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ABSTRACT Rhizophagus irregularis is one of the most extensively studied arbuscular
mycorrhizal fungi (AMF) that forms symbioses with and improves the performance
of many crops. Lack of transformation protocol for R. irregularis renders it challeng-
ing to investigate molecular mechanisms that shape the physiology and interactions
of this AMF with plants. Here, we used all published genomics, transcriptomics, and
metabolomics resources to gain insights into the metabolic functionalities of R. irreg-
ularis by reconstructing its high-quality genome-scale metabolic network that consid-
ers enzyme constraints. Extensive validation tests with the enzyme-constrained meta-
bolic model demonstrated that it can be used to (i) accurately predict increased
growth of R. irregularis on myristate with minimal medium; (ii) integrate enzyme
abundances and carbon source concentrations that yield growth predictions with
high and significant Spearman correlation (rS = 0.74) to measured hyphal dry
weight; and (iii) simulate growth rate increases with tighter association of this AMF
with the host plant across three fungal structures. Based on the validated model and
system-level analyses that integrate data from transcriptomics studies, we predicted
that differences in flux distributions between intraradical mycelium and arbuscles are
linked to changes in amino acid and cofactor biosynthesis. Therefore, our results
demonstrated that the enzyme-constrained metabolic model can be employed to
pinpoint mechanisms driving developmental and physiological responses of R. irreg-
ularis to different environmental cues. In conclusion, this model can serve as a tem-
plate for other AMF and paves the way to identify metabolic engineering strategies
to modulate fungal metabolic traits that directly affect plant performance.

IMPORTANCE Mounting evidence points to the benefits of the symbiotic interactions
between the arbuscular mycorrhiza fungus Rhizophagus irregularis and crops; how-
ever, the molecular mechanisms underlying the physiological responses of this fun-
gus to different host plants and environments remain largely unknown. We present
a manually curated, enzyme-constrained, genome-scale metabolic model of R. irregu-
laris that can accurately predict experimentally observed phenotypes. We show that
this high-quality model provides an entry point into better understanding the meta-
bolic and physiological responses of this fungus to changing environments due to
the availability of different nutrients. The model can be used to design metabolic en-
gineering strategies to tailor R. irregularis metabolism toward improving the perform-
ance of host plants.

KEYWORDS Rhizophagus irregularis, metabolic modeling

More than two-thirds of all land plants are involved in symbiotic relationships with
arbuscular mycorrhizal fungi (AMF) (1). AMF are members of a monophyletic

group within the early diverging fungi. Arbuscular mycorrhizal symbiosis is established
by fungal hyphae entering cortical root cells of the host plant to form subcellular struc-
tures, termed arbuscles (ARB), where nutrients are exchanged between the symbiotic
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partners (2, 3). Rhizophagus irregularis (previously wrongly ascribed to Glomus intraradi-
ces [4]) is one of the most extensively studied AMF, shown to form symbioses with a
variety of agriculturally relevant plants. Soil inoculation with R. irregularis leads to
improved overall plant growth (5–8), fruit quality (9, 10), and yield (11–14). Further, R.
irregularis confers robustness against multiple abiotic stress conditions (15–22). These
qualities make it a valuable contributor to plant fitness, which is widely exploited for
plant cultivation.

Spores of R. irregularis grow into a network of coenocytic hyphae, which can be sep-
arated into three major structures: the extraradical mycelium (ERM), the intraradical
mycelium (IRM), and ARB (2). The ERM is comprised of hyphae located in soil, whereas
hyphae of the two apoplastic structures, IRM and ARB, grow between or penetrate
cortical root cells. R. irregularis mainly provides inorganic phosphate (Pi) and nitrogen
(N) to the host plant as its extensive hypha network bridges the nutrient depletion
zone surrounding the roots (23–27); in return, it receives carbohydrates and lipids from
the host plant (28–35). Pi is one of the key nutrients that limits plant growth, and under
Pi-limiting conditions, most plants rely on additional Pi supplied by a fungal symbiotic
partner (3). To this end, the external hyphae of the fungus either take up Pi directly
from the soil or obtain it from hydrolysis of complex organic phosphates, such as phy-
tate (36). According to the current evidence on R. irregularis, assimilated Pi is polymer-
ized into polyphosphate (PolyP), which is translocated through the ERM toward IRM
(27). Finally, Pi is released from arbuscles into the periarbuscular space. Several Pi trans-
porters have been identified in R. irregularis that could be involved in Pi translocation
from fungus to plant (26, 37, 38).

Moreover, N is another key nutrient for plant growth, comprising up to 5% of their
dry weight. However, the availability of N sources to the plant is restricted due to the
limited range of roots and its inhomogeneous distribution in soil. Hence, many plants
depend on interactions with microbes that can provide additional nitrogen assimilated
from the surrounding soil (39). R. irregularis takes up N in the form of ammonia (NH4

1)
and nitrate (NO3

2) as well as amino acids and small peptides via designated transport-
ers. Three NH4

1 transporters, GintAMT1 to -3, and a NO3
2 transporter, GiNT, have been

identified in R. irregularis (40–43). Intracellular NH4
1 is then used to synthesize L-argi-

nine from L-glutamate (25, 43). Arginine is assumed to be the major transport form of
nitrogen from the ERM to IRM, where it is catabolized to NH4

1 and excreted into the
periarbuscular space (3, 43).

The fungus, in turn, is dependent on carbohydrates and lipids obtained from the
plant host. Multiple sugar transporters have been found that are likely involved in hex-
ose transfer from the host plant to R. irregularis (31, 44). However, the sugars obtained
from the plant are not sufficient for the fungus to complete its life cycle (i.e., formation
of fertile spores). R. irregularis cannot synthesize fatty acids with chain length greater
than eight due to the absence of the fatty acid synthase (FASI) and, thus, depends on
fatty acids provided by the host plant (32, 33, 35, 45, 46). Most likely, lipid is transported
as 2-monopalmitin; however, it has also been shown that R. irregularis can grow on my-
ristate (47). These findings have been exploited to develop an axenic culture medium on
which the obligate biotroph can grow up to the production of fertile spores (48).

