth dilution
assay

The activity of carvone
was comparable with
the bioactivity of their

original oils
Active against a broad

spectrum of human
pathogenic bacteria

(R)-(+)-limonene
showed comparable

bioactivity profile over
the (S)-(−)-isomer

[22]

Carvone Purchased Staphylococcus aureus

Single-step plasma
polymerization

Plasma
polymerization of

carvone
Surface

characterization
Antibacterial

activity
Live-dead

fluorescence assay
Crystal violet assay

Morphology of
bacteria by field

emission scanning
electron

microscope
(FE-SEM)

Polymerization
provided a

hydrophobic
antibacterial coating

(ppCar) with an
average roughness <

1nm
ppCar had a static

water contact angle of
78◦

Reduced effectively
Escherichia coli (86%)
and Staphylococcus

aureus (84%)
Broken bacterial

membrane

[23]

(−)-Carvone
(+)-Carvone Purchased

Absidia glauca,
Staphylococcus aureus,

Escherichia coli,
Pseudomonas

aeruginosa, Enterobacter
aerogenes, Proteus

vulgaris, and
Salmonella typhimurium

Biotransformation
Semi-preparative

scale
biotransformation

and isolation
GC-MS

Antimicrobial
assay

Biotransformation of
carvone into diol
10-hydroxy-(+)-

neodihydrocarveol by
Absidia glauca

Both molecules
showed antimicrobial

activity against all
strains tested

[24]
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Table 4. Cont.

Molecules Origins Model Used Experimental
Approaches Key Results References

Semicarbazone
and

thiosemicarbazone
of R-(−) carvone

Synthetized

Escherichia coli,
Staphylococcus aureus,

Pseudomonas
aeruginosa, and

Enterococcus faecalis

Determination of
MIC

Inhibitory activity on
Pseudomonas aeruginosa
for thiosemicarbazone
(MIC = 78.1 µg/mL)

and for semicarbazone
(MIC = 312.5 µg/mL)
Thiosemicarbazone

was active on
Staphylococcus aureus
(MIC = 39 µg/mL)
Thiosemicarbazone
exerted interesting

inhibitory activity on
Staphylococcus aureus

and Pseudomonas
aeruginosa

[26]

Carvone Purchased Staphylococcus aureus
and Enterococcus coli

Nanoparticles
preparation

Determination of
drug loading and

entrapment
efficiency

In vitro carvone
release from

nanoparticles
Antibacterial

properties of the
carvone-loaded
nanoparticles

Production of small
nanoparticles (126

nm), with high drug
loading (12.32%) and

good inhibition of
microbial growth
Carvone-loaded

nanoparticles inhibited
Staphylococcus aureus
(MIC = 182 mg/mL)
and Enterococcus coli
(MIC = 374 mg/mL)

[25]

(+)-carvone
(−)-carvone
(+)-hydroxy-

dihydrocarvone
(−)-hydroxyl-

dihydrocarvone
α,β-epoxycarvone

Synthesized/purchased Escherichia coli and
Staphylococcus aureus

Determination of
MIC by microplate

dilution method
and MBC

C- and HC- showed
low activity against

Escherichia coli
EP, C+, and HC+ did
not inhibit the growth
of the bacterial strains

tested

[20]

R-carvone
S-carvone Purchased

Methicillin-resistant
Staphylococcus aureus

(MRSA)

Broth
micro-dilution

method
Time-kill assay

MIC values for R- and
S-carvone against six

different strains of
Staphylococcus aureus
ranged between 500

and 1000 µg/mL
R-carvone +

gentamicin and
S-carvone +

gentamicin exhibited
significant synergistic
activity against MRSA

The combined
treatment improved
the effectiveness of

carvone

[27]
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Table 4. Cont.

Molecules Origins Model Used Experimental
Approaches Key Results References

Carvone Naturel (Lippia
alba)

Staphylococcus aureus
ATCC 6538

Determination of
MIC and MBC by
the microdilution

method
Anti-biofilm

Activity

Elimination of biofilm
cells was confirmed at

concentrations
between 0.5 and 2

mg/mL
No elimination of
biofilm cells was

observed with the use
of carvone

[28]

Aggarwal et al. [22] investigated the antibacterial effects of Mentha spicata (containing
(S)-carvone as main component (56%) and Anethum sowa Roxb. (containing (R)-carvone
as major component (50.4%)). Evaluation of the in vitro bioactivity of the separated oily
components showed that both optical isomers of carvone were active against a wide range
of microorganisms tested. The activity of these monoterpene enantiomers was found to be
similar to the bioactivity of the oils in which they were discovered.

