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Abstract

Many everyday interactions with moving objects benefit from an accurate perception of their

movement. Self-motion, however, complicates object motion perception because it gener-

ates a global pattern of motion on the observer’s retina and radically influences an object’s

retinal motion. There is strong evidence that the brain compensates by suppressing the reti-

nal motion due to self-motion, however, this requires estimates of depth relative to the

object—otherwise the appropriate self-motion component to remove cannot be determined.

The underlying neural mechanisms are unknown, but neurons in brain areas MT and MST

may contribute given their sensitivity to motion parallax and depth through joint direction,

speed, and disparity tuning. We developed a neural model to investigate whether cells in

areas MT and MST with well-established neurophysiological properties can account for

human object motion judgments during self-motion. We tested the model by comparing sim-

ulated object motion signals to human object motion judgments in environments with mon-

ocular, binocular, and ambiguous depth. Our simulations show how precise depth

information, such as that from binocular disparity, may improve estimates of the retinal

motion pattern due the self-motion through increased selectivity among units that respond

to the global self-motion pattern. The enhanced self-motion estimates emerged from recur-

rent feedback connections in MST and allowed the model to better suppress the appropriate

direction, speed, and disparity signals from the object’s retinal motion, improving the accu-

racy of the object’s movement direction represented by motion signals.

Author summary

Research has shown that the accuracy with which humans perceive object motion during

self-motion improves in the presence of stereo cues. Using a neural modelling approach,

we explore whether this finding can be explained through improved estimation of the reti-

nal motion induced by self-motion. Our results show that depth cues that provide infor-

mation about scene structure may have a large effect on the specificity with which the

neural mechanisms for motion perception represent the visual self-motion signal. This in

turn enables effective removal of the retinal motion due to self-motion when the goal is to

perceive object motion relative to the stationary world. These results reveal a hitherto
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unknown critical function of stereo tuning in the MT-MST complex, and shed important

light on how the brain may recruit signals from upstream and downstream brain areas to

simultaneously perceive self-motion and object motion.

Introduction

It is a challenging problem for a moving observer to correctly perceive the movement of a

moving object because the observer’s self-motion influences the retinal motion of the object

(Fig 1a). Human psychophysical studies [1, 2] have provided strong evidence that the visual

system solves this problem by attempting to remove the retinal component of visual motion

that is due to self-motion. This suggests that the visual system transforms the retinal motion

signal—the motion of the object in an observer-relative reference frame—into one fixed rela-

tive to the stationary world (i.e. world-relative). Not much is yet known about this process,

however, as the neural basis of this hypothesis is just beginning to be explored [3, 4]. Prelimi-

nary evidence shows suppression and direction modulation when receptive fields are sur-

rounded by the type of radial motion experienced by a moving observer, consistent with a

world-relative shift [3].

To correctly factor out the observer’s self-motion from the object’s retinal motion and accu-

rately perceive world-relative object motion, the visual system must account for the object’s

depth. The retinal motion experienced by a moving observer is subject to motion parallax,

which follows an inverse relationship between an object’s retinal speed and depth: observer

movement relative to a faraway stationary object fixed in the world will generate a slower reti-

nal motion than if the object were closer [5, 6]. Therefore, if the visual system incorrectly

assesses depth, it will wrongly infer the proportion of retinal motion that arises due to self-

motion. This would result in factoring out too much or too little of the retinal motion due the

observer’s self-motion from the retinal object motion, potentially leading to errors in the per-

ceived movement trajectory of the object.

The visual system estimates depth through monocular (e.g. pictorial) and binocular (e.g.

disparity) cues [6]. Considering the importance of depth for accurate world-relative object

motion perception, the quality of depth estimation from these cues should influence human

object motion judgments during simulated self-motion. For example, adding monocular linear

perspective to the visual scene has been shown to induce a large shift away from the retinal tra-

jectory in judgments about an object’s movement direction [7]. Monocular cues alone, how-

ever, are unlikely to in general yield accurate estimates about depth because they only provide

information about relative rather than absolute depth. Binocular disparity on the other hand

offers quantitative, absolute depth information [8], which may support accurate object motion

perception [9]. A visual solution, even with binocular disparity, however, may be insufficient:

human object motion judgments under stereo viewing conditions approach, but do not reach

ideal levels of accuracy where the observer would perceive world-relative object motion, with-

out the influence of self-motion [2, 10–12].