The availability of an assembled genome for R. irregularis (49–52) largely facilitated
the characterization of transporters and its lipid metabolism (45, 53), allowing us to
draw conclusions about the metabolic capabilities of the obligate biotrophic fungus.
Multiple studies performed gene expression profiling under various conditions, facili-
tating a deeper understanding of the R. irregularis metabolism and arbuscular mycor-
rhiza (5, 54–56). An annotated genome of an organism is also the basis for the genera-
tion of genome-scale metabolic models (GEMs) that offer the means to in silico probe
the functional capabilities and physiological responses of the organism (57). GEMs
have already been developed to analyze the interaction of an N-fixing bacterium,
Sinorhizobium meliloti, and its host plant, Medicago truncatula (58, 59). As a result, im-
portant features of the N exchange and codependent growth were revealed, leading
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to a better understanding of this symbiotic relationship. Such analyses for R. irregularis
cannot be performed due to the lack of a high-quality GEM for this organism.

Availability of a GEM for R. irregularis can be particularly useful to dissect mecha-
nisms underlying arbuscular mycorrhiza and to predict fungal nutrient conversions
and exchange, directly affecting growth of the host plant. Here, we present a compart-
mentalized enzyme-constrained GEM for R. irregularis, termed iRi1574, which allows
the integration and prediction of transcript and protein abundances for different
growth scenarios. We then used the enzyme-constrained GEM of R. irregularis to pre-
dict protein abundances across four carbohydrate sources and three feeding concen-
trations; we also examined the predictions of growth and pathways that affect this
complex phenotype based on experimental measurements of hyphal dry weight and
protein content from Hildebrandt et al. (60). We show that the enzyme-constrained
iRi1574 model results in predictions that correlate well with experimentally measured
dry weight (as well as calculated growth rates) and allows us to probe the flux redis-
tributions across three fungal structures using reanalyzed published gene expression
data (5). Thus, we lay the foundation for further in-depth analysis of R. irregularis me-
tabolism, hypothesis testing regarding mechanism essential for arbuscular mycorrhiza,
and metabolic engineering of this fungus to improve the effect on agriculturally rele-
vant plant traits.

RESULTS AND DISCUSSION
Reconstruction of the genome-scale metabolic model of R. irregularis. Our first

contribution is the generation of a GEM for R. irregularis encompassing all enzymatic
functions annotated for this agronomically relevant fungus. The metabolic model can
be used in combination with computational approaches from the constraint-based
modeling framework to predict a variety of metabolic phenotypes, including growth,
in different scenarios (61, 62). The genome of R. irregularis (49, 51) was used as a start-
ing point for the generation of the GEM using the KBase fungal reconstruction pipeline
(63). The resulting draft model was first translated to a common namespace based on
augmenting a database of biochemical reactions, ModelSEED (34), since there were
reaction and metabolite identifiers from published fungal models without cross refer-
ences. We then added 198 transport reactions from the Saccharomyces cerevisiae
iMM904 GEM (64) to improve the network connectivity (see Table S2H in the supple-
mental material). We further expanded the list of reactions based on literature evi-
dence for R. irregularis. After these steps, the model was manually curated to ensure
mass and charge balancing. Finally, stoichiometrically balanced cycles were removed
from the model to avoid simulations in which growth without available carbon source
is possible (Text S1).

The manually curated GEM of R. irregularis, named iRi1574, consists of 1,286 metab-
olites and 1,574 reactions in eight subcellular compartments, i.e., the cytosol, mito-
chondrion, peroxisome, Golgi apparatus, endoplasmic reticulum, nucleus, vacuole, and
an extracellular compartment. In total, 687 enzyme-coding genes are associated with
1,054 (67%) reactions via gene-protein-reaction (GPR) rules (Fig. 1C). Further, we cross-
referenced both metabolites and reactions to commonly used biochemical databases
to increase the comparability to other GEMs and to facilitate its future use. A published
cost-efficient medium that is used in dual-compartment culture systems and includes
glycine, myoinositol, pyridoxine hydrochloride, thiamine hydrochloride, nicotinic acid,
and essential minerals is the default medium for simulations (65). The dependence of
the growth of R. irregularis on lipid transferred from the host (most likely 16:0 b-mono-
acylglycerol [32, 33]) was modeled by adding an exchange reaction for palmitate,
which is added to the default medium.

Altogether, the iRi1574 model includes 13 metabolic subsystems (Fig. 1A). In total,
24% and 13% of reactions take part in lipid and amino acid metabolism subsystems,
respectively, which dominate the reconstruction (Fig. 1A). To model the lipid metabolism
of R. irregularis, we relied on the gene annotations supported by the literature (45, 66).
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Moreover, to incorporate experimentally measured lipid abundances (45, 67) into the
biomass reaction, we used the SLIMEr method (68), whereby specific lipid species are
split into their fatty acyl chains and backbone and are then combined using respective
pseudoreactions. Hence, the number of lipid-related reactions and pseudoreactions is
high compared to that of the remaining 11 metabolic subsystems. Based on evidence in
the literature, we further added reactions that allow the production of ethylene (69),
short-chain lipochitooligosaccharides (LCO) (70, 71), and vacuolar polyphosphate (72,
73). The respective end products of these reactions are exported via sink reactions.
Moreover, we added extracellular sink reactions for organic phosphate and ammonia, as
these molecules are known to be transported from the fungus to the host plant.