Since current coating techniques, such as immobilization of antimicrobial compounds,
time-releasing antibiotic agents, and silver nanoparticles, require multiple processing
steps and have low efficacy and stability, Chan et al. [23] proposed a single-step plasma
polymerization of carvone to produce a moderately hydrophobic antibacterial coating
(ppCar) with an average roughness < 1 nm. Even after 10 days of air aging, ppCar
maintained a static water contact angle of 78◦ and remained stable for 24 h in LB broth
immersion. ppCar performed well in the live/dead fluorescence test and the crystal
violet assay. The biofilm test effectively reduced E. coli (86%) and S. aureus (84%) bacteria.
For its bactericidal actions, it has also been shown that ppCar perforates the bacterium
membrane. The cytotoxicity test revealed that the coating is not harmful to human cells.
This work would be of interest to researchers interested in creating a bacteria-resistant and
biocompatible coating on various substrates at low cost.

In a novel research, the microbial transformation of C- was investigated (metabolized
by the phytopathogenic fungus Absidia glauca) by Demirci et al. [24]. The diol 10-hydroxy-
(+)-neodihydrocarveol was produced after 4 days of incubation. X-ray diffraction and
spectroscopy methods were used to determine the absolute arrangement and structure of
the crystalline material (MS, IR, and NMR). Human pathogenic bacteria were used to test
the antimicrobial activity of the substrate and metabolite. The main results of the study
showed that the inhibitory action of the metabolite is modest.

In their research, Fatondji et al. [26] synthesized semicarbazone and thiosemicar-
bazone from R-(−)-carvone via direct condensation of semicarbazide or thiosemicarbazide
in an acidic medium and evaluated their antibacterial activity. The purity of the synthesis
products was determined by thin layer chromatography (TLC) after recrystallization, and
their structures were verified by IR spectroscopy, nuclear magnetic resonance (NMR),
and mass spectrometry (MS). The compounds were evaluated on S. aureus, S. faecalis, P.
aeruginosa, and E. coli strains. Therefore, the chemicals inhibited P. aeruginosa growth,
with MIC values of 78.1 and 312.5 µg/mL for thiosemicarbazone and semicarbazone,
respectively. With a MIC of 39 µg/mL, thiosemicarbazone was also active against S. au-
reus. On the other hand, P. aeruginosa and S. aureus have become increasingly resistant
to antibiotics such as oxacilline (MIC = 1.5 µg/mL for S. aureus) and cefixime (MIC < 1
µg/mL). Both compounds showed poor antibacterial activity against E. coli and E. fae-
calis. Furthermore, the thiosemicarbazone showed intriguing action against S. aureus and
P. aeruginosa.

In order to extend the antibacterial action of carvone, Esfandyari-Manesh et al. [25]
attempted to create poly (lactic-co-glycolic acid) (PLGA) nanoparticles. These nanoparticles
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were created using emulsification solvent evaporation (ESE) and nanoprecipitation tech-
niques. Nanoparticles were studied for their shape, size and size distribution, drug loading,
entrapment efficiency, release profile, and antibacterial efficacy. This allowed to generate
nanoparticles with smaller size (126 nm), narrower size distribution (PDI of 0.08–0.2),
higher drug loading (12.32 percent carvone), as well as better microbial growth suppression
than ESE. Carvone drug release experiments in vitro at 37 ◦C for 4 days revealed an early
burst (36%). The MIC of carvone-loaded nanoparticles against S. aureus and E. coli was
182 and 374 mg/mL, respectively. The nanoparticles created in this research were of the
appropriate size and shape, and according to the antimicrobial research, EO-loaded PLGA
nanoparticles may be useful in medicinal and culinary applications.

Given the reported activity of carvone in the literature, Moro et al. [20] conducted
research to assess the antibacterial activity (MIC and MBC) of C+, C−, HC+, HC−, and EP
against E. coli and S. aureus. In addition, HC+, HC−, and EP have been synthesized from
C+ or C-. The results showed that C− and HC− possessed a weak antibacterial action
against E. coli. In contrast, EP, C+, and HC+ had no effect on the bacterial strains examined.

