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Abstract
Spatial scan statistics are widely used in various fields. The performance of these statistics

is influenced by parameters, such as maximum spatial cluster size, and can be improved by

parameter selection using performance measures. Current performance measures are

based on the presence of clusters and are thus inapplicable to data sets without known

clusters. In this work, we propose a novel overall performance measure called maximum

clustering set–proportion (MCS-P), which is based on the likelihood of the union of detected

clusters and the applied dataset. MCS-P was compared with existing performance mea-

sures in a simulation study to select the maximum spatial cluster size. Results of other per-

formance measures, such as sensitivity and misclassification, suggest that the spatial scan

statistic achieves accurate results in most scenarios with the maximum spatial cluster sizes

selected using MCS-P. Given that previously known clusters are not required in the pro-

posed strategy, selection of the optimal maximum cluster size with MCS-P can improve the

performance of the scan statistic in applications without identified clusters.

Introduction
Spatial scan statistic, which was introduced by Kulldorff[1], focuses on detecting the presence
and locations of geographic clusters within spatial datasets. The free software SaTScan[2]
allows users to apply this statistic in different fields. A list of studies that utilized spatial scan
statistic is posted in the SaTScan official website[3].

The maximum spatial cluster size is the only parameter that must be selected by users to
apply commonly used circular spatial scan statistics with SaTScan software. This parameter is
the maximum size that the scanning window can reach as scaled in terms of spatial distance or
percentage of the total population at risk[4]. Ribeiro and Costa[5] investigated the performance
of spatial scan statistics with different maximum spatial cluster sizes, including secondary clus-
ters; they suggested that three performance measures are sensitive to the maximum spatial
cluster size. Although simulation datasets support the selection of different maximum spatial
cluster sizes for a specific cluster model, identifying a cluster model applicable for complex real

PLOSONE | DOI:10.1371/journal.pone.0147918 January 28, 2016 1 / 18

a11111

OPEN ACCESS

Citation: Ma Y, Yin F, Zhang T, Zhou XA, Li X (2016)
Selection of the Maximum Spatial Cluster Size of the
Spatial Scan Statistic by Using the Maximum
Clustering Set-Proportion Statistic. PLoS ONE 11(1):
e0147918. doi:10.1371/journal.pone.0147918

Editor: Zhongxue Chen, Indiana University
Bloomington, UNITED STATES

Received: July 9, 2015

Accepted: January 10, 2016

Published: January 28, 2016

Copyright: © 2016 Ma et al. This is an open access
article distributed under the terms of the Creative
Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: Simulated data are
available at the website of SatScan (http://www.
satscan.org/datasets/nebenchmark/index.html).
Application data are contained in supporting
information files.

Funding: This study was supported by National
Natural Science Foundation of China (grant number
81402766), National Science and Technology Mayor
Project (grant number 2012ZX10004201-006) and
China Scholarship Council (http://en.csc.edu.cn/).
The funders had no role in study design, data
collection and analysis, decision to publish, or
preparation of the manuscript.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0147918&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.satscan.org/datasets/nebenchmark/index.html
http://www.satscan.org/datasets/nebenchmark/index.html
http://en.csc.edu.cn/


datasets is complicated. Therefore, the guidelines for selecting the maximum spatial cluster
sizes for real data remain unclear.

Kulldorff[6] reported that a window sized up to 50% of the population at risk can generally
reduce negative clusters. Other researchers also selected lower values for practical reasons, such
as data availability[7], location discontinuity[8], specific interest on small clusters[9], search
for small clusters with high relative risk (RR)[10], low infectivity of a specific pathogen[11, 12],
exploratory analysis for irregular-shaped clusters[8, 13], or limited available resources for
intervention[5]. As such, simple selection of the maximum spatial cluster size may not be
appropriate. The performance of the spatial scan statistic must be ranked with different param-
eters in an application because of varied relationship between the maximum spatial cluster size
and the performance in different data sets. Therefore, a performance measure that is generally
applicable for various applications must be used.

Numerous performance measures are commonly used in simulation studies; however, few
of these measures can be easily applied in real data [14] because they are based on the presence
of given artificial clusters. Identification of all the detected clusters as true or otherwise is usu-
ally impractical. For example, disease surveillance studies usually have limited available
resources; moreover, several performance measures represent different aspects of performance
[15]. As such, outcomes from multiple measures can be problematic when ranking the perfor-
mance of different implementations of spatial scan statistics. Performance measures can be
combined using specific formulas with arbitrary weights, but parameter selection is inevitably
arbitrary. If the overall performance, rather than a specific aspect of performance, is of interest,
then the overall performance measure that is not based on the given artificial clusters would be
less arbitrary.

Performance measures at the aggregation level are commonly used over data sets generated
with a similar underlying model because the former can detect slight differences among spatial
scan statistics with different parameters. However, these datasets do not exist in reality.
Although simulation datasets can be generated from historical data by using clustering models,
this approach is difficult especially when no such historical data exist[16]. In this regard, a per-
formance measure for a single data set is preferred than a performance measure based on a
batch of data sets generated with the same model.

In summary, an overall performance measure based on applied dataset, rather than the
known presence of true clusters, can be used to select the optimal spatial parameters for
improving the performance of spatial scan statistics in applications. However, to the best of our
knowledge, this measure has not been developed yet.

This study proposes a novel overall performance measure, namely, maximum clustering
set–proportion (MCS-P), which is based on the likelihood function and is customized for all
significant clusters and applied dataset. A full definition of MCS-P and additional details are
provided in the next section. This new performance measure is applicable to data sets without
known clusters because the presence of clusters is unnecessary. Section 3 describes the simula-
tion study for selecting the maximum spatial cluster size to compare MCS-P with existing per-
formance measures. Section 4 presents the application of MCS-P in case data of measles in
Henan, China, and Section 5 provides the discussion and conclusions.