As only a small proportion of metabolites is annotated by the KEGG BRITE hierarchy
(74), we used the ChEBI metabolite ontology (75) to structurally classify the considered
metabolites. Due to the large number of reactions from lipid metabolism included in
iRi1574, the proportions of lipids and fatty acyls are high (34%), followed by peptides/
amino acids and organic and nucleic acids (Fig. 1B). The class of other metabolites is
dominated by carbonyl compounds, heterocyclic compounds, and phosphosugars.
Quality assessment tests with the iRi1574 model were performed by employing the
MEMOTE test suite (76), yielding an overall score of 72% (Text S1).

Comparison of iRi1574 to other fungal models. As R. irregularis is phylogeneti-
cally distant from other fungi for which GEMs have been published, we next asked
whether the phylogenetic relationship among these fungi is represented in the
enzyme sets included in the respective GEMs. To this end, we assigned pathway infor-
mation to the reaction in nine fungal models according to the classification contained
in the YeastGEM v8.3.5 (77) model (Table S1A). To determine the overall similarity
between two fungal models, we determined the overlap in E.C. numbers per subsys-
tem by using the Jaccard index (JI). We observed that, compared to the nine compared
fungal models, iRi1574 showed the lowest JI, i.e., lowest overlap of E.C. numbers, for
fatty acid metabolism (including synthesis and elongation), thiamine metabolism, glyc-
erolopid, and nicotinate and nicotinamide metabolism (Fig. S1). In contrast, the largest
overlap was found for the pentose phosphate pathway, one carbon pool by folate,

FIG 1 Properties of the R. irregularis genome-scale metabolic model iRi1574. (A) The iRi1574 model includes 13 metabolic subsystems,
primarily defined by KEGG pathways with manual refinement. The pie chart illustrates the percentage of reactions participating in
these metabolic subsystems. (B) Metabolite classification using KEGG BRITE with manual refinement with help of the ChEBI ontology.
(C) Binary classification of reactions based on eight criteria, including assignment of E.C. number, involvement in transport reactions,
association with genes via GPR rules, mass and charge balancing, available value for standard Gibbs free energy, and ability to
support steady-state flux.
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pantothenate, and coenzyme A (CoA) biosynthesis, and amino sugar and nucleotide
sugar metabolism, to name a few (Fig. S1). Further, we identified that some fungal
GEMs show differences from iRi1574 with respect to particular metabolic subsystems.
For instance, the model of N. crassa showed particular differences in the tricarboxylic
acid (TCA) cycle and pyruvate metabolism, the model of A. terreus displays particular
differences in purine metabolism, steroid biosynthesis, sphingolipid, and pyrimidine
metabolism, and lipid metabolism, and the model of P. chrysogenum differed in sphin-
golipid metabolism and fatty acid elongation (Fig. S1).

The previous comparison between the fungal models was conducted only with
respect to overlap of E.C. numbers present in particular metabolic subsystems and
does not point at differences in the activity of these pathways and their contribution
to the physiology of the modeled fungi. To address this issue, we employed flux bal-
ance analysis (FBA) (78, 79), which facilitates simulation of growth at steady state in
each of the fungal models by optimizing of the flux, vbio, through a biomass reaction
that integrates the biomass precursors. This results in a linear optimization problem
that imposes metabolic steady state and physiologically relevant bounds on reaction
fluxes, i.e.,

max vbio

subject to (s.t.)

Sv ¼ 0

vmin
i # vi # vmax

i ; 8i 2 R

where S represents the stoichiometric matrix, including the molarity with which each
substrate and product enter a reaction of the metabolic model, v stands for the flux
distribution, and R denotes the set of reactions in the model. Since it is well-known
that there are often multiple steady-state flux distributions, v, that achieve the same
growth (80), to characterize the activity of a metabolic subsystem, we next determined
the minimum and maximum values that the sum of fluxes of the reactions participat-
ing in a given subsystem attain at optimal growth (see Materials and Methods).
Similarly, we determined the sums of fluxes from parsimonious FBA (pFBA) for each of
the subsystems (Text S2).

Following this analysis, we observed that the ranges between the maximal and min-
imal sums of fluxes are largely overlapping and are of similar widths across most of the
compared models (Fig. S2). Interestingly, the model for P. chrysogenum, iAL1006, and
the iRi1574 model showed narrower ranges than the remaining models, except for
fatty acid metabolism. The reason for this observation is the higher number of soft-
and hard-coupled reactions to the biomass reaction in the iAL1006 and iRi1574 models
compared to the others (Fig. S3). Moreover, we observed that the maximum sum of
fluxes is similar across all fungal models (coefficient of variation [CV] of 0.6), while mini-
mal sums and sums from pFBA fluxes showed larger differences (CV = 2.3 and CV =
2.6). This suggests that these pathways are of differential importance for the models,
since the minimal sum of fluxes provides an indication of how much flux must at least
pass through these reactions to guarantee optimal growth. In conclusion, we find dif-
ferences in both E.C. number overlap as well as in the pathway activities between
iRi1574 and other fungal models, indicating that iRi1574 is both structurally and func-
tionally distinct from other fungal GEMs.

iRi1574 can predict phenotypes of R. irregularis, in line with experimental
observations. We employed the assembled GEM to predict physiological traits for
which there exist sufficient evidence and, thus, can be used to validate the perform-
ance of the model. A first question is how many of the reactions in the assembled
model can carry flux. For these simulations, M-medium (65, 81) was used, which was
enriched with palmitate, D-glucose, and D-fructose, assumed to be supplied by the
plant (Table S1K). Using this default medium, 658 (42%) reactions were blocked (i.e.,
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could not carry flux in any steady state supported by the model), of which 105 are
transport reactions for extracellular metabolites. This is in line with the percentage of
blocked reactions in the fungal models used in the comparison described above (from
11.9% in iJL1454 to 49.9% in iRL766).