The aim of Mun et al.’s [27] study was to evaluate the antibacterial activity of R- and S-
carvone in combination with gentamicin (GET) against MRSA. The latter is a gram-positive
bacterium which causes nosocomial pneumonia, abscesses, and surgical site infections.
Multidrug resistance is common in nosocomial MRSA infections. The broth micro-dilution
method was used in this research to evaluate the antimicrobial sensitivity of R- and S-
carvone and GET. The MIC for R- and S-carvone against six distinct strains of S. aureus
ranged from 500 to 1000 µg/mL. To explore the possible synergistic effects of various
combinations of carvone enantiomers and GET, anti-MRSA activity was assessed using the
checkerboard and time-kill tests. The results determined that R-carvone in combination
with S-carvone, R-carvone in combination with GET, and S-carvone in combination with
GET all showed substantial synergistic efficacy against MRSA. These results imply that
the combination treatment successfully increases the anti-MRSA monotherapy activities
of R-carvone, S-carvone, and GET. Carvone has been shown to be a possible adjuvant
antibacterial agent in this research.

L. alba EO and its main components (citral and carvone) were tested in vitro by Porfírio
et al. [28] for their antibacterial and antibiofilm properties against S. aureus. Hydrodistilla-
tion was used to extract the EOs from L. alba aerial parts, which were then evaluated by
GC-MS. The microdilution method was used to determine the MIC and MBC. The biomass
development in the biofilm was assessed using the microtiter-plate method with the crystal
violet test for the antibiofilm assays, and the viability of the bacterial cells was examined.
The essential oil and its main component (carvone) have shown antibacterial action. At a
dosage of 0.5 mg/mL, there was 100% suppression of S. aureus biofilm formation. However,
at doses of 0.5 to 2 mg/mL, eradication of biofilm cells has been verified. The results of
the present study indicate the antibacterial and antibiofilm capacity of L. alba EO against S.
aureus, a species of known therapeutic relevance.

3.2.5. Antibacterial and Antibiofilm Activities

Regarding the promising antibiofilm activities of carvone and citral against S. aureus
bacteria, an in vitro study was carried out in this regard by Porfírio et al. [28] on the EO of L.
alba and its main components (citral and carvone). Three EOs (LA1EO, LA2EO, and LA3EO)
were extracted from the aerial parts of three specimens of L. alba by hydrodistillation and
analyzed by GC-MS. MIC and MBC values were determined by the microdilution method.
Regarding the assay of the formation of biomass in the biofilm, it was evaluated by the
microtiter plate technique with the assay of crystal violet and the analysis of the viability
of bacterial cells. The results of the present research suggest that all of the oils and their
major components have antibacterial activity, and the lowest MIC and MBC values were
0.5 mg/mL when LA1EO and citral were used. Likewise, a potential 100% inhibition of S.
aureus biofilm formation was observed at the concentration of 0.5 mg/mL of all EOs. In
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contrast, the elimination of cells from the biofilm was confirmed at concentrations of 1, 2, 2,
and 0.5 mg/mL for LA1EO, LA2EO, LA3EO, and citral, respectively.

3.2.6. Antiviral Activity

Carvone was also tested for its antiviral effects (Table 5).

Table 5. Antiviral activity of carvone neuraminidase.

Molecules Models Used Experimental Approaches Key Results References

Two analogues of
carvone In silico study

Molecular docking
Molecular dynamics

simulation

All ligands showed strong binding
affinity against active

neuraminidase sites, ranging from
−4.77 to −8.30 kcal/mol

Carvone derivatives could serve as
potent neuraminidase inhibitors

against the influenza virus

[38]

Given the recent outbreaks of highly dangerous influenza viruses, it was found that it
is imperative to develop new anti-influenza drugs. In their in-silico study, they designed
36 ligands to analyze how they bind to neuraminidase (NA) active sites. The design is
based on structural resemblance to the commercial inhibitor, oseltamivir (OTV), ligand
polarity, and amino acid residues in the NA active sites. Their study result suggests that
one of the designed ligands had the lowest binding energy (∆Gbind) (−8.30 kcal/mol),
comparable with OTV (−8.72 kcal/mol), with seven hydrogen bonds formed. Since the
stability analysis indicated that the A18-NA complex was stable, this study encourages
further research to synthesize and evaluate this compound [38].