Methods

Spatial scan statistic
Spatial scan statistics are used to identify the maximum likelihood clusters in the form of a set
Z of spatial units, which reject the null hypothesis in the study area G and consider p and q as
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the probability of an event that occurs inside and outside a zone, respectively. In current appli-
cations, we usually focus on detecting zones where p>q.

Although spatial scan statistics vary in terms of the shape of scanning window and the prob-
ability model, most of them employ the logarithm of the likelihood ratio (LLR) as the test sta-
tistic to identify maximum likelihood clusters[17–22]. A maximum likelihood estimation

method is also applied to determine the most clustered sub-region Z. The detected cluster Ẑ is
the maximum likelihood estimator of Z. Let C and cz be the observed number of events in G
and z, respectively, whereas N and nz are the expected number of events in G and z under the
null hypothesis; hence, N = C. Let L(z) be the likelihood under the alternative hypothesis that z
is a cluster and L0 be the likelihood under the null hypothesis; in this case, LLR is:

LðzÞ
L0

¼ ðcz
nz

ÞczðC � cz
C � nz

ÞC�cz

LLRðzÞ ¼ ln
LðzÞ
L0

ð1Þ

where L0 is a constant for a given G. The collection z of spatial units can maximize LLR(z) and
L(z).

A scanning window with a pre-defined shape and maximum spatial size is employed to

identify the solution Ẑ ¼ fZjLLRðZÞ � LLRðZ0Þ8Z0 2 Gg. The size (η) of the window varies
between zero and the maximum spatial cluster size (η(Z)) on each possible focus in G to gener-
ate a set of potential clusters: P = [{z|η(z)� η(Z)}. The potential cluster in P that maximizes
the likelihood is the estimator of Z and is also called the most likely cluster (MLC). In addition
to this MLC, secondary clusters with high likelihood values are considered.

The precise distribution of the test statistic remains unclear; thus, a Monte Carlo simulation
is employed to obtain the critical value under the null hypothesis. The LLRs of all potential
clusters are compared with the critical value to determine their significant differences.

Performance measures
Although the capacity to detect the presence of clusters has been widely studied[18, 22–27], the
performance or the so-called spatial accuracy of the detected clusters should also be considered
[14, 16, 20]. In most studies, measures concerning two respective aspects of performance are
used in pairs[21, 28–30], with one measure exhibiting the capacity to correctly identify spatial
units inside the true clusters and the other measure possessing the capacity to correctly identify
spatial units outside the true clusters. Moreover, measures accounting for both aspects are used
to measure the overall performance[5, 31]. The three commonly used performance measures
include sensitivity, positive predictive value (PPV), and misclassification. Previous studies used
the number of spatial units to calculate performance measures; however, the use of a popula-
tion-based measure can provide more robust estimates[32]. Read et al.[14] stated that all spa-
tial units in a study region can be classified into four types to evaluate the performance of the
spatial scan statistic:

1. Units inside both true and detected cluster(s)

2. Units inside the true cluster(s) but outside the detected cluster(s)

3. Units inside the detected cluster(s) but outside the true cluster(s)

4. Units outside both true and detected cluster(s).

Selection of Parameter of Spatial Scan Statistic by Using MCS-P

PLOSONE | DOI:10.1371/journal.pone.0147918 January 28, 2016 3 / 18



Let the population in each of the four types of spatial units be a, b, c, and d. The three com-
mon performance measures are described as follows:

sensitivity ¼ a
aþ b

: ð2Þ

Sensitivity represents the proportion of the population in the true cluster(s) that is correctly
identified as cluster(s). This measure is used to determine the capacity to determine true clus-
ter(s).

PPV ¼ a
aþ c

: ð3Þ

PPV, which is commonly used with sensitivity, represents the proportion of the population
in the detected cluster(s) which actually belongs to the true cluster(s). This measure indicates
the capacity to accurately identify spatial units outside the true cluster(s).

misclassification ¼ bþ c
aþ bþ cþ d

: ð4Þ

Misclassification represents the proportion of mistakenly identified populations. This mea-
sure accounts for the population of spatial units within the true cluster(s) but outside the
detected cluster(s), as well as the population of detected spatial units outside the true cluster(s).
If the misclassification is equal to zero, then all spatial units are correctly identified.

These performance measures are based on the given presence of true clusters and are not
applicable for real data sets with unknown clusters. In this study, we propose a novel overall
performance measure by using the applied data set.

Novel overall performance measure based on applied data sets

Let MLC with η(Z) = i be Ẑ i1 and the jth significant cluster be Ẑ ij, then the maximum spatial

cluster size η(Z) is a parameter of the collection of potential clusters P = [{z|η(z)� η(Z)}. For a

local optimum with η(Z) = i, Ẑ i1 ¼ fZjLLRðZÞ � LðZ0Þ8Z0 2 Pigmay differ from the global

optimum Ẑ ¼ fZjLLRðZÞ � LLRðZ0Þ8Z0 2 Gg. Therefore, LLRðẐ i1Þmay be smaller than

LLRðẐÞ. When only MLC is found or of interest, the optimal η(Z) is selected by ranking the

LLR of different MLCs. The optimal η(Z) = imaximizes LLRðẐ i1Þ.
Comparison of the LLR of the corresponding clusters, such as MLC, may be insufficient for

ranking the performance with different η(Z) values when secondary clusters are of interest.
First, pairing of the corresponding multiple clusters is very complicated. Second, multiple out-
comes from comparisons of different paired clusters may not be consistent. For instance,

LLRðẐ i21
Þ can be smaller than LLRðẐ i11

Þ, whereas LLRðẐ i22
Þ can be larger than LLRðẐ i12

Þ.
When all the significant clusters are of interest, the significant clusters classify all spatial units
into two sets: clustering set in which events are likely to cluster, as well as the set in which
events in the rest of the spatial units are not likely to cluster. Therefore, the union of all signifi-
cant clusters, instead of individual clusters, can be used as the clustering set when ranking the
performance of multiple clusters. Let the union of significant clusters found with η(Z) = i be
Zi0, then

Zi0 ¼ [jZij ð5Þ

Clustering sets with different η(Z) values can be used to rank the performance of multiple
clusters in a manner similar to that of MLC. With η(Z) maximizing the likelihood under the
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alternative hypothesis, events in the clustering set are least likely to cluster by chance. More-
over, the likelihood function is maximized when LLR is maximized. Therefore, comparison of
the LLR of the clustering set can rank the performance of multiple clusters with different η(Z)
values.