An important characteristic of the symbiotic relationships formed by R. irregularis is
its dependence on association with the plant host to ultimately form fertile spores (46).
According to recent findings, lipids are supplied by the plant symbiont, as R. irregularis
does not possess the required enzyme set for de novo synthesis of long-chain fatty
acids from hexoses (35, 45). More specifically, 2-monopalmitate was proposed as a can-
didate for the lipid exchange from plant to fungus (32, 33). Concordantly, axenic
growth of this fungus is only possible when fatty acids are supplied in the medium (47,
82). Hence, the default medium used in the study includes palmitate as a lipid source.
Indeed, simulations in which palmitate influx is blocked lead to no growth with or
without consideration of other carbon sources.

It has been shown that R. irregularis can utilize additional carbon sources (30, 47, 83).
The ability of the model to reproduce these finding was assessed by growth simulations
on single carbon sources in the default medium while restricting the uptake of palmitate
to a minimal value that still guarantees optimal growth (8.46 mmol per gram dry weight
[gDW21] h21). As a result, we simulated growth on 11 carbon sources by using FBA
(described above), resulting in different growth rates (Fig. S4A). Here, we observed the
highest growth rates for trehalose, followed by D-glucose, D-fructose, melibiose, and raffi-
nose. The observed high growth rate with trehalose as a carbon source is not surprising,
given that it directly enters the biomass reaction. The equal growth rates obtained upon
adding D-glucose, D-fructose, raffinose, and melibiose indicated that D-glucose, D-fructose,
and D-galactose as breakdown products from raffinose can be used with equal efficiency.
The efficiency of the remaining carbon sources differed due to the differences in their
breakdown pathway and additional modifications (e.g., phosphorylation and reduction).
Further, we quantified the ATP production for each of these carbon sources under the
same conditions while guaranteeing 0% or 50% of the optimal predicted growth
(Fig. S4B and C). As a result, we observed that the highest ATP production can be
achieved from utilizing trehalose, which is likely because it is directly used by the biomass
reaction. Since the trehalose uptake is not growth-limiting, the excess trehalose can be
used for ATP production. The highest ATP yield is achieved by myristate utilization, which
confirms an experimental observation made by Sugiura et al. (47) that the ATP content
increased by 2.4-fold in the presence of myristate.

Moreover, it has been reported that the addition of myristate to the medium leads
to enhanced growth of R. irregularis (47). We found that optimum growth is, as
expected, associated with a fixed value of palmitate influx of 8.46 mmol gDW21 h21.
Further, myristate is not utilized if additional carbon sources are available without limit
in the medium, which is in contrast to the experimental findings of Sugiura and co-
workers, who found that the addition of myristate leads to an increment in growth irre-
spective of an additional carbon source (47). Therefore, we asked if the reduced
growth, due to the suboptimal scenario of fixing the palmitate influx to 10% of the
minimum at optimal growth, can be complemented by adding myristate. Indeed, the
model predicted that growth increased by 1.5% compared to the suboptimal scenario.
Notably, this growth complementation does not occur due to compensation of fatty
acid production but via increased energy generation from products of b-oxidation.
When additional carbon sources (i.e., D-glucose, D-fructose, glycine, and myo-inositol)
are allowed, with uptake rates restricted to their minimal fluxes at optimal growth, this
increase in growth amounts to 9.7% (see below for the predictions from the enzyme-
constrained model).

Another important transport process described for this symbiosis is the transport of
Pi from fungus to the host plant (38). We found that the reconstructed model predicts
export of Pi at optimal growth (Table S1B for FVA), in line with available evidence (38).
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These results corroborate the quality of the functionally relevant predictions based on
the developed iRi1574 model.

Protein usage with different carbon sources. Enzyme-constrained GEMs have
been developed for S. cerevisiae and Escherichia coli (68, 84, 85), demonstrating
improved prediction of metabolic phenotypes, in contrast to the classical FBA-based
models. In enzyme-constrained GEMs, the fluxes of reactions are bounded by the cata-
lytic efficiency (kcat parameters) and the abundance of the respective enzyme(s) (86);
these models also include constraints on the total enzyme content, borrowing from
the initial idea proposed in FBA with molecular crowding (87, 88). An enzyme-con-
strained GEM can be used to predict not only growth but also distribution of the total
enzyme content across the different reactions and pathways. To generate an enzyme-
constrained GEM for R. irregularis, we made use of 1,214 kcat parameters, of which 430
were measured for fungi, covering 57.4% of reactions included in the model (with all ir-
reversible reactions; see Materials and Methods). We then employed an extension of
MOMENT (84), a constraint-based approach that facilitates the integration and predic-
tion of protein abundance by considering data on the kcat values. In addition to a mo-
lecular crowding constraint (see equation 5 and Materials and Methods) (84, 87, 88),
similar to GECKO (68), we introduced a constraint to model enzyme promiscuity (equa-
tion 4), resulting in the extended method we refer to as eMOMENT. Missing turnover
numbers were accounted for by assigning the median of the assigned kcat values.

Here, we first revisit the results based on FBA with respect to growth on myristate
and export of Pi. Without additional constraints in the enzyme-constrained iRi1574
model, the positive effect of myristate uptake on growth could not be reproduced,
since myristate is catabolized via peroxisomal b-oxidation and the expression of the
required enzymes is not outweighed by the benefit of generating acetyl-CoA from my-
ristate. However, when the allocation of total protein is shifted from the optimal ratio
toward increased abundances of peroxisomal proteins (Text S2), the addition of myris-
tate can increase growth compared to the suboptimal scenario (Fig. S5). Further, we
found that using the default medium, like in the FBA model described above, the
enzyme-constrained model predicts export of Pi at optimal growth in the range of 0 to
171.9 mmol gDW21 h21 (Table S1C). Therefore, the observations made for the FBA
model with these important phenotypes also hold for the enzyme-constrained model.