In principle, there are two ways in which monocular and binocular sources of depth infor-

mation could facilitate the accurate recovery of world-relative object motion: improved locali-

zation of the object’s depth relative to the observer (hereafter “improved depth localization”)

and improved estimates of the retinal motion pattern (hereafter “global flow”) that arises from

to the observer’s self-motion (hereafter “improved global flow estimation”). In the present

study, we use computational modeling to propose plausible neural mechanisms for the latter,

improved global flow estimation. The aim is to explain how depth information in the visual
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environment may influence estimates of the global flow to support accurate object motion

judgments.

Neural mechanisms of world-relative object motion perception

The hypothesis that improved global flow estimation could facilitate object motion perception

is consistent with the Competitive Dynamics Model of Layton & Fajen [13] that specifies neu-

ral mechanisms upon which the visual system could rely to factor out an estimate of the

observer’s self-motion from the neural motion signal (Fig 1b). The model includes interactions

between MT neurons, well-known to respond to the motion of small moving objects [14], and

neurons in dorsal MST (MSTd) shown to be causally related to self-motion perception [15,

16]. By the model’s account, improved global flow estimation would result from enhanced

responses in MSTd, which implies improved sensitivity to the observer’s self-motion. Through

the MT–MSTd interactions, the visual system may then better suppress the self-motion com-

ponent from the object’s retinal motion and recover the world-relative motion of moving

objects.

While the model of Layton & Fajen in its original form [4] did not specifically address

depth, units within the elaborated version that we develop here exhibit joint tuning to motion

parallax and disparity based on recent neurophysiological findings in MT and MST [9, 17–20].

This allows the model to account for the effect of depth structure of the scene. The model

Fig 1. (a) Optic flow components on the retina of a mobile observer. The retinal motion (blue, left panel) is the sum of motion created through self-

motion relative to world-fixed stationary environment (center panel) and the motion created by objects that move independently from the observer

(red, right panel). The visual system could recover the world-relative motion of objects (red arrow, left and right panels), by subtracting the self-motion

component (center panel) from the retinal pattern (left panel). (b) Neural algorithm proposed by Layton & Fajen [4] to recover world-relative object

motion. The call-out on the right is a polar plot showing direction responses to the moving object. MSTd cells that respond to the observer’s self-motion

send feedback to suppress MT cells (light blue region, right panel) that signal the retinal motion (light orange region, right panel) consistent with the

preferred MSTd tuning (open arrows, left panel). Suppression shifts the direction signaled by the MT population toward the world-relative direction

(dark orange, right panel).

https://doi.org/10.1371/journal.pcbi.1007397.g001
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mechanisms raise the exciting possibility that MT and MST may combine estimates about the

observer’s self-motion and depth to facilitate the perception of an object’s movement through

a rigid and stationary world.

We started by exploring how neural units with well-established neurophysiological proper-

ties process object motion when there is uncertainty about depth in the visual scene (Simula-

tion 1). Subsequent sections focus on how the same neural mechanisms process monocular

(Simulation 2) and binocular (Simulation 3) motion parallax with increasingly precise depth

information. In each case, we tightly coupled model simulations to match the conditions

under which recent human data was collected where human subjects judged the trajectory of a

moving object during simulated self-motion.

To anticipate, our simulations show how specific combinations of direction and speed gra-

dients in the global motion parallax pattern may facilitate global flow estimation and world-

relative object motion estimation through enhanced MSTd responses. In addition, we show

how increases in the MT signal gain that occur in the presence of disparity [20] not only

increase the gain in MSTd, but also increase pattern selectivity: competitive interactions gener-

ate more vigorous responses in the units tuned to the global motion pattern most compatible

with the observer’s self-motion, while at the same time suppressing weaker responses in other

units. This improves the efficiency with which MSTd-mediated feedback suppresses the self-

motion component from object motion signals and thereby supports the more accurate per-

ception of world-relative object motion.

Materials and methods

Here we briefly review the common design and methodology shared among the human exper-

iments on which we based the simulations that were performed to validate model mechanisms.

In these experiments, humans made judgments of object motion perception while viewing

simulated self-motion. These data have appeared previously in thesis [21] and publication [2]

form. Furthermore, we provide an overview of the computational model of brain areas MT

and MST and the protocol used in our simulations at the end of the section. Supporting Infor-

mation S1 contains a complete mathematical specification of the neural model and explanation

of the parameter values used throughout all simulations in this paper.

Measuring object motion perception during self-motion: Motion nulling

paradigm

The experimental data used for the simulations in this paper comes from multiple experiments

[2, 21], which all measured object motion perception during self-motion using the same

motion nulling paradigm and experimental logic.