3.2.7. Antioxidant Activity

Oxidative stress is often implicated in several severe and chronic illnesses such as
cancers, cardiovascular diseases, diabetes, and many others. Since antioxidant compounds
can mitigate oxidative stress due to of their antiradical ability and/or reducing power,
the search for new effective and safe antioxidants from plants has intensified in recent
years [83]. As part of this research, carvone has been investigated for its antioxidant effect
by various researchers. One of the first investigations on the antioxidant properties of
carvone isolated from Mentha spicata was carried out by Elmastaş et al. [55]. The results of
the total antioxidant activity test indicated that S-carvone possess high antioxidant activity
compared with α-tocopherol, used as a reference antioxidant.

Carvone was investigated for its antioxidant potential by various in vitro systems,
including lipid peroxidation, 2,2-dipenyl-1-picrylhydrazyl (DPPH), and phosphomolybde-
num assay [37]. In this study, carvone isolated from Z. alatum showed inhibitory activity
against thiobarbituric acid reactive species (TBARS) induced by some pro-oxidants (10 µM
FeSO4 and 5 µM sodium nitroprusside) in rat liver and brain homogenates. Carvone also
caused the scavenging of the DPPH radical and the reduction of molybdenum, Mo(VI) to
Mo(V). Galstyan et al. [84] documented the antioxidant property of a synthesis of carvone-
derived 1,2,3-triazoles. The conjugates prepared demonstrated high antioxidant activity.

3.2.8. Anti-Inflammatory Activity

The anti-inflammatory effects of terpenoids compounds such as carvone were revealed
by numerous studies [85]. Monoterpene α,β-epoxy-carvone was evaluated by da Rocha
et al. [33] for its anti-inflammatory properties. This was carried out using the acetic-acid-
induced peritoneal capillary permeability test. The results showed that the intraperitoneal
administration of α,β-epoxy-carvone (300 mg/kg) inhibits the increase in vascular perme-
ability caused by acetic acid. These findings suggest that α,β-epoxy-carvone inhibits the
acute inflammatory reaction.
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The anti-inflammatory activity of cyane–carvone (CC), a monocyclic monoterpene,
was evaluated by the methods of bradykinin, histamine, prostaglandin E2 (PGE2), serotonin,
and carrageenan-induced paw edema in mice [34]. It was found that in bradykinin,
histamine, PGE2, and serotonin tests, 75 mg/kg CC significantly decreased paw edema
(t = 30, 60, 90, and/or 120 min). While in the carrageenan test, 50 mg/kg and 75 mg/kg
CC (t = 3 h and t = 4 h) and 25 mg/kg CC (t = 4 h) significantly decreased paw edema.

Zhao and Du [35] examined the anti-inflammatory and defensive role of D-carvone on
lipopolysaccharide (LPS)-initiated lung damage in mice. As a result, D-carvone significantly
attenuated the lung damage produced by LPS by reducing the lung wet-to-dry (W/D)
ratio as well as the amount of total cells, macrophages, and neutrophils in BALF. An
important reduction in serum TNF-α, IL-1β, and IL-6 levels was observed in D-carvone
treated mice. This molecule also altered histopathological disorders due to LPS-initiated
lung damage. The effects of D-carvone were comparable with those of the positive control,
dexamethasone. This study indicates that pre-treatment with D-carvone significantly
provided an anti-inflammatory and protective effect against LPS-instigated lung damage.

The molecular mechanism responsible for the anti-inflammatory properties of (S)-
(+)-carvone has been highlighted by Sousa et al. [36]. The results of this study show that
(S)-(+)-carvone is a novel Sirtuin-1 (SIRT1) activator with the potential to counteract the
chronic low-grade inflammation characteristic of age-related diseases.

This substance appears to have various uses, this time following a study by da Rocha
et al. [33] on mice, to examine the antinociceptive and anti-inflammatory activities of α
and β Epoxy-carvone monomers, extracted from EOs of many plant species or obtained
by organic synthesis. After intraperitoneal administration of this monomer at doses of
100 mg/kg, 200 mg/kg, or 300 mg/kg, a significant antinociceptive effect was observed, as
shown by the abdominal contortion test induced by acetic acid, with a decrease in blood
pressure. Nociception was induced by formalin in the first (300 mg/kg) and second phase
(200 and 300 mg/kg). These results suggest that the α and β Epoxy-carvone monomer
inhibits the acute inflammatory response, with a peripheral and central antinociceptive
effect observed in mice which can be explained by the activation of the opioid system,
responsible for the antinociceptive activity induced by this monomer.