LLRðZi0Þ ¼ lnðcZi0
nZi0

ÞcZi0 ðC � cZi0
C � nZi0

ÞC�cZi0 ð6Þ

The LLR conditioned on Zi0 represents the ratio of the likelihood of the clustering set with η
(Z) = i and the likelihood under the null hypothesis. LLR can also measure the dissimilarity
between Zi0 as the clustering set and the null hypothesis. When η(Z) = imaximizes the LLR
(Zi0), L(Zi0) will also be maximized. That is, when η(Z) = imaximizes LLR(Zi0), the events in
Zi0 are more likely to cluster than any other clustering sets found with other η(Z) values.

Although LLR(Zi0) can be used to rank the performance of the spatial scan statistic with dif-
ferent η(Z) values, the range of LLR(Zi0) may differ because of the spatial distribution of events.
For instance, a non-clustering spatial unit surrounded by clusters may be included in the scan-
ning window. The non-clustering spatial units with relatively high RR near a cluster are more
likely to be included in Zi0 than those far from the clusters. This trend causes varied ranges and
optimal values of LLR(Zi0), even in data sets generated with the same model. In addition, most
existing performance measures are built in the form of proportions and rahnge from 0 to 1.
Thus, the adjustment of the effect of spatial distribution on the data set would render the mea-
sure comparable with existing performance measures. An approximate maximum of LLR from
G is therefore used. The spatial scan statistic is employed to detect clustering spatial units with
p>q; hence, the union of spatial units with RR higher than 1 is selected as the most clustering
set (MCS) to obtain the approximate maximum LLR in G.

ZMCS ¼ [fzjz 2 G; pz > qzg ð7Þ
Subsequently, we adjust LLR(Zi0) with LLR(ZMCS), such that the performance measure

MCS-P is:

MCS� P ¼ LLRðZi0Þ
LLRðZMCSÞ

ð8Þ

MCS-P represents the ratio between the LLR of the clustering set with η(Z) = i and the
approximate maximum LLR in G. LLR describes the relative support of the alternative hypoth-
esis against the null hypothesis. MCS-P presents the closeness of the relative support of the
clustering set to the maximum support obtained from the dataset. With this adjustment,
MCS-P ranges from 0 to 1, which is similar to that of other performance measures. The
denominator LLRMCS is the approximate maximum LLR obtained from G. In extreme cases,
the LLR of the clustering set may be higher than that of MCS. Although no such case was
found in the present study, we should note that MCS-P is an approximate relative performance
measure.

Simulation Study

Simulation data
Simulated benchmark data sets based on a real data set of breast cancer mortality [33] were
used in this study. The population at risk in the simulated data analysis is the female popula-
tion from the 1990 census, which contains 29,535,210 individuals in Northeastern USA. The
study region consists of 245 counties in Northeastern USA[23].
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Fifty scenarios were built with 50 different circular cluster models. The models contain two
different total simulated case numbers of 600 or 6000; five different cluster sizes of 1, 2, 4, 8, or
16 counties; and five cluster spatial distribution patterns containing one cluster located in
rural, mixed, or urban area. Two clusters were located in rural and urban areas, whereas three
clusters were located in all the three areas. These benchmark datasets are available at the SatS-
can website[34] and commonly used to evaluate different clustering tests[23] or spatial scan
statistics with scanning windows of different shapes and parameters[24, 32, 35]. Details of the
cluster models are given in Table 1.

In the latter part of the paper, scenarios are mentioned in the form of “total case numbers-
cluster location-cluster size.” For instance, 600-two-1 refers to the data sets in the scenario with
600 total simulated cases and two clusters located in urban and rural areas, with each cluster
covering only one county.

Spatial scan parameters
Each of the 50 different maximum spatial cluster sizes were set to increase from 1% to 50% by
increments of 1% for the total population at risk for each data set. Only clusters with P-values
less than 0.05 were considered significant. In cases when no significant clusters were detected,
the detected population was set to zero. Based on previous study, the inclusion of secondary
clusters that overlap with more likely clusters does not improve the performance[5]. As the
default reporting criteria for secondary clusters, only the secondary clusters unrelated to any
likely clusters were reported. With each maximum spatial cluster size, the performance of the

Table 1. Simulated cluster models.