The displays used in all the experiments were set up such that the retinal components due

to object motion and due to self-motion were perpendicular to each other. For example, the

moving object would be directly to the right of the focus of expansion (FOE) in the optic flow

display such that the component of its retinal motion due to self-motion was rightward, while

the object itself would move vertically, e.g., upward, creating a vertical retinal motion compo-

nent due to object motion. These experiments all found that the flow parsing process removes

only part of the retinal motion due to self-motion from the perceived movement of the object,

and the residual self-motion component causes the object to be perceived as moving obliquely,

in this example upward and to the right, away from the FOE.

The residual motion was measured through a motion nulling paradigm in which an addi-

tional motion component at various magnitudes toward or away from the FOE was added to

the retinal motion of the object under the control of an adaptive staircase. By asking the
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participant to report whether the object moved obliquely leftward or rightward each trial, the

experiments of Niehorster and colleagues [2, 21] determined the point of subjective equality at

which the dot was perceived to move exactly in the object motion direction, thereby determin-

ing the magnitude of retinal motion due to self-motion that is not removed by flow parsing.

Comparing this to the total retinal motion of the object due to self-motion yields a direct mea-

surement of the accuracy of world-relative object motion judgments, which was called the flow
parsing gain. A gain of 100% indicates that the visual system deducts 100% of the observer’s

self-motion from the optical field of motion, effectively recovering world-relative object

motion, whereas a gain of 0% indicates that none of the motion generated by the observer’s

self-motion is factored out and the observer perceives the retinal motion direction. Further-

more, the angle at which the object is seen to move with respect to its true vertical motion

direction is directly computed from the ratio of residual retinal motion due to self-motion and

the retinal motion due to the object’s motion. Both these measurements of perceived object

motion [2, 21] will be used in the simulations reported here.

Computational model of MT and MST

Overview. Fig 2a shows an overview of the model. The model performs two main compu-

tational tasks: it estimates the pattern of motion that corresponds to the observer’s self-motion

(model MSTd) and it signals the world-relative motion direction of moving objects (model

MT− and MSTv).

MT L4, 6. The input is represented by the vectors~vx;y;f specifying the motion (vdx,f, vdy,f) of

points in the world at retinal position (x, y) and at frame f of the input sequence. This could be

seen as the output of early visual processes that signal visual motion at a specific retinal loca-

tion (e.g. LGN and V1). Direction and speed filters process the input signal and convert the

motion vectors into a neural signal by Layer 4,6 MT units (hereafter referred to as MT L4,6);

units respond to the input based on their tuning curves.

We show sample neural tuning curves for direction and speed in Fig 2b and 2c.

MT+/MSTd pathway. Units in the next stage, MT Layer 2-3 (hereafter referred to as MT

L2-3), are jointly tuned to direction and speed, but process the output of MT L4,6 differently,

depending on whether they possess reinforcing (MT+) or antagonistic (MT−) surrounds. This

bifurcation reflects the anatomical segregation of MT into pathways that subserve self-motion

and object motion [17, 18, 22]: MT+ units project to MSTd and MT− projects to ventral MST

(MSTv). MT+ units in the former pathway integrate the preferred direction and speed signals

throughout their receptive fields. MT+ and MSTd units are connected by depressing synapses

[23], which reduce the efficacy with which tonic MT+ signals activate MSTd neurons [24]. The

resultant activity is matched against radial templates (Fig 2a; MSTd, top) that define the pattern

selectivity of MSTd units. These templates implement the global motion pattern:

Pi;j;x;y ¼ ðx � i; y � jÞ ð1Þ

where (x, y) indexes the regular spatial grid of MT receptive fields that span the visual field,

and (i, j) corresponds to the preferred singularity position of the MSTd unit. We systematically

varied (i, j) to generate MSTd cells tuned to different singular positions throughout the visual

field, where (i, j) = (0, 0) corresponds to the center (e.g. Fig 1a). Although the global patterns

span the entire visual field, we inversely weighted them by the distance from the singularity to

define retinotopic receptive fields (Eq. S15, Supporting Information). This pattern selectivity

combined with intra-areal recurrent dynamics allow MSTd units to estimate the visual pattern

corresponding to the observer’s self-motion that takes both the speed gradient and radial pat-

tern into account.
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In all simulations, we model three subpopulations of radial (Eq 1) MSTd units tuned to dif-

ferent speed gradients: those that respond proportionally to retinal speed speed summating
cells [25, 26], those that respond maximally to a particular average speed across the visual field

band-pass cells [27], and those that respond to a speed gradient that grows with eccentricity

gradient cells [27]. We model the speed sensitivity of speed summating cells as a weighted sum

of MT+ speed signals:

U wsð Þ ¼
1

ŝ

X

s

sws ð2Þ

where the function U integrates the activity of MT+ units tuned to speed s and the sum is nor-

malized by the total number of preferred speeds (̂s).