Another work was carried out by Mogosan et al. [86] in order to have a qualitative
and quantitative comparative analysis of the chemical composition and to evaluate the
anti-inflammatory and antinociceptive effects of the EOs of three species of Mentha (Mentha
piperita L. var. pallescens (white peppermint), Mentha spicata L. subsp. crispata (spearmint),
and Mentha suaveolens Ehrh. (pineapple mint)) grown in Romania. The anti-inflammatory
activities of EOs were determined by the carrageenan-induced rat paw edema test, while
the antinociceptive activity was assessed by the contortion test in mice, using a solution of
1% (v/v) acetic acid administered intraperitoneally and by the hot plate test in mice. The
data from this study showed that the EOs chemotype of M. spicata L. (EOMSP) produced
statistically significant and dose-dependent anti-inflammatory and antinociceptive effects.

3.2.9. Anticancer Activity

Similar to several other bioactives which showed promising anticancer prop-
erties [87–93], carvone has also been studied for its anticancer properties. Indeed, several
in vitro investigations based on cell culture tests showed that this compound exhibits
antiproliferative effects against various cancer cell lines. In this sense, the results of the
study conducted by Ding et al. [29] demonstrated that carvone exerts significant antiprolif-
erative effects against myeloma cancer cells in a dose-dependent manner. The anticancer
activities were linked to the induction of apoptosis and the G2/M cell cycle arrest (Figure 3).
Moreover, carvone could inhibit cell invasion and p-P38 protein expression at an IC50 of
20 µM. In another study, Gopalakrishnan et al. [30] evaluated the chemopreventive efficacy
of D-carvone (at 10, 20, and 30 mg/kg b.w.) in vivo using 7,12-dimethylbenz(a)anthracene
(DMBA)-induced skin carcinogenesis. The results showed that the tumor incidence of 100%
in DMBA-painted animals as well as D-carvone at a dose of 20 mg significantly prevented
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skin carcinogenesis. In addition, this study showed decreased levels of phase I enzymes
(cytochrome P450 and cytochrome b5) with increased levels of phase II enzymes (GR,
GST, and GSH) and increased expression of Bax, caspase-3, and caspase-9 with decreased
expression of mutated p53 and Bcl-2 in animals treated with DMBA and D-carvone (20 mg).
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In another experiment [31], carvone was investigated for its ability to reduce melanin
content in melanoma cells as well as for its beneficial effects mediated by the cAMP pathway.
This study found that carvone decreases the melanin content and inhibits melanoma cell
proliferation in a dose-dependent manner. Likewise, it caused the inactivation of cell
cycle-associated proteins such as cyclin-dependent kinase 1 (CDK1). It should be noted
that the beneficial activities of carvone were abrogated by cAMP inhibition.

Furthermore, Patel and Thakar [32] evaluated the antiproliferative and apoptotic
activity of L-carvone, and the underlying mechanism(s) of action on breast cancer (MCF 7
and MDAMB 231) and normal (MCF 10A) cell lines. Results showed that L-carvone
exhibited a strong antiproliferative effect against MCF7 (IC50 = 1.2 mM) and MDA MB
231 cells (IC50 = 1.0 mM), inhibited the migration of breast cancer cell lines, and induced
apoptosis. L-carvone exposure arrested MCF 7 cells in S phase of the cell cycle and caused
DNA damage that was apparent from the increased tail movement, which could be caused
by an increase in reactive oxygen species (ROS). Moreover, the glutathione levels were
increased. Finally, p53 and caspase-mediated apoptosis was attributed to the increased
level of p53, Bad, cleaved caspase 3, and cleaved PARP (Figure 3).

3.2.10. Antiparasitic Activity

Parasitic diseases are infectious diseases caused by parasites which, under favorable
conditions, can be transmitted to humans [94], among them African trypanosomiasis,
malaria transmitted by Plasmodium, schistosomiasis, and leishmaniasis. Parasitic diseases
are still responsible for many health problems. These parasites are responsible for a high
rate of mortality and morbidity each year in endemic countries [95], and are probably
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responsible for more than 1 to 2 billion infections, which result in several million deaths
each year [96].