To test the performance of the enzyme-constrained variant of the iRi1574 model, we
made use of published dry weight and protein content available for 12 combinations of
four carbon sources (i.e., D-glucose, D-fructose, raffinose, and melibiose) at three different
concentrations (i.e., 10 mM, 100 mM, and 1,000 M) (60). These data were generated by
using the G. intraradices strain Sy167 (60), which is the closest species to R. irregularis for
which these kinds of measurements are available. The different medium conditions were
modeled by adding each carbohydrate to the default medium as a single carbon source,
while the respective concentrations were modeled as proportional uptake fluxes consid-
ering kinetic parameters of the respective transport reactions (for more details, see
Materials and Methods). Like in the findings based on FBA described above, palmitate
was present in the default medium since growth without palmitate is not possible, irre-
spective of additional supply of carbohydrates (45, 47). To avoid compensation of lower
carbohydrate supply by b-oxidation of palmitic acid, we limited its uptake to the flux
value obtained at optimal growth predicted by FBA.

We next compared the predictions of growth from the eMOMENT approach with those
from FBA (i.e., without considering enzyme constraints), with the same restrictions on pal-
mitate uptake (Table S1D). We observed that the additional constraints on protein abun-
dances largely improved the quality of the prediction (Fig. 2) and resulted in values of the
same order as growth rates calculated from dry weights and grow duration (Text S2). We
found that the predicted growth rates were significantly correlated with the measured val-
ues for hyphae dry weight (Spearman correlation coefficient, r S ¼ 0:74; P, 0:01; Fig. 2)
and were colinear (r S ¼ 1:0) with the protein content. In contrast, FBA predicted a statis-
tically significant, negative correlation (r S ¼ 20:69; P, 0:05), demonstrating that the
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predictions from this approach are not in line with the experimental observations. The re-
spective values for Pearson correlation were rP ¼ 0:80 (P , 0:01) for the enzyme-con-
strained models and rP ¼ 20:62 (P, 0:05) for the FBA model. Using FBA, we observed
that growth increased with the concentration of the respective carbon source despite
rescaling of biomass coefficients, while this was not the case when using the eMOMENT
approach. In fact, this relationship was only observed for D-glucose and raffinose, which is
broken down to sucrose and D-galactose extracellularly. Hence, the iRi1574 model can reli-
ably predict growth based on different carbon sources when protein content and protein-
reaction associations are considered. A reason for the significant negative correlation with
FBA could be the altered biomass composition after rescaling by the changing protein
content as well as the lack of protein constraints, which are present in the enzyme-con-
strained model.

The applied approach to integrate total protein content allowed us to predict not
only optimal growth but also abundances of individual proteins for the 12 combina-
tions of carbon source and concentrations considered. Since multiple allocations of
proteins to enzyme complexes and reactions can lead to optimal growth, we sampled
the set of feasible enzyme abundances (see Materials and Methods) at 99% of the re-
spective optima. The resulting predictions on alternative enzyme allocation at optimal
growth were used to investigate the plasticity of enzyme allocation under the different
conditions. We quantified the plasticity in the abundance of each protein by the CV
across the simulated conditions. The CV was calculated for predicted protein abun-
dance and reaction flux across the 12 growth scenarios (Tables S1E and F). To illustrate
the findings, we represented the distribution of CVs across the 13 metabolic subsys-
tems (Fig. 3A and B). The highest median CV was found for enzymes within the amino
sugar and nucleotide sugar metabolism (CV = 16.65), carbohydrate metabolism (CV =
9.71), and nucleotide metabolism (CV = 9.35). In contrast, metabolism of cofactors and
vitamins and transport reactions showed the lowest plasticity in protein abundance
(CV , 0.3). Regarding reaction fluxes, the subsystems containing the most plastic

FIG 2 Prediction of growth for iRi1574 using eMOMENT and FBA. Scatterplot of growth rates predicted by eMOMENT (red) compared with
FBA without constraints on enzyme abundances (blue). The predicted growth rates were compared with experimental data obtained for
Glomus intraradices Sy167 (60), which is the phylogenetically closest species with this kind of data available. The concordance of predicted
growth rates and experimentally measured hypha dry weight was quantified by the Spearman correlation, rS .
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reactions were found within sink reactions (CV = 13.77) and amino sugar and nucleo-
tide sugar metabolism (CV = 12.55).

To assess whether the plasticity in flux is dependent on the variability in enzyme
abundance of the catalyzing enzymes, we compared the respective sets at the extreme
ends of CV distribution (10% and 90% quantiles) between protein abundance and reac-
tion fluxes (Fig. 3C). Among the 89 reactions associated with enzymes with variable
abundance (CV $ 49.38), 28 also were found to be highly plastic in flux. Conversely,
we found six reactions with low flux CV associated with seven high-abundance CV pro-
teins. Four of these genes were not promiscuous and were associated with single reac-
tions of high CV. The associated reactions are involved in terpenoid backbone biosyn-
thesis and nucleotide metabolism. Hence, variation in enzyme abundance cannot fully
explain the plasticity in flux. Since pH differences (affecting enzyme activity) are
expected to lead to systemic changes, we conclude that the plasticity in flux for these
selected reactions is largely driven by metabolite concentration rather than enzyme
abundance.

Among the 78 reactions with highly variable fluxes (CV $ 39.79), the majority lie
within the lipid and fatty acid metabolism (47) and transport reactions (10). The subset
of reactions in lipid metabolism was found to act mainly in in lipid degradation but
also in the synthesis of very long-chain fatty acids. This result indicates a trade-off
between lipid synthesis and b-oxidation depending on the type and concentration of
the carbon source.