Fig 2. Diagram of model MT and MST. (a) The model contains two major pathways: MT+/MSTd subserves self-motion (top) and MT−/MSTv

subserves object motion (bottom). The model is dynamic and estimates self-motion and object motion simultaneously. Cells in MSTd model

physiologically supported populations tuned to full-field radial patterns, speed (band-pass, speed summating, gradient), and non-direction dependent

disparities. Cells in MT−/MSTv have RFs with inhibitory surrounds due to local and feedback mediated suppression. Feedback comes from dominant

MSTd units and suppresses MT−/MSTv units locally tuned to the direction, speed, and disparity that match the estimated self-motion motion pattern.

This shifts population object motion responses from a retinal to world-relative reference frame. (b-d) Model MT tuning curves for direction (b), speed

(c), and disparity (d). �MSTd units tuned to ground patterns were added in Simulation 2. ��Disparity tuning was incorporated in Simulation 3.

https://doi.org/10.1371/journal.pcbi.1007397.g002
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Band-pass cells inherit their sensitivity to average speed from MT+ units:

BsðwsÞ ¼ ws: ð3Þ

Although band-pass cells only integrate cells maximally tuned to a single speed, their speed

tuning curve makes them sensitive to a range of retinal speeds (Fig 2c).

Model gradient cells integrate signals from MT+ units tuned to different speeds depending

on the eccentricity of the MT+ receptive fields. We include cells tuned to both increasing and

decreasing speed gradients with eccentricity: gradient cells receive input from slow (fast) speed

MT+ cells nearby the preferred singularity position and faster (slower) speeds at more distal

positions.

As will be described, we introduced MSTd cells tuned to optic flow originating from a

ground plane in Simulation 2 to account for differences in the experimental stimulus. Includ-

ing these units in the frontoparallel plane simulations and in those from Simulation 3 where

motion through a cloud was used had a weak effect on the model direction readout (object

motion directions remained within ±1˚ in every case). We therefore omitted these ground

units from Simulations 1 and 3 for simplicity.

To better account for the stereo viewing conditions in the displays used in Simulation 3, we

add disparity tuning to model MT (Fig 2d) and MST.

MT−/MSTv pathway. Units in the MT−/MSTv pathway have inhibitory surrounds that are

tuned to similar directions and speeds as the centers. Both areas perform an on-center/off-sur-

round integration of motion and disparity signals, with the exception that MSTv units respond

proportionally to retinal speed [28] like MSTd speed summating cells (Eq 2). Maximal sur-

round suppression occurs when center and surround motion signals match (i.e. in a local

region of uniform speed and direction). We read out the model’s estimate of the object’s

motion, usually in area MSTv, from units that contain the moving object within the receptive

field at the end of each simulation. We used a population estimate when computing model-

derived estimates to compare with human judgments (see Section Direction readout).

The model contains feedback from MSTd units, that estimate the observer’s self-motion, to

units in MT− and MSTv. As Fig 3 depicts, the overarching rule is that MSTd feedback sup-

presses MT−/MSTv units that locally match the visual pattern to which the most active MSTd

unit is tuned. Fig 3a shows that the suppression drops off as tuning in direction and/or speed

becomes more dissimilar among units that share an overlapping receptive field (i.e. they

occupy the same MT− or MSTv macrocolumn). For example, suppression decreases in MT−/

MSTv units with receptive fields that coincide with the left side of the horizon and deviate in

speed (non-blue curves) and direction (positions along the blue curve that do not correspond

to the maximum) tuning from the motion parallax pattern depicted in Fig 3a. We use the fol-

lowing Gaussian function to define this feedback weighting in speed or direction (μ):

Wðw; m;sÞ ¼ e
�

w � m
s

� �2

ð4Þ

where σ refers to the rate at which the inhibition drops off as the local tuning of the MT−/

MSTv direction and/or speed deviates from the motion parallax pattern corresponding to the

observer’s estimated self-motion. The overall feedback signal is modulated by the activity of

the most active MSTd unit.

Direction readout. To estimate the direction of a moving object from the model’s neural

signals, we relied on a population vector readout technique whereby we weight the direction

preference by the firing rate among units that respond to a moving object. With this approach,

activity from the entire population of direction tuned units factor into the estimate [29]. This
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increases the precision of the object direction estimate compared to a winner-take-all

approach because it is less constrained by angular quantization (15˚ in our simulations) in the

range of peak tuning angles simulated in the model.