Current chemotherapy is based on developed synthetic drugs [97]. However, unfor-
tunately, a number of these chemotherapeutic drugs against parasites have serious side
effects [98]. In addition, some parasites develop resistance to the treatments [99]. The
majority of people who suffer from these parasitoses often live in developing countries
and have only low incomes. It is therefore urgent to discover alternative treatments against
these diseases. Numerous studies have elucidated the role of plants against anthelmintic in
traditional medicine [100–102]. However, a wide range of molecules isolated and identified
from plants have shown promising activity against multiple parasites [103–106].

A limited number of studies have reported the parasitic activity of carvone [39,42].
Pavela, [39] evaluated the efficacy of carvone and other aromatic compounds and their
mutual binary combinations for acute toxicity against Culex quinquefasciatus larvae. The
results show that carvone is one of the substances identified with the highest synergistic
effect on larval mortality. Although these results are more important when combining two
aromatic molecules, in this context, among the combinations that show a higher synergistic
effect on larval mortality there are carvone and carvacrol, carvone and 4-allylanisole,
carvone and α-terpineol, and finally carvone and menthone [39].

The evaluation of larvicidal activity of Mentha species EOs and their isolated major
components against the West Nile virus mosquito (Cx. pipiens 3rd–4th instar larvae) showed
that Mentha pulegium EO and its major components have an important anti-mosquito
activity. Carvone showed moderate larvicidal activity against Cx. pipiens larvae of biotype
molestus, with LC50 (95% CL) and LC90 (95% CL) values of 84.58–106.77 and 137.02–228.97,
respectively [40]. In another study, Lima et al. [42] evaluated the larvicidal activity of
Mentha x villosa EO (MVEO) and its major constituent, rotundifolone, against larvae of
Aedes aegypti. The results of the study showed that MVEO exhibited outstanding toxic
effects against Ae. aegypti larvae (LC50 = 45.0 ppm). The results of the comparative study
between rotundifolone and the molecules isolated from the plant showed that all tested
compounds were less potent than rotundifolone (LC50 = 62.5 ppm), except D-limonene.
Concerning carvone, it exhibited intermediate larvicidal activity with (+)-carvone epoxide
(LC50 = 254.6 ppm) and (−)-carvone epoxide (LC50 = 217.5 ppm) [42].

Katiki et al. [41] assessed in vitro the anthelmintic activity of aromatic compounds
present in plants, on eggs collected from sheep droppings infected with the multidrug-
resistant strain of gastrointestinal nematode Haemonchus contortus. The results obtained
show that carvone is one the five promising compounds with anthelmintic activity with an
LC50 value of 0.085 mg/mL [41].

3.2.11. Anti-Arthritic Activity

In a study conducted on arthritic rats, Chen et al. [107] evaluated the anti-arthritic
activity of D-carvone against arthritis induced by Freund’s complete adjuvant (FCA) in rats.
Following oral administration of D-carvone for 25 days at doses of 30 mg/kg and 60 mg/kg
against FCA-induced arthritic rats, certain changes were observed, namely, improvement
in body weight, reduction in leg swelling, edema formation, and organ index in these
arthritic rats. Other improvements were also recorded concerning the decrease in the levels
of white blood cells, with an improvement in the levels of red blood cells and hemoglobin, a
decrease in the levels of lipid peroxidation, with the observation of a significant increase in
the levels of enzymatic and non-enzymatic antioxidants. The results of this study showed
the crucial role of D-carvone in significantly modulating inflammatory cytokine levels and
improving ankle joint pathology against FCA-induced arthritic inflammation implying
significant antiarthritic activity in rats.