Cluster size Total simulated cases 600 6000
Cluster location Rural Mixed Urban Two Three Rural Mixed Urban Two Three

1 E(c/HA) 10 39 42 52 91 13 208 226 239 447

E(c/H0) 0.05 14.43 15.97 16.02 30.45 0.5 144.3 159.7 160.2 304.5

RR 192.89 2.85 2.73 3.24 2.99 23.73 1.45 1.43 1.51 1.51

Population 2675 710196 786178 788853 1499049 2675 710196 786178 788853 1499049

2 E(c/HA) 12 42 50 62 104 23 231 293 316 547

E(c/H0) 0.46 16.41 21.78 22.24 38.65 4.6 164.1 217.8 222.4 386.5

RR 27.03 2.70 2.43 2.79 2.68 4.96 1.42 1.36 1.44 1.45

Population 22911 817050 1072181 1095092 1912142 22911 817050 1072181 1095092 1912142

4 E(c/HA) 18 51 100 118 169 59 302 716 775 1077

E(c/H0) 2.69 22.52 59.99 62.68 85.2 26.9 225.2 599.9 626.8 852

RR 7.05 2.40 1.81 1.88 1.98 2.21 1.36 1.22 1.27 1.32

Population 132343 1108440 2953077 3085420 4193860 132343 1108440 2953077 3085420 4193860

8 E(c/HA) 22 58 150 172 230 80 358 1162 1242 1600

E(c/H0) 4.16 27.47 101.96 106.12 133.59 41.6 275.7 1019.6 1061.2 1336.9

RR 5.35 2.24 1.63 1.62 1.72 1.92 1.32 1.17 1.21 1.27

Population 204829 1352284 5018909 5223738 6576022 204829 1352284 5018909 5223738 6576022

16 E(c/HA) 28 67 209 237 304 121 434 1713 1834 2268

E(c/H0) 7.32 34.22 154.94 162.26 196.48 73.2 342.2 1549.4 1622.6 1964.8

RR 3.9 2.1 1.53 1.46 1.55 1.66 1.29 1.15 1.19 1.25

Population 360275 1684327 7627173 7987448 9671775 360275 1684327 7627173 7987448 9671775

Note: E(c/HA) and E(c/H0) are the expected number of cases under the alternative and null hypotheses, respectively. RR is the relative risk.

doi:10.1371/journal.pone.0147918.t001
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circular scan statistic was evaluated by MCS-P with three existing performance measures, such
as sensitivity, PPV, and misclassification.

Agreements of MCS-P with other performance measures in different
scenarios
To validate MCS-P for different cluster models, we defined the values of each performance
measure that differs by less than 0.01 (1%) for each data set as the values close to the optimal
result[5]. The 50 different maximum spatial cluster sizes were classified into four types for each
data set:

1. Results of MCS-P and the other performance measure are close to the optimal result

2. Only the result of the other performance measures is close to the optimal result

3. Only the result of MCS-P is close to the optimal result

4. None of the results of MCS-P and the other performance measure are close to the optimal
result.

For types 1 and 4, MCS-P provided results similar to those of other performance measures.
The agreement of MCS-P with each existing performance measure was reported for each clus-
ter model. Agreement represents the similarity of MCS-P and other performance measures for
identifying whether a maximum spatial cluster size is close to the optimal value. An agreement
of 100% indicates that all 50 maximum spatial cluster sizes are accurately identified and similar
between that derived fromMCS-P and from another existing performance measure.

The average agreement values of MCS-P with sensitivity, PPV, and misclassification are
86.6257%, 66.2698%, and 81.3829%, respectively. Most MCS-P results are similar to those of
sensitivity and misclassification. Although relatively low at more than 66%, the results obtained
using MCS-P are similar to those of PPV. Generally, when the values of MCS-P are close to the
optimal results, other performance measures also achieve values close to the optimal results.
Moreover, MCS-P works better with sensitivity than that with misclassification and PPV.
Despite the arbitrary cut-off points for determining whether the values of the performance
measures are close to their optimal results, the results show the high agreement of MCS-P and
the other performance measures.

The agreements of MCS-P in different scenarios are shown in Table 2. For 45 scenarios,
MCS-P exhibits high agreement values with other performance measures similar to the average
agreement. For five scenarios including 600-two-1, 600-two-2, 6000-two-1, 600-three-1, and
6000-three-1, MCS-P exhibits low agreements with the other performance measures.

For measuring the capacity to accurately detect true clusters, the results of MCS-P are gener-
ally similar to sensitivity in all scenarios, except for the abovementioned five cases. For measur-
ing the capacity for correct identification of spatial units outside the clusters, the agreement of
MCS-P with PPV varies in different scenarios. In 600-rural-1, which generated the highest RR
and the smallest population, MCS-P exhibits high agreement with PPV. For large clusters with
low RR, the agreement of MCS-P with PPV decreases. As an overall performance measure,
MCS-P manifests similar results to those of misclassification for most scenarios. That is, with
PPV and misclassification, MCS-P is highly accurate in scenarios containing clusters with high
RR and small populations. Moreover, MCS-P with sensitivity always exhibits high agreement
in most scenarios.

The result of MCS-P with the other performance measures is less accurate in the five scenar-
ios than that in the other scenarios; as such, multiple clusters are generated by different cluster
models. One cluster is constructed with very high RR and a small population in a rural area,
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whereas other cluster(s) possess low RR with a large population in urban areas (and mixed
areas), as shown in Table 1. Hence, the clusters are highly heterogeneous. Based on the likeli-
hood of all clustering zones, MCS-P treats clustering zones from different clusters as a homoge-
neous clustering set. Therefore, in cases with multiple instances of highly heterogeneous
clusters, larger values of MCS-P are more likely to be achieved when only the cluster with high
RR and a small population is included compared with that when all the clusters are included.
The clusters become less heterogeneous with increasing cluster sizes; therefore, the agreements
of MCS-P with the other performance measures increase. Additional details are provided in
the comparison of the average MCS-P and other measures for different cluster models.

Comparison of average MCS-P and the other performance measures for
each maximum spatial cluster size
In each scenario, the maximum spatial cluster sizes near the optimal value were selected with
MCS-P. The values of other performance measures with the selected maximum spatial cluster
sizes were compared with those of measures with other maximum spatial cluster sizes to deter-
mine whether the selection can improve the performance of the spatial scan statistic. The mean
values of the performance measures over replicas in the same scenarios were reported for each
maximum spatial cluster size to provide detailed information regarding the relationship
between MCS-P and the other performance measures.