~J wd; ydð Þ ¼
1

Pd̂
d¼1

wd

Ju; Jvð Þ ¼
Xd̂

d¼1

wd cosyd;
Xd̂

d¼1

wd sin yd

 !

ð5Þ

In Eq 5, θd refers to the direction tuning of the unit, d indexes the set of direction prefer-

ences, and d̂ refers to the total number of direction preferences that subdivide 360˚. Depend-

ing on the question of interest, we calculated the population vector for MSTv cells~JðPv
x;y;d; ydÞ

and occasionally for MT− cells~JðM�
x;y;d;s; ydÞ. To extract the angle, we relied on the following

equation:

�J ¼ arctan2ðJv; JuÞ: ð6Þ

Finally, we subtracted the object’s retinal direction θObj from the model estimate to compute

the shift or relative difference �yObj which corresponds to the amount of retinal motion due to

Fig 3. Overview of suppressive feedback mechanism. MT− and MSTv units are inhibited depending on how their tuning properties relate to the

corresponding local subregion of the most active MSTd unit’s RF. (a) The pattern selectivity of the MSTd unit is indicated on the top-right and the RF

of some MT units are shown in left superimposed circle. Highest peak curve in plot shows that MT suppression is greatest when the MT direction

tuning locally matches (leftward; 0˚ mismatch) the MSTd RF; units with mismatching direction tuning receive progressively less inhibition. Other

curves show that inhibition drops off as speed tuning locally differs from the MSTd RF. (b) MT− and MSTv units receive the most inhibition when they

match the congruent speed-disparity tuning of the MSTd unit (circled diagonal). For example, among units with RFs near the FOE, those tuned to slow

and far receive more inhibition than those tuned to slow and near.

https://doi.org/10.1371/journal.pcbi.1007397.g003

A model of how depth facilitates scene-relative object motion perception

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007397 November 14, 2019 8 / 29

https://doi.org/10.1371/journal.pcbi.1007397.g003
https://doi.org/10.1371/journal.pcbi.1007397


object motion that is removed by the model.

�yObj ¼
�J � yObj ð7Þ

Simulations. We implemented the model in MATLAB and performed simulations using

R2017a on a 4.3 Ghz quadcore desktop machine with 32GB of memory running Microsoft

Windows 10. We numerically integrated the model using Euler’s method such that each new

input frame was integrated for ten time steps. This amounts to a step size of�3 msec assuming

30 frames/s. Table 1 summarizes the number of units for each model area used in the simula-

tions. RFs were uniformly distributed across the visual field, with the center of MSTd RFs sam-

pling every fourth possible position of an MT cell in x and y (i.e., downscaled by 4x).

To generate plots of angle and flow parsing gain, we computed the analytic optic flow corre-

sponding to the camera movement in each stimulus from the human experiments. We then

discretized the motion to a x̂ � ŷ (64×64) grid (Table 1 in S1 Text), where MT cells RFs were

centered on every pixel of the image. We presented the model with the resulting sequence of

image frames. At the end of the sequence, we continued the simulation with the final motion

vectors until model dynamics stabilized, defined as the population direction read out at the

object remaining within 1˚ for a duration equivalent to at least five frames of video.

Results

Simulation 1: The influence of uncertainty in depth on the accuracy of

object motion perception

Cells in primate MSTd demonstrate tuning to complex combinations of direction, speed, and

disparity [27, 30, 31]. Given the potential importance of these cells in a neural mechanism for

recovering world-relative object motion, as has been demonstrated by a previous version of

the proposed model [4], we investigated the role that depth information serves in model MSTd

dynamics. Specifically, we examined how uncertainty about the depth of stationary elements

in the environment influences model MSTd activity and object motion signals. If depth infor-

mation serves a central role, we expect viewing conditions that create a high degree of uncer-

tainty about depth to only weakly stimulate model MSTd units. This should result in a modest

influence on the retinal motion of a moving object (Fig 1b). That is, the model should fail to

recover the world-relative motion because MSTd units can only suppress a small proportion

of the retinal motion due to the observer’s self-motion from object motion signals.

To create uncertainty about depth, we selected a monocular visual stimulus composed of

dots arranged on a single frontoparallel plane. The monocular viewing and lack of depth varia-

tion prevent an observer from uniquely determining the depth of the plane. Fig 4a shows the

Table 1. Model unit counts within each area. �MSTd units tuned to ground patterns were added in Simulation 2.
��Disparity tuning was incorporated in Simulation 3.