3.2.12. Anticonvulsant Activity

Many drugs block seizures, but with little effect in preventing or curing this disease.
Thus, the pharmaceutical industries continue to develop new safe and effective therapeutic
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alternatives to the management of epilepsy. In this perspective, and in a study conducted
by Costa et al. [108] in a model of epilepsy induced by pilocarpine, CC showed an anticon-
vulsant effect. Indeed, administration of the 25 mg/kg, 50 mg/kg, or 75 mg/kg doses of CC
resulted in a reduction of 16.7%, 33%, and 66.7%, respectively, against pilocarpine-induced
seizures, and was effective to increase both the latency to first seizures and the percent
survival, resulting in 33.3%, 67%, and 91.7% protection against seizure-induced death,
respectively. Knowing that the reference drug atropine administered at a dose of 25 mg/kg
creates significant 100% protection, likewise, the results of this study were marked by an
increase in acetylcholinesterase activity in the hippocampus of mice after seizures induced
by pilocarpine. These data suggest the clear association of the anticonvulsant capacity of
CC and the increased activity of the enzyme acetylcholinesterase.

In addition, another study was conducted on models of epilepsy by Marques et al. [109]
to study the effects of CC against seizures induced by pilocarpine (PILO), pentylenete-
trazole (PTZ), and picrotoxin (PTX) in mice. After acute CC treatment at repeated oral
doses (25 mg/kg, 50 mg/kg, and 75 mg/kg) for 14 days, positive anticonvulsant effects in
PILO, PTZ, and PTX epilepsy models were recorded. Furthermore, it was shown that this
substance could act on an allosteric site of GABAA, different from the site of action of BZD.

3.2.13. Anxiolytic Activity

Another research work was performed on male Wistar rats by Hatano et al. [78], this
time showing the anxiolytic effects of (R)-(−)-carvone, extracted from L. alba EO which is
widely used in the regions of Central and South America as a tranquilizer.

Data from this research suggests that L. alba may exert anxiolytic-like effects on a
specific subset of defensive behaviors that have been implicated in generalized anxiety
disorder, and suggest that carvone is one of the constituents of L. alba responsible for its
action as a tranquilizer.

3.2.14. Immunomodulatory Activity

On mice, another study was carried out by Lasarte-Ciae al. [110] in order to ex-
plore the immunomodulatory capacity of a series of compounds representing each of the
10 categories or groups of odors, including that of carvone, while highlighting its potential
as a therapeutic agent for diseases related to the CNS. During this research, the impact of
each particular odor on the immune response was evaluated after immunization with the
model ovalbumin antigen in combination with the TLR3 agonist poly I:C. As a result of
this study, it was shown that some odors can behave as immunostimulating agents, while
others could be considered as potential immunosuppressive odors. In this context, it was
found that inhaling the odor of carvone can have an immunostimulating effect with im-
proved memory capacity in BALB/c and immunosuppressive mice, consequently leading
to a deterioration of the memory ability in C57BL/6J mice, while facilitating or altering
viral clearance, respectively, in a model of viral infection with a recombinant adenovirus.
This can be explained by a higher infiltration of CD3+ T lymphocytes in the hippocampus
and an increased local expression of the mRNA encoding the cytokines IL-1β, TNF-α, and
IL-6, and a decrease in the number of CD3 and an increase in IFN-γ.

3.2.15. Antispasmodic Activity

Another intestinal antispasmodic virtue of C- has been revealed in a study conducted
by Souza et al. [111]. The terminal parts of the ileum were mounted for isotonic contraction
recordings. The effect of C− has been compared with that of verapamil, which is known
to be a classic calcium channel blocker. The results of the measurement of the contractile
response caused by C- showed that this monoterpene reduces the contraction induced by a
high K+, with 100 times more potency than verapamil. This is a typical action of the classic
type of calcium channel blocker.
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3.2.16. Acaricidal Activity

In 2015, Peixoto et al. [77] demonstrated the acaricidal activity of EOs of L. alba geno-
types and of its main monoterpenes (carvone, limonene, and citral) against Rhipicephalus
microplus ticks. The data obtained showed that citral had the greatest efficacy against R. mi-
croplus larvae, with an LC50 of 7.0 mg/mL, followed by R-(−)-carvone (LC50 = 9.9 mg/mL),
and S-(+)-carvone (LC50 = 10.9 mg/mL). However, the limonene enantiomers reached LC50
values of 31.2 mg/mL for R-(+)-limonene and 54.5 mg/mL for S-(−)-limonene. In this
regard, these results suggest that carvone as a major component of this EO may constitute
an ecological alternative in the control of ticks in livestock.