Generally, with the selected maximum spatial cluster sizes in most scenarios, high values of
MCS-P correspond to high values of sensitivity and PPV and low values of misclassification.
Selection of the maximum spatial cluster sizes using MCS-P, sensitivity, PPV, and misclassifi-
cation suggests that the spatial scan statistics achieve accurate results for most cluster models.

The comparison of averaged MCS-P and other performance measures in different scenarios
shows their detailed relationships. The average MCS-P is positively related to average

Table 2. Agreements of MCS-P with the other performance measures in different scenarios.

Cluster(s) locations Rural area Mixed area Urban area Rural and urban
areas

Rural, mixed
and urban areas

Cluster sizes Total simulated cases 600 6000 600 6000 600 6000 600 6000 600 6000

1 Sensitivity 0.9624 0.9678 0.9824 0.9658 0.9802 0.9810 0.2488 0.3426 0.4678 0.8440

PPV 1.0000 0.9900 0.6728 0.7824 0.8828 0.8734 0.3328 0.4654 0.6826 0.4476

Misclassification 1.0000 0.9836 0.8288 0.9034 0.9112 0.9386 0.2588 0.4078 0.6076 0.3904

2 Sensitivity 0.9558 0.9494 0.9470 0.9566 0.9862 0.9856 0.5266 0.6150 0.7908 0.8626

PPV 0.9688 0.9900 0.7034 0.6758 0.9036 0.8668 0.5824 0.6572 0.4590 0.4658

Misclassification 0.9664 0.9518 0.8620 0.8542 0.9066 0.8730 0.5508 0.6652 0.7552 0.8092

4 Sensitivity 0.9928 0.9704 0.9322 0.9244 0.9346 0.9082 0.7326 0.7850 0.8418 0.8626

PPV 0.9706 0.9606 0.4798 0.5008 0.7498 0.7742 0.6762 0.7354 0.5296 0.5186

Misclassification 0.9612 0.9328 0.8172 0.8316 0.8054 0.8182 0.7208 0.7756 0.8250 0.8338

8 Sensitivity 0.9928 0.9432 0.9298 0.9488 0.9418 0.9342 0.8192 0.7738 0.8622 0.8564

PPV 0.9706 0.7952 0.3886 0.4826 0.6186 0.6016 0.5674 0.5958 0.6138 0.4810

Misclassification 0.9612 0.8656 0.8130 0.8670 0.7584 0.7408 0.7580 0.6970 0.8190 0.8112

16 Sensitivity 0.9738 0.9306 0.8946 0.9540 0.9466 0.9472 0.8238 0.8796 0.8402 0.8950

PPV 0.6316 0.7556 0.4442 0.4056 0.5532 0.5828 0.5114 0.5082 0.5834 0.5304

Misclassification 0.9428 0.9096 0.8046 0.8594 0.7966 0.8318 0.7854 0.7960 0.8086 0.8958

Note: Scenarios with low agreements of MCS-P with other performance measures are underlined.

doi:10.1371/journal.pone.0147918.t002
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sensitivity and PPV but negatively associated with average misclassification in most scenarios.
Similar to the agreements of MCS-P with the other performance measures, the five scenarios
containing highly heterogeneous clusters, namely, 600-two-1, 600-two-2, 6000-two-1,
600-three-1, and 6000-three-1, exhibit different relationships between MCS-P and the other
performance measures.

The relationship between average MCS-P and the other performance measures are pre-
sented for several typical scenarios. The summary of 6000-three-8 (Table 3) shows the relation-
ship between the average MCS-P and the other performance measures. The optimal results of
each measure are marked in boldface, whereas values that differ by less than 0.01 (1%) from
the optimal results are underlined. For the underlined values of MCS-P, the sensitivity and mis-
classification mostly overlap, which implies that the spatial scan statistic with the maximum

Table 3. Average performancemeasures for different maximum spatial cluster sizes in 6000-three-8.

Maximum spatial cluster size MCS-P Sensitivity PPV Misclassification

1 0.2039 0.0308 0.9157 0.2166

2 0.2074 0.0319 0.8905 0.2168

3 0.2448 0.0904 0.9251 0.2037

4 0.2705 0.1405 0.9458 0.1929

5 0.2771 0.1742 0.9258 0.1860

6 0.2770 0.1838 0.9406 0.1850

7 0.2796 0.1894 0.9215 0.1845

8 0.2957 0.2475 0.9356 0.1713

9 0.3034 0.2943 0.9363 0.1620

10 0.3127 0.3598 0.9462 0.1470

11 0.3141 0.3741 0.9478 0.1439

12 0.3174 0.3868 0.9456 0.1414

13 0.3174 0.3881 0.9399 0.1420

14 0.3178 0.4345 0.9401 0.1322

15 0.3256 0.5335 0.9423 0.1108

16 0.3301 0.5632 0.9448 0.1039

17 0.3335 0.6113 0.9503 0.0925

18 0.3341 0.6141 0.9480 0.0924

19 0.3356 0.6232 0.9341 0.0915

20 0.3356 0.6298 0.9411 0.0910

21 0.3355 0.6297 0.9444 0.0927

22 0.3357 0.6307 0.9345 0.0924

23 0.3363 0.6384 0.9300 0.0918

24 0.3367 0.6400 0.9193 0.0928

25 0.3369 0.6423 0.9254 0.0934

26 0.3371 0.6423 0.9177 0.0938

27 0.3372 0.6423 0.9177 0.0939

28 0.3373 0.6423 0.9172 0.0942

29 0.3364 0.6418 0.9215 0.0943

30 0.3368 0.6418 0.9205 0.0950

31 0.3368 0.6418 0.9201 0.0951

33–50 0.3368 0.6418 0.9193 0.0953

Note: Values with a distance less than 0.01 (1%) from the optimal values are underlined. Boldface values are the optimal results of each performance

measure.

doi:10.1371/journal.pone.0147918.t003
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spatial cluster sizes selected by MCS-P achieve values close to the optimal results of these mea-
sures. Therefore, maximum spatial cluster sizes can be selected with MCS-P to obtain accurate
results for other performance measures. Hence, selection of the maximum spatial cluster sizes
with MCS-P can improve the performance of spatial scan statistics. Detailed relationships
between MCS-P and other performance measures are presented in Fig 1. The results of the
other performance measures become closer to the optimal results with increasing MCS-P. Sim-
ilar relationships between MCS-P and other performance measures can be found in the
remaining 45 scenarios.