Area Resolution Count

MT+ 64 (x) x 64 (y) x 24 (directions) x 5 (speeds) x 5�� (disparities) 2457600

MSTd (band-pass) 16 (x) x 16 (y) x 5 (speeds) x 3�� (disparities) 3840

MSTd (gradient) 16 (x) x 16 (y) 256

MSTd (ground)� 16 (x) x 16 (y) 256

MSTd (speed-summating) 16 (x) x 16 (y) x 3�� (disparities) 768

MT- 64 (x) x 64 (y) x 24 (directions) x 5 (speeds) x 5�� (disparities) 2457600

MSTv 64 (x) x 64 (y) x 24 (directions) x 5�� (disparities) 491520

https://doi.org/10.1371/journal.pcbi.1007397.t001

A model of how depth facilitates scene-relative object motion perception

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007397 November 14, 2019 9 / 29

https://doi.org/10.1371/journal.pcbi.1007397.t001
https://doi.org/10.1371/journal.pcbi.1007397


optic flow produced by the stimulus as the simulated observer approaches the frontoparallel

plane at 1˚/s (left panels) and 10˚/s (right panels). This creates an increasing speed gradient in

the radial pattern that emanates from the FOE. A small object (diameter: 1˚, motion indicated

by the red arrow, Fig 4a) moved rightward on top of the frontoparallel plane (see next section

for details).

The stimulus should recruit the MSTd gradient cell subunits (five panels in Fig 4b) that best

match the increasing speed gradient at different eccentricities. For example, the 1 m/s self-

motion condition (Fig 4a; top-left panel) may activate the center disk region of the MSTd sub-

unit that prefers slowest speeds in the center (Fig 4b; top-left panel; bright disk). However, the

peripheral motion may not be fast enough to strongly stimulate the subunit that prefers fast

speeds in the outermost annular region (Fig 4b; bottom-left panel; bright region). This is

because the dynamic range of image speeds in the 1 m/s condition is limited and the speed

tuning range in each subunit corresponds to the range that may arise across all the frontoparal-

lel plane stimuli, not necessarily any one display. Therefore, the stimuli should stimulate at

least a subset of the MSTd gradient cell subunits.

The stimulus speed gradient should also activate speed summating cells considering that

they integrate different speeds uniformly throughout the RF. However, like increasing gradient

cells, the speed gradient should only excite a small portion of the total area of the RF.

Finally, model MSTd band-pass cells only respond to a particular MT speed band and

should only be weakly activated by the gradient. Overall, we expect weak-to-moderate activity

among the different MSTd cell subpopulations.

Fig 4. (a) Fronotoparallel displays used in Simulation 1. Optic flow depicting simulated self-motion at different rates of approach toward

a frontoparallel plane of dots. The red arrow depicts the retinal motion of a small moving object. We scaled the length of the object

vector 3x for visibility. (b) Model MSTd gradient cell RF subunits corresponding to sensitivity to the five different model MT peak

speeds, which span the dynamic range across all frontoparallel stimuli (i.e. not necessarily any particular display). Increasing gradient

cells prefer an increasing speed gradient and have the region of maximum sensitivity to the slowest (fastest) speed near the center

(periphery) of the RF. The speed gradients in (a) stimulate a subset of the gradient cell annular subunit regions. Connection weights are

depicted before normalization.

https://doi.org/10.1371/journal.pcbi.1007397.g004
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Simulation 1: Experimental data. We compared the extent to which model object

motion signals reflected world-relative motion with human judgments using the same stimu-

lus. [21, Chap. 6] has run a series of experiments examining the perception of world-relative

motion during simulated self-motion toward a frontoparallel plane of dots. These stimuli were

constructed such that the optical acceleration component due to approach of the plane was

removed, yielding a field of constant retinal velocity throughout each trial, where velocity only

depended on the distance of fiducial points to the focus of expansion.

A moving object was placed underneath the FOE of the flow field and had an object motion

component that was directly leftward or rightward. To this object motion component a retinal

motion component due to self-motion was added. The simulated self-motion speed was varied

(0.5–5 m/s, corresponding to a self-motion component in the object’s retinal motion of 1–10˚/

s) to influence the direction of retinal motion of the object: faster self-motion speeds induce a

larger shift in the retinal trajectory toward the self-motion component (Fig 4a). The object’s

optical direction was also adjusted directly by setting its speed (2˚/s or 6˚/s). These stimuli

were observed by static observers who made judgments about the trajectory of the moving

probe object according to the procedure described in the methods section (see Retinal Motion

Nulling in General Methods).