Prediction of growth for three fungal structures. As obligate biotrophs, AMF are
dependent on the association with a host plant for carbohydrates and lipids (2, 3).
Three major fungal structures are discriminated for the fungus: extraradical mycelium
(ERM), intraradical mycelium (IRM), and arbuscles (ARB), which differ from each other in
the proximity of association with the host plant. Thus, we investigated growth and
underlying flux distributions comparing these three structures of R. irregularis. To this
end, we used published expression data (5) to examine growth and differential reac-
tion fluxes between these three structures. We relied on using transcript abundances
instead of protein abundances, as the latter had not been measured at the time this

FIG 3 Plasticity of protein abundance and reaction fluxes across 12 simulated media conditions. The coefficient
of variation (CV) was calculated across all medium conditions (i.e., glucose, fructose, raffinose, and melibiose at
10, 100, and 1,000 mM each) for protein abundances (A) and reaction fluxes (B). The boxes are ordered by
median of the log10-transformed data. (C) The CV of fluxes is plotted against the CV of abundance of their
associated proteins.
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study was conducted. However, transcript abundances have been successfully used to
constrain fluxes in other constraint-based metabolic modeling studies (89, 90).

We observed an increase in growth upon association of the fungus with the host
plant (Fig. 4A), which was expected since a tighter association with the host plant and,
hence, increased nutrient uptake allows faster growth. Since the total protein content
remained the same over the simulations for all three structures, the changes in growth
likely result from increased flux through a subset of reactions responsible for growth
due to the larger upper bounds of these reactions. One reason for this could be
changes in the relative abundances of individual proteins due to changes in transcript
abundances that were used to calculate the upper bounds. To determine differential
reactions, we sampled 5,000 flux distributions for each structure and compared the
resulting flux values for each reaction using the nonparametric common-language
effect size (Aw) (91) (Table S1G). We used three different thresholds for Aw (i.e., 0.6, 0.7,
0.8) to find differentially activated reactions between each pair of structures. By using
0.6 as a threshold, we found that mainly reactions of the amino acid metabolism exhib-
ited differential fluxes between each pair of structures, followed by reactions in metab-
olism of cofactors and vitamins, carbohydrate, lipid, and nucleotide metabolism
(Fig. 4B). Upon increasing the threshold to 0.7, we found only two reactions to be dif-
ferentially activated between ERM versus IRM and ARB, which were both involved in ri-
boflavin biosynthesis (KEGG entry M00911) (Fig. 4B). Moreover, eight reactions from
metabolism of cofactors and vitamins were differential between IRM and ARB. When
the threshold was increased to 0.8, only one reaction was found to differ between IRM
and ARB, namely, the coproporphyrinogen-oxygen oxidoreductase (E.C. 1.3.3.3). These
results suggest that substantial rerouting of fluxes within these pathways occurs upon
establishing the fungus-plant interface. However, differences in predicted growth may

FIG 4 Growth simulation of R. irregularis for three fungal structures. The upper limit for reaction flux was
calculated as kcat � ½E�. The association of turnover numbers with reactions was done similar to GECKO (68).
Structure-specific expression data were used as proxy for protein concentrations. This was done by multiplying
relative transcript abundances with the maximum total protein content measured with the available carbon
source ðC ¼ 0:106 g gDW�1) (60) (see Materials and Methods for more details). (A) Predicted growth for the
three fungal structures. The error bars represent predicted growth rates at C 6 s , where s represents the
standard deviation determined for the experimentally measured protein content. (B) Distribution of subsystems
for reactions that show nonparametric common language effect sizes (Aw) above selected thresholds for each
pairwise comparison of flux distributions between the three fungal structures. The total numbers of reactions
with Aw greater than the threshold are shown below each of the pie charts. No chart is shown if no reaction
was found to have an Aw above the threshold.
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not exclusively result from large changes in a few reactions. It is likely that small
changes in a number of other reactions also contribute to an increased growth rate.

Conclusions. Although R. irregularis is one of the most extensively studied AMF
that forms symbioses with major crops, insights from the annotation of its enzymatic
genes, the extensive body of evidence about its physiological and molecular responses
to different environmental stimuli, and mutual effects on plants with which it interacts
have not yet been systematically investigated in the context of metabolic modeling.
The constraint-based modeling framework allows us to dissect the molecular mecha-
nisms that underpin these responses and also to suggest targets for future metabolic
engineering to boost the beneficial effects of this AMF. However, achieving this aim
requires the assembly of a high-quality large-scale model that leads to accurate quanti-
tative predictions of multiple traits in different scenarios.

Here, we presented the enzyme-constrained iRi1574 GEM of R. irregularis based on
the KBase fungal reconstruction pipeline followed by consideration and inclusion of
exhaustive literature research as well as manual curation for consistency and mass and
charge balance. One possible caveat of using fungal reconstruction pipelines is that
the resulting model may be very similar to the employed templates. Nevertheless, by
conducting comparative analyses of the enzyme set of iRi1574 and that of published
fungal models, we demonstrated the specificity of iRi1574 and its ability to capture the
particularities of R. irregularis metabolism. More importantly, validation tests demon-
strated that iRi1574 can (i) accurately predict increased growth on myristate with mini-
mal medium with the FBA model as well as under additional constrains on enzyme dis-
tribution in the enzyme-constrained model, (ii) predict growth that is highly correlated
with hyphal dry weight measured in a close relative (Glomus intraradices Sy167, neigh-
boring clade) when considering enzyme constraints, and (iii) increase growth rate with
tighter association with the host plant based on integration of relative transcriptomics
data. The extensively validated model was used to show that the transition from IRM
to ARB could be linked with changes in amino acid and cofactor biosynthesis.

This first model of an AMF can be coupled with root-specific models of model
plants to investigate the effects of symbiosis. Further, a two-dimensional (2D) growth
simulation approach (62) can be employed to obtain a realistic growth measure for
hyphal spread. In addition, the iRi1574 model can be used to mechanistically dissect
the interactions of species in fungal and bacterial communities that jointly affect plant
performance (92). Most importantly, one can begin to design metabolic engineering
strategies to improve desired traits in R. irregularis, study the effect of the modifications
on plant performance by coupling metabolic models of the symbionts, and further
refine the model based on integration of heterogeneous molecular data. Altogether,
these modeling efforts can guide future reverse genetics tools used to understand the
functional relevance of metabolic genes in R. irregularis in shaping plant traits.