3.2.17. Antimanic Activity

In a study by Nogoceke, et al. [112], the antimanic activity of (R)-(−)-carvone and
(S)-(+)-carvone was evaluated in mouse models of mania (with hyperlocomotion caused
by methylphenidate (5 mg/kg) or sleep deprivation for 24 h). After pre-treatment with
(R)-(−)-carvone (50–100 mg/kg), (S)-(+)-carvone (50–100 mg/kg), and lithium (100 mg/kg
positive control), the results showed that these doses do not modify spontaneous locomotor
activity in the experiments induced by methylphenidate, whereas (S)-(+)-carvone caused a
decrease in spontaneous locomotor activity in the experiment of sleep deprivation, which
explains the induction of a sedative effect. Likewise, a 21-day chronic treatment with
(R)-(−)-carvone (100 mg/kg), (S)-(+)-carvone (100 mg/kg), and lithium also allowed to
block the hyperactivity induced by methylphenidate.

4. Conclusion and Perspectives

Here we have reported the benefits and pharmacological properties of carvone. This
compound exhibited remarkable biological effects in vitro and in vivo and therefore may
be a key candidate in drug development. Indeed, its anticancer and anti-inflammatory
activities are promising with different mechanisms of action which allow us to consider it
as a potential agent for the development of new anti-inflammatory and anticancer drugs.
However, the pharmacodynamic actions were not well understood and, therefore, further
investigations should be carried out to elucidate its mechanisms. Moreover, the study of
combination between carvone used drugs in chemotherapy as well as its capacity to induce
the sensitivity towards chemotherapy should be investigated. The antimicrobial action of
carvone is also expected to be well determined in subsequent studies, and therefore further
works should be investigated to determine its mechanism at subcellular, cellular, and molec-
ular levels. Future clinical applications of carvone as an anticancer, anti-inflammatory, and
antimicrobial drug could be developed in further investigations. However, these studies
should take into account the validation of several steps. Indeed, the pharmacokinetic pa-
rameters should also be examined to determine the absorption, bioavailability, metabolism,
and elimination of carvone. Moreover, toxicological investigations should be performed to
validate its safety for other pharmaceutical applications.

Author Contributions: Conceptualization, A.B. (Abdelhakim Bouyahya), H.M., T.B., M.A.S. and
N.E.O.; writing—original draft preparation, A.B. (Abdelhakim Bouyahya), H.M., T.B., R.G., S.C.,
A.B. (Abdelaali Balahbib) and N.E.O.; writing—review and editing, P.B., M.A.S., N.E.O. and J.M.L.;
supervision, A.B. (Abdelhakim Bouyahya), N.E.O. and J.M.L. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: Thanks to GAIN (Axencia Galega de Innovación) for supporting this research.

Conflicts of Interest: The authors declare no conflict of interest.



Biomolecules 2021, 11, 1803 21 of 26

Abbreviations

Bcl-2 B-cell lymphoma 2
BITC Benzyl isothiocyanate
BZD Benzodiazepines
CAP Compound action potential
CDK1 Cyclin-dependent kinase 1
CNS Central nervous system
CV Crystal violet
DPPH 2,2-dipenyl-1-picrylhydrazyl
EO Essential oil
ESE Evaporation solvent
FE-SEM Field emission scanning electron microscope
GC-MS Gas chromatography–mass spectrometry
GM-MIC Geometric means–minimal inhibitory concentration
GTT Glucose tolerance test
Hb Hemoglobin
HbA1c Glycosylated hemoglobin
IC50 Half-maximal inhibitory concentration
IFN-γ Interferon gamma
IL Interleukin
ITT Insulin tolerance test
LC50 Lethal concentration 50%
LD50 Medium lethal dose
LPS Lipopolysaccharide
MBC Minimum bactericidal concentration
MFC Minimum fungicidal concentration
MIC Minimum inhibitory concentration
MRSA Methicillin-resistant staphylococcus aureus
MS Mass spectrometry
NMR Nuclear magnetic resonance
PARP Poly adenosine diphosphate-ribose polymerase
PGE2 Prostaglandin E2
PLA Poly (lactic acid)
PLGA Poly (lactic-co-glycolic acid)
ROS Reactive oxygen species
SIRT1 Sirtuin-1
STZ Streptozotocin
TBARS Thiobarbituric acid reactive species
TLC Thin layer chromatography
TNF-α Tumor necrosis factor-α
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