Fig 5a summarizes human judgments about objects moving at 2 and 6˚/s. In both cases, the

flow parsing gain demonstrated a logarithmic decline, approaching gains of�0.30–0.40 at the

faster self-motion speeds. The logarithmic decrease suggests that the visual system may be less

efficient at deducting the global pattern at faster speeds. The faster object speed resulted in sig-

nificantly higher gains. Fig 5b expresses these gains as angles to appreciate the magnitude of

the shifts relative to the retinal object direction.

Simulation 1: Simulation results. Before addressing how the model responds to the

uncertainty about depth in the frontoparallel plane stimulus, let us consider the case of forward

translation along a central heading toward a frontoparallel plane (Fig 3a; top-right inset) to

illustrate how the model mechanisms work. The plot in Fig 3a addresses cells that have recep-

tive fields centered on the left side of the display. The model MSTd cell tuned to the radial pat-

tern and increasing speed gradient depicted in Fig 3a would maximally suppress MT− units

tuned to fast motion moving leftward (blue curve peak); cells that share an overlapping recep-

tive field position, but have different direction (non-peak positions along the blue curve) and

speed (non-blue curves) tuning would be inhibited by a lesser extent. The more dissimilar the

cells’ speed and direction tuning from the combination that locally corresponds to the esti-

mated self-motion pattern (fast motion to the left), the weaker the suppression.

Object motion signals (MT−/MSTv). Fig 6a shows model inhibitory signals in a simulation

of a similar frontoparallel plane scenario, but one that includes a moving object (6˚/s object,

self-motion speed of 1 m/s). The signals correspond to model MT− feedforward surround inhi-

bition (red curve) and suppressive feedback from MSTd (green curve). We also plot the excit-

atory feedforward signal that is integrated by MT− units whose RFs are centered on the moving

object (blue curve). The object direction represented by the excitatory blue curve is in an

observer-relative reference frame. The feedback signal reflects suppression that is consistent

with the direction of the estimated self-motion pattern at the local position within the visual

field where the object resides, similar to Fig 3a. Together, the two inhibitory signals interact with

the excitatory feedforward signal (blue) over time to shift the direction represented by the popu-

lation over time, as shown in Fig 6b. In Fig 6c, we plot the direction represented across the local

MSTv cell population (the next area in the model that integrates MT− signals) with RFs centered

on the object over time. This demonstrates an evolving shift toward the world-relative direction.

Self-motion signals (MSTd). Fig 6d plots the peak activity generated by gradient (gray)

and speed summating (black) cells as a function of simulated self-motion speed. Gradient cell
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Fig 5. (a) The accuracy of human object motion judgments in Simulation 1 (frontoparallel plane), as measured by flow

parsing gain (reproduced from Niehorster, 2013), compared with model object direction estimates. (b) Human

judgments and model object direction estimates compared, expressed as angles. 0˚ indicates the retinal object direction

and positive angles indicate shifts toward the world-relative direction.

https://doi.org/10.1371/journal.pcbi.1007397.g005
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responses ramped up as the dynamic range of images speeds broadened due to the faster self-

motion speeds. Responses attenuated somewhat at higher self-motion speeds as the distribu-

tion became skewed toward faster image speeds.

Consistent with known neurophysiological properties of speed summating cells [25, 26],

linear increases in speed produce a logarithmic firing rate curve in MSTd (Fig 6d). While it is

Fig 6. (a) Object motion signals in MT− during fronotoparallel plane simulation. Blue is the object motion signal in MT−, green is the inhibitory

feedback signal from MSTd, red is the surround (local) inhibition within MT−. y-axis is activation, x-axis is direction (0-360 deg in 15 deg increments).

(b) Shift in the MSTv activity distribution over time (MT− demonstrates a qualitatively similar evolution). (c) Time course of object motion direction

represented by area MSTv units. A zero shift value indicates object motion in a observer-relative reference; positive values indicate shifts in the world-

relative direction. Self-motion speed is 1 m/sec and object motion speed is 6˚/s. (d) Activation of the most active gradient (gray) and speed summating

(black) MSTd cells for the different self-motion speeds from the Experiment 1 frontoparallel plane stimuli. (e) MSTd band-pass cell activity that reflects

an estimate of observer’s self-motion direction. The x and y axes correspond to the spatial coordinates of the optic flow. The overall activation is weak

and variance in the distribution is high, indicating uncertainty in the self-motion estimate.