MATERIALS ANDMETHODS
Draft model generation. The genome of Rhizophagus irregularis DAOM 181602 (DAOM 197198;

GCF_000439145.3) (49, 51) served as the basis for the genome-scale metabolic reconstruction. The initial
draft model was obtained from KBase (63) using the Build Fungal Model app (15 October 2018; narrative
ID 36938). The resulting model was gap-filled with the help of the KBase Gapfill Metabolic Model app
using complete medium. A set of 35 additional reactions was required to simulate growth. This set of
added reactions was manually curated in the next step of model refinement. The gap-filled model was
then downloaded in SBML format and further modified within MATLAB (93) using functions of the
COBRA toolbox (94).

Model curation. To enhance connectivity between the cellular compartments, 198 transport reac-
tions were added from the yeast iMM904 metabolic model (64). The imported transport reactions were
validated during the next curation steps. Out of all added transport reactions, 71 were kept in the model
despite missing literature evidence (see Table S1H in the supplemental material). Next, the metabolite
and reaction identifiers were translated, whenever possible, to the ModelSEED namespace (34). This step
was necessary since the identifiers resulted from 14 different models and the catalyzed reactions mostly
could not be identified. Moreover, this led to a higher connectivity of the network as identical metabo-
lites and reactions were reconciled. Further, cross-references were added to BiGG (95), MetaCyc (96),
KEGG (74), MetaNetX (97), PubChem (98), and E.C. numbers.

Metabolite formulas were added from PubChem and adapted to the net charge at the average
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cytosolic pH of 6.2 (99) using ChemAxon Marvin software (Marvin 17.21.0, 2017, http://www.chemaxon
.com). With elemental compositions and metabolite charges available, the model was manually mass
and charge balanced.

After these steps, additional reactions were added from various literature sources. Most of the lipid
metabolism is based on the results from reference 45, including sterol metabolism, fatty acid synthesis,
elongation and degradation, glycerolipid metabolism, and sphingolipid metabolism. Plasma membrane
transporters were added with literature evidence from multiple sources (38, 44, 53, 100). Furthermore,
important dead-end metabolites were resolved manually by adding incident reactions with genomic evi-
dence or transport reactions.

The biomass reaction was adapted from the default fungal biomass reaction added during the auto-
mated reconstruction process (Table S1I). Subsequently, the unknown coefficients in the biomass reac-
tion were rescaled such that the sum of coefficients multiplied with the respective molecular weight
equals 1 g gDW21 (101). Due to missing experimental data, we set the growth-associated ATP mainte-
nance reaction (GAM) to 60 molecules ATP gDW21 as taken from the KBase default fungal biomass,
which is in line with the average value from seven published fungal models (68.87 mmol gDW21;
Table S1J). The non-growth-associated ATP maintenance reaction (NGAM) was fixed to the average of
from seven published fungal models (3.21 mmol gDW21 h21; Table S1J). For the lipid component in the
biomass reactions, the SLIMEr formalism was used (102), and coefficients of tail and backbone pseudo-
metabolites were adjusted to render the model feasible for simulations by running a quadratic program
to minimize factors to be added to the respective coefficients.

Stoichiometrically balanced cycles (SBC) were then removed by repeatedly applying flux variability
analysis (FVA) and correcting reaction reversibility or adding additional reactions as suggested previ-
ously (103). For the following analyses, all reversible reactions were split into two irreversible reactions.

Short-chain CO and LCO. Synthesis reactions for LCOs were added by first modeling the synthesis
of COs with chain lengths of 3 to 6 with subsequent acetylation reactions adding 16:0, 16:1D9 v7ð Þ,
18:0, and 18:1D9 v9ð Þ fatty acids, leading to 16 different LCO species (70, 71).

Transcriptomic data. Structure-dependent transcriptome sequencing (RNA-seq) data were obtained
as raw sequence reads (GenBank accession no. GSE99655) (5). The reads were quality trimmed using
Trimmomatic-0.39 (104) and mapped to the R. irregularis genome using STAR 2.7.3a (105). The read
quantification was performed using HTSeq count (106). The average over the three replicates was used
for further analysis. The protein identifiers from the original study were translated to the identifiers of
the genome annotation that was used for the metabolic reconstruction using local tblastn (107, 108)
with the BLOSUM90 scoring matrix and a cutoff E value of 10E290. The average Spearman correlation
between the published and reanalyzed values for the secreted proteins (SP) was 0:8, which confirms the
previous results given different analysis software and possible mapping errors using tblastn.

Turnover numbers. For the assignment of kcat values to reactions, an approach similar to that for
GECKO (68) was applied. First, turnover values for all E.C. numbers in the model across all organisms and
lineages were obtained from BRENDA (109), SABIO-RK (110), and UniProt (111). For each E.C. number
assigned to a reaction, all matching kcat values were obtained and, if possible, filtered for substrate
matches and enzymes from the fungi kingdom. If no match for the complete E.C. number was found,
the same procedure was applied to the same E.C. number pruned to a lower level. Among the obtained
values, the maximum kcat value was assigned to the respective reaction. The distribution and numbers of
matched kcat values per subsystem, as well as a comparison to kcat values in the YestGEM v8.3.4, are
shown in Fig. S6A and B. The median of all nonzero values was used for metabolic reactions without a
matched kcat value. To arrive at units of per hour, all turnover numbers were multiplied by 3,600.