The five scenarios show the irregular relationship, similar to the agreements of MCS-P and
the other performance measures. Given its conditioning on the likelihood of all significant clus-
ters as a homogeneous clustering set, MCS-P cannot correctly measure the performance of
multiple instances of highly heterogeneous clusters. This trend is particularly typical in
600-two-1, as shown in Table 4. One cluster in the rural area presents a high RR value of
192.89 and a very small population of 2675, whereas another cluster in the urban area has a
large population of 786178 but a low RR value of 2.73. In the 600-two-1 scenario, the exclusive
inclusion of the former cluster provides higher MCS-P values for the maximum spatial cluster
sizes of 1% and 2% of the population at risk (Table 5). When parts or the entire latter cluster is
included with a large maximum spatial cluster size of over 3%, MCS-P sharply decreases.

This limitation disappears with increasing cluster sizes because of reduced heterogeneity of
the clusters. If very small clusters with great heterogeneity are reported, then MCS-P may not
be used as an appropriate performance measure.

Interestingly, the statistic shows details of the relationships between MCS-P and the other
performance measures. Results of 6000-two-16 describe clearly the details of this feature in
Table 5 and Fig 2. The relationships between MCS-P and the three measures can be divided
into two stages. The cut-off point is the very first value close to the optimal results of MCS-P,
where MCS-P = 0.2701. During the first stage before MCS-P reaches the values close to the
optimal results, sensitivity, PPV, and misclassification indicate that improved performance is
achieved with increasing MCS-P. Hence, MCS-P works well with the three other performance
measures. After MCS-P reaches the values close to the optimal results, other performance mea-
sures begin to fluctuate slightly around the optimal results. During this stage, MCS-P increases

Fig 1. Average MCS-P and other measures in 6000-three-8.

doi:10.1371/journal.pone.0147918.g001
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very slightly (no more than 0.01) when areas with relatively low RR and small populations are
included. Under this condition, the values of the other measures may slightly decrease but are
still close to the optimal results.

The fluctuation of existing performance measures around the optimal value of MCS-P is
due to the fact that marginally expanding or reducing the cluster size will not significantly alter
LLR[4]. Thus, MCS-P in such cases will slightly increase when including a new area with a rela-
tively low RR but not a very large population. In these cases, other measures slightly decrease
because the very small area should not be included. The inclusion of areas with plain RR and
large population can decrease MCS-P. This trend can be found in 600-rural-1. In Table 6, the
sensitivity remains equal to 1 when the true cluster is all included. However, large maximum
spatial cluster sizes, including areas outside the true cluster, lead to a steep decrease in MCS-P.
Therefore, the maximum spatial cluster sizes with MCS-P values close to the optimal results
can be selected to improve the performance of the statistic.

Measles Incidence Data in Henan, China
We applied MCS-P to case data of measles on the county level in Henan province, China in
May 2009; data were extracted from the disease reporting system of China CDC. A total of
1,371 cases of measles among a population of 91,669,661 were reported, and the annual inci-
dence rate was 17.6 per 100,000. The data were analyzed using 50 maximum spatial cluster
sizes following the simulation study. MCS-P was used for evaluation, and the result demon-
strating the maximumMCS-P value was selected and compared with the result obtained using
the default maximum spatial cluster size of 50% population at risk.

MaximumMCS-P was achieved when the maximum spatial cluster size was set to 2% of the
total population. A total of 649 cases of 14,369,140 individuals in 21 counties were detected
using a maximum spatial cluster size of 2% (Z2), whereas 886 cases of 28,859,679 in 41 counties
were detected using a maximum spatial cluster size of 50% (Z50). The relative risk of Z2 and
Z50 were 3.0200 and 2.0527, respectively, and both were located in the same parts of the study
region. Variations in edges were found in clusters located southwest and southeast (Fig 3). To
provide additional details, we compared the counties in Z2 and Z50. Twenty of 21 counties in
Z2 were also found in Z50, and the remaining 22 counties that differed between Z2 and Z50
are shown in Table 7.

A total of 12 of 22 counties showed lower incidence rates than the average value. Based on
the purpose of scan statistics, these counties were probably incorrectly identified as clustering
counties when searching for significantly high-risk spatial units. As shown in Fig 3, these coun-
ties, which were located at the edges of clusters 1 and 2 in Z50, are close to the high-risk

Table 4. Average performancemeasures for different maximum spatial cluster sizes in 600-two-1.

Maximum spatial cluster size MCS-P PPV Sensitivity Misclassification

1 0.5729 0.0034 0.9516 0.0268

2 0.5758 0.0034 0.9710 0.0267

3 0.4160 0.8704 0.9887 0.0036

4–7 0.4131 0.8804 0.9700 0.0040

8–50 0.4121 0.8904 0.9634 0.0042

Note: Values with a distance less than 0.01 (1%) from the optimal values are underlined. Boldface values are the optimal results of each performance

measure.

doi:10.1371/journal.pone.0147918.t004
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counties. Therefore, these counties were included with near multiple high-risk areas in Z50.
For instance, despite the absence of cases in 411224 and 411330, these counties were misclassi-
fied into Z50. In Z2, the use of MCS-P in maximum spatial cluster size selection excluded
counties with low incidence rates.

Table 5. Average performancemeasures for different maximum spatial cluster sizes in 6000-two-16.