Enzyme use under different growth conditions. To predict the enzyme abundances with different
medium conditions, four different carbon sources (i.e., D-glucose, D-fructose, raffinose, and melibiose)
were added to the minimal medium (65) (Table S1K) as single carbon sources. These carbohydrates were
selected as hyphal weight and protein content were available for them at three different concentrations
(i.e., 10, 100, and 1,000 mM) (60). As an exception, palmitate was retained in the medium, as it must be
supplied to the fungus to allow for growth (45, 47). We used kinetic parameters (i.e., Vmax and Km) of S.
cerevisiae monosaccharide transporters to model the influx of D-glucose, D-fructose, and D-galactose
(results from breakdown of both raffinose and melibiose are in Table S1L) (112, 113). The respective
upper bound for the transporters was calculated as

v ¼ Vmax � S½ �
Km 1 S½ � � (1)

Further, the import of palmitate was restricted to the flux value of 8.46 mmol gDW21 h21 at optimal
growth as predicted by FBA.

The following MILP, which we termed eMOMENT, imposes constraints that were adopted from the
MOMENT approach (84), which were extended by an additional constraint (equation 4):

max vbio

s.t.

Sv ¼ 0 (2)
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0# vi # Eri � kmax
cati ; 8i 2 R (3)

P
i2GPRk

Erk;i ¼ Egk ; 8k 2 G (4)

X

k

Egk �MWk # C; 8k 2 G (5)

a � yk # Egk # b � yk; 8k 2 G (6)

yk 2 0; 1f g (7)

a ¼ 10�10 mmol gDW�1; b ¼ 1 mmol gDW�1 (8)

where R and G represent the sets of reactions and genes and constraints on Erj are imposed by the GPR
rules. The molecular weight in grams per millimole protein, k, is given by MWk. The constraint in equa-
tion 3 imposes an upper limit on the flux through the reaction, i, which is the product of the reaction-
specific turnover rate and the enzyme abundance, Eri , available for this reaction. Further, binary variables,
y, were introduced to indicate that the respective genes are expressed (y ¼ 1) or not (y ¼ 0). This was
done to enforce a lower bound, a, for the abundance of expressed genes to avoid numerical problems.
The value for Eri is determined by the GPR rules. To model the GPR rules, the following constraints were
applied recursively in case of complex rules: (i) A AND B ! Eri ¼ min EgA; E

g
B

� �
, Eri # EgA , E

r
i # EgB ; (ii) OR B

! Eri ¼ EgA 1 EgB , E
r
i # EgA 1 EgB .

Further, the total protein content, C, was determined by the experimentally measured protein con-
tents at the given concentrations (60). To account for changing protein contents, the coefficients of the
biomass reaction were rescaled to the respective values for C. The proportions of the remaining biomass
components were conserved when they were adapted to the new residual mass fraction (1 g mmol
gDW21 2 C).

We extended the constraints we borrowed from the MOMENT approach by one additional constraint
(equation 4), which takes the promiscuity of proteins for multiple reactions into account. Hence, the
abundance of protein k is smaller than or equal to the sum of enzyme abundances across all reactions
with which it is associated.

The feasible abundance ranges for all proteins were determined by individual minimization and
maximization for Egi at optimal growth, similar to FVA. Using these, we sampled 1,000 abundances com-
patible with the constraints above, by finding the closest vector of abundances to a randomly created
set of abundances, Eg� , within the feasible ranges determined in the step before

min jEg� 2 Eg j

s.t.

vbio $ 0:99 � voptbio (9)

where constraints are equations 2 to 8.
Metabolic changes between fungal structures. For the metabolic change experiment, all four car-

bon sources that were used in the analysis described above were added to the same minimal medium.
Similarly, the upper bounds on monosaccharide import were calculated using transporter kinetics from
S. cerevisiae, considering only the maximum concentration of 1 M. Across the calculated values, the max-
imum possible influx for each monosaccharide was selected. For this experiment, palmitate was also
retained in the medium with the same upper limit as that described above. For each of the three struc-
tures (ERM, IRM, and ARB), the abundance of each protein, tcpi , was calculated from the relative transcrip-
tomic counts per gene, tcgi (not considering alternative splicing and posttranslational modifications):

tcg
0

k ¼ tcgkX
k
tcg

; (10)

tcpk ¼
tcg

9

k � C
MWk

� (11)

The total protein content was set to the maximum value measured across all growth conditions
used in the experiment before (C ¼ 0:106 g gDW�1). By applying this transformation, we assume that
transcript levels correlate with protein abundances, which is not necessarily true and can lead to over-
or underestimation of protein levels. However, this represents the closest approximation of protein lev-
els in the absence of quantitative proteomics data.

To conduct FBA, the transformed transcript count, tcri , for the reaction was first calculated by apply-
ing the GPR rules taking the minimum tcp value for complexes (AND) and the maximum for isozymes

Rhizophagus irregularis Genome-Scale Metabolic Model

January/February 2022 Volume 7 Issue 1 e01216-21 msystems.asm.org 13

https://msystems.asm.org


(OR). Finally, the upper limit for a reaction, i, was defined as the product of estimated enzyme abun-
dance and the respective turnover value:

vi # kcat;i � tcri � (12)

Growth was predicted for each of the three structures by FBA using the adapted reaction limits.
After this, FVA was used to determine the feasible ranges for each reaction while keeping the growth at
99% of the optimum. These ranges were used as the limits for the sampling procedure which attempts
to find an optimal solution with minimal distance to a random flux vector v� :

min jv� 2 vj

s.t.

Sv ¼ 0

vi # kcat;i � tcri ; 8j 2 R# ; vbio $ voptbio (13)

Like this, 5,000 points were sampled and used for a reaction-wise comparison between the three
structures. To this end, the nonparametric estimate for common language, Aw (91), was used to deter-
mine substantial changes of reaction flux between each pair of structures:

Aw ¼ # p. qð Þ 1 0:5 � p ¼ qð Þ� �

n1 � n2ð Þ � (14)

The variables p and q represent the vectors of sampled fluxes for the same reaction at two different
structures.

Data availability. All procedures, data, and approaches used are available at https://github.com/
pwendering/RhiirGEM.
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