Maximum spatial cluster size MCS-P PPV Sensitivity Misclassification

1 0.1851 0.9634 0.0287 0.2630

2 0.2061 0.9190 0.0381 0.2613

3 0.2107 0.9191 0.0418 0.2603

4 0.2127 0.9157 0.0489 0.2587

5 0.2189 0.9298 0.0644 0.2546

6 0.2202 0.9307 0.0730 0.2523

7 0.2217 0.9327 0.0804 0.2503

8 0.2264 0.9349 0.1042 0.2442

9 0.2269 0.9384 0.1252 0.2385

10 0.2245 0.9399 0.1507 0.2321

11 0.2259 0.9317 0.1667 0.2288

12 0.2288 0.9381 0.1932 0.2213

13 0.2296 0.9372 0.2246 0.2132

14 0.2320 0.9320 0.2496 0.2075

15 0.2362 0.9354 0.2969 0.1952

16 0.2403 0.9401 0.3506 0.1804

17 0.2427 0.9451 0.3832 0.1713

18 0.2475 0.9464 0.4132 0.1635

19 0.2514 0.9475 0.4764 0.1468

20 0.2541 0.9472 0.4889 0.1436

21 0.2570 0.9516 0.5425 0.1290

22 0.2618 0.9532 0.5704 0.1212

23 0.2640 0.9603 0.6367 0.1027

24 0.2701 0.9662 0.6720 0.0933

25 0.2749 0.9640 0.7006 0.0868

26 0.2761 0.9595 0.7068 0.0863

27–28 0.2774 0.9567 0.7150 0.0850

29 0.2790 0.9457 0.7320 0.0839

30 0.2792 0.9425 0.7354 0.0843

31 0.2795 0.9363 0.7363 0.0862

32 0.2792 0.9348 0.7442 0.0853

33 0.2793 0.9321 0.7538 0.0837

34 0.2794 0.9311 0.7538 0.0841

35 0.2794 0.9312 0.7543 0.0840

36 0.2789 0.9276 0.7516 0.0862

37 0.2790 0.9277 0.7529 0.0860

38 0.2790 0.9249 0.7529 0.0870

39–40 0.2790 0.9254 0.7551 0.0866

41–50 0.2793 0.9238 0.7647 0.0855

Note: Values with a distance less than 0.01 (1%) from the optimal values are underlined. Boldface values are the optimal results of each performance

measure.

doi:10.1371/journal.pone.0147918.t005
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Insignificant clustering counties with RR higher than 1 in Z50 were also excluded in Z2.
These counties were surrounded by low-risk counties and were insignificant as a single poten-
tial cluster. In particular, 411723 showed higher RR (1.8574) than that of the surrounding
counties and functioned as a potential cluster. The result suggested that high RR possibly
occurred by chance. These counties were excluded in Z2 when MCS-P was used in the maxi-
mum spatial cluster size selection.

Although this county was insignificant in Z50, 411623 was regarded as the only clustering
county in Z2 because the critical value of LLR is related to the maximum spatial cluster size. At
a significance level of 0.05, the critical values for maximum spatial cluster size of 2% and 50%
were 6.0221 and 7.5736, respectively. Therefore, 411623 (LLR = 6.0830) was significant in Z2
but not in Z50. When using MCS-P for maximum spatial cluster size selection, scan statistic is
more sensitive to small clusters, whose ntest statistics are close to the critical value.

Moreover, 411426 was the only missed high-risk county contiguous to significant clusters in
Z2. Three contiguous counties in the eastern region, such as 411426, 411425, and 411402, were
tested to be a significant cluster in Z50. In Z2, the scanning window at a maximum spatial

Fig 2. Average MCS-P and other measures in 6000-two-16. This figure shows two stages of the
relationship between average MCS-P and the other performance measures. The vertical line shows the cut-
off point where the first value close to the optimal results of MCS-P is achieved.

doi:10.1371/journal.pone.0147918.g002

Table 6. Average performancemeasures for different maximum spatial cluster sizes in 600-rural-1.

Maximum spatial cluster size MCS-P PPV Sensitivity Misclassification

1–2 0.7599 0.9807 1 0.000081114

3 0.7540 0.970734 1 0.000365707

4 0.7504 0.960753 1 0.000808159

5 0.7432 0.940789 1 0.001796976

6 0.7404 0.9308 1 0.002504661

7–50 0.7447 0.940779 1 0.002096859

Note: Values with distance less than 0.01 (1%) from the optimal values are underlined. Boldface values are the optimal results of each performance

measure.

doi:10.1371/journal.pone.0147918.t006
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cluster size of 2% is too small to cover the three high-risk counties in the eastern region. Being
one of the counties showing the lowest RR and is least likely to cluster out of the three counties,
411426 was tested as insignificant.

To sum up, the use of MCS-P in maximum spatial cluster size selection excluded counties
with low incidence rates and insignificant high rates; these counties were incorrectly included
in large clusters when using the default parameter. In addition, the former approach improved
the capacity to identify small clusters showing relatively high incidence rates, which can be
missed when using large critical value of test statistic with default maximum spatial cluster size.
Although smaller maximum spatial cluster size may exclude a part of clustering areas, this phe-
nomenon only occurs to the least likely clustering part of a cluster.

Discussion
Spatial scan statistics are widely used in different fields to identify unusual clustering events
throughout the study region. The maximum spatial cluster size is the only parameter of the cir-
cular scan statistic that affects its performance. Consistent with previous study, the present
simulation study showed that the optimal maximum spatial cluster sizes vary in different sce-
narios[5]. As such, selection of a proper maximum spatial cluster size for each data set can
improve the performance of the statistic because the cluster models of the practical data set are
usually unknown. However, existing performance measures are inapplicable in most practical
applications without known clusters. This limitation is addressed using the proposed MCS-P
performance measure (Section 2.3). MCS-P is based on the likelihood of reported clusters and
the approximate maximum likelihood from the used data set; therefore, this measure can be
calculated without using the known presence of clusters. The simulation study also showed
that the results of MCS-P are similar to those of other performance measures, namely,

Fig 3. Incidence of measles in Henan in May 2009 and clusters detected with default (a) and selected maximum spatial cluster size using MCS-P
(b). Administrative codes of 42 clustering counties are labeled. RR of each counties are presented as bar.

doi:10.1371/journal.pone.0147918.g003
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sensitivity, PPV, and misclassification, in most situations. Although MCS-P is not applicable
for conditions with multiple highly heterogeneous clusters, this statistic can be used in most
fields where clusters of interest exhibit similar characteristics. For instance, in epidemiological
studies, outbreaks of the same disease usually share similar patterns for the same route of trans-
mission, pathogen, and population at risk. In addition, customizing MCS-P for multiple highly
heterogeneous clusters could be a direction for our future work.

The results of simulation study are conditioned to the data sets. Although the cluster models
vary in terms of cluster number, location, RR level, and cluster size, this study presents several
limitations. For example, in the benchmark data, the clusters generated are very far from each
other such that no detected clusters can cover the parts of different clusters even when the max-
imum spatial cluster size is set to 50% population at risk. This phenomenon explains why the
results do not differ in cases with large maximum spatial cluster sizes. However, the clusters
may be located close to each other in actual practice as shown in the case data of measles. The
detected clusters may include risky areas, which are not contiguous, and incorrectly include
non-clustering areas around them. To address this problem, researchers should select parame-
ters with MCS-P and alter the cluster shape, which would be investigated in our future work.

Two aspects of performance are considered to evaluate the spatial scan statistic. However,
measures for detecting areas inside clusters may provide inverse evaluations against measures
representing the capacity to identify areas outside the clusters. These results are common in
simulation studies. Although the measures are conditioned to the data sets, the performance
measures accounting for one specific aspect of performance, such as sensitivity and PPV, are

Table 7. Different counties in clusters detected usingmaximum spatial cluster sizes of 2% and 50%.

Counties Cases Population RR Cluster in Z2 Cluster in Z50

411224 0 368491 0 n/a 2

411330 0 420199 0 n/a 1

411326 2 665822 0.199677035 n/a 2

410326 2 406337 0.328122839 n/a 2

411524 4 570738 0.467054897 n/a 1

411729 8 955639 0.557153276 n/a 1

411727 9 799313 0.751226184 n/a 1

411323 5 420871 0.793592249 n/a 2

411724 9 709589 0.847050538 n/a 1

411381 19 1336473 0.949869751 n/a 2

411328 17 1193603 0.95170867 n/a 2

411303 12 839940 0.954863968 n/a 2

411329 12 642526 1.250955777 n/a 2

411526 14 692849 1.354691194 n/a 1

411322 20 913187 1.471270547 n/a 2

411527 13 580652 1.501736143 n/a 1

411723 24 870989 1.857421518 n/a 1

411426 30 1062539 1.907699356 n/a 3

410327 20 677480 1.988301511 n/a 2

411623 32 1082690 1.999544224 12 n/a

410423 26 859244 2.043008744 n/a 2

411321 23 586748 2.648641855 n/a 2

Counties in boldface are mentioned as examples.

doi:10.1371/journal.pone.0147918.t007
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likely to choose the largest or smallest maximum spatial cluster size. A large scanning window
that reasonably covers more parts of the study region is more likely to contain the true clusters,
whereas a small scanning window is less likely to contain areas outside the true clusters. There-
fore, when focusing on sensitivity, large maximum spatial cluster sizes should be selected. By
contrast, smaller maximum spatial cluster sizes should be selected when considering capacity
to identify areas outside the clusters. In addition, the large maximum spatial cluster sizes
should be selected first to avoid missing clusters. However, the overall performance is of more
interest for most cases; as such, the preferred maximum spatial cluster size varies between dif-
ferent cluster models, and spatial scan statistics with different maximum spatial cluster sizes
should be applied. Overall performance measures, such as misclassification and MCS-P, should
also be used to select the maximum spatial cluster sizes to improve the performance. For data
sets without true clusters, MCS-P may be the only performance measure that can be used.
Before using MCS-P, the reported clusters still need to be checked. As shown in the simulation
study, MCS-P may not work as an appropriate overall performance measure in the reported
highly heterogeneous clusters. Although the selection of the maximum spatial cluster size with
MCS-P can improve the performance of the statistic, this approach will consume more time
than simply using the default setting. For instance, MCS-P has to be calculated for all the 50
maximum spatial cluster sizes to select the optimal maximum spatial cluster sizes. This step
would consume as much as 50 times the original computation time. The computation time
becomes longer as the applied data set becomes more complicated. Therefore, selection of a
proper number of potential maximum spatial cluster size is important.

MCS-P is a measure based on significant clusters and thus varies among different signifi-
cance thresholds. For example, the spatial scan statistic with parameters set to A may have
higher values of MCS-P than those with parameter B at a significance threshold of 0.05 but
may be lower at 0.01. Therefore, the significance threshold should be at the same level when
comparing different detected values.

In conclusion, the results of using MCS-P in the simulation study are similar to those of
three existing performance measures, namely, sensitivity, PPV, and misclassification, in most
situations, except those with high heterogeneous clusters. MCS-P can be calculated without
known true clusters and is therefore considered applicable to data sets without any given true
clusters. The selection of the maximum spatial cluster size using MCS-P is helpful to achieve
accurate results. Comparison of the average MCS-P and the other performance measures indi-
cates that the selection of the maximum spatial cluster sizes with values close to the optimal
results of MCS-P is a vital step to achieve satisfactory performance of the statistic.
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