https://doi.org/10.1371/journal.pcbi.1007397.g006
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not clear from the neural data whether this profile persists beyond the fastest speed tested, the

firing rate of model cells plateaus. Because the amount of surround suppression from MSTd

feedback depends on MSTd activation strength, this results in suppressive feedback signals

that grow proportional to the slow and moderate self-motion speeds, but taper off at fast

speeds. Speed summating cells therefore contribute to the increasing angular shifts produced

by the model that occur when the stimulus self-motion speed increases (Fig 5b). However, the

saturating activity of speed summating cells at the faster speeds prevents the model from fully

compensating for the self-motion component, which becomes a greater proportion of the

object’s retinal motion at faster self-motion speeds. Together with the decreasing MSTd gradi-

ent cell activity (Fig 6d), this results in shifts in the object angle that increase, but at a dimin-

ished rate, as the speed of self-motion increases (Fig 5b), consistent with the human data. This

offers an intriguing possible explanation for the weak flow parsing gains at faster self motion

speeds observed in the human data (�0.3–0.4; see Fig 5a).

Unlike speed summating cells, band-pass MSTd units generate comparably weak patterns

of activity across the self-motion speeds (Fig 6e; see scale of right color bar). While the centrally

positioned activity peaks correctly coincide with the observer’s simulated heading toward the

center of the visual display, the activity distribution across the stimulus optic flow space is

broad, which indicates uncertainty about the self-motion estimate. Because MSTd units com-

pete with one another to resolve the observer’s most likely direction of self-motion in a net-

work that normalizes activity across the population, broader, more uncertain self-motion

signals accompany weaker overall activity levels. As such, a broader MSTd activity distribution

results in a weaker feedback signal, whereas a more concentrated MSTd activity distribution

results in stronger feedback and may result in greater modulation of object motion signals.

This means that band-pass cells only contribute a modest amount in the suppressive signal

that attempts to cancel out the self-motion component from model object motion signals.

Fig 5 summarizes the simulation results across all the stimulus conditions in the form of the

flow parsing gain measure (a) and the angular deviations from the observer-relative retinal

direction (b). Simulations produced object direction estimates that were consistent with the

human data, though there was a weak tendency to overestimate the object angle in the 2˚/s

condition (Fig 5b, red curve). The difference was most pronounced at moderate-to-fast self-

motion speeds, when the object speed was slow compared to nearby motion vectors generated

from the observer’s self-motion (e.g. Fig 4a, right column). The angular overestimate occurred

because MSTd feedback, with the present selection of model parameters, overly suppressed

cells tuned to speeds that are substantially slower than the nearby motion in the global motion

pattern. The overall magnitude of the bias, however, in the 2˚/s condition is small (mean: 4˚).

The consistency in the angular deviations with the human data suggests that a self-motion

signal derived from MSTd gradient, speed summating, and band-pass cells may be sufficient

for capturing human object judgments in the case of the frontoparallel plane displays. Note

that small offsets in angular deviation correspond to large flow parsing gain offsets, but that

the flow parsing gain results also qualitatively follow the human data. The activity in each

MSTd subpopulation was weak, which suggests that the single plane does not represent an

effective stimulus for activating these MSTd cell types. The broadness of the activity distribu-

tions may be due to uncertainty in depth, as we will investigate in forthcoming sections.

Simulation 2: The influence of motion parallax on accuracy of object

motion perception

In Simulation 2, we investigated MSTd dynamics with a stimulus that contains continuous

depth variation. The optic flow corresponds to the motion parallax experienced by simulated
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observer translation over a ground plane (Fig 7a). The stimulus is cyclopean in the present sec-

tion; we consider the addition of binocular disparity in Simulation 3.

The model configuration remained the same, except for the addition of cells that are sensi-

tive to ground flow (‘ground units’), as has been demonstrated by physiological studies [32,

33]. As we will show, ground flow was not an effective stimulus for any of the MSTd units

tuned to full-field planar radial patterns. Aside from differences in pattern sensitivity (ground

vs. frontoparallel plane), the ground units integrate feedforward signals in a similar manner as

model MSTd gradient cells: they not only integrate direction signals consistent with the pre-

ferred ground pattern, but the input motion signals must come from MT+ units tuned to the

appropriate speed at different eccentricities. Fig 8a shows the direction and speed subunits for

a single ground unit tuned to a central heading. The bright region in each subpanel shows

where the MT+ input comes from within the RF. For example, the central column indicates

that preferred inputs come from MT+ units tuned to downward motion (270˚), and the speed

preference of afferent cells increases with eccentricity (moving down the column). Consistent

with full-field gradient cells (Fig 4b), non-preferred MT+ inputs to ground cells are down-

weighted based on the degree of dissimilarity. Fig 8b shows the weighting for inputs tuned to

the slowest speed, which appear near the preferred FOE position in the center of the RF;

weights from other speed-tuned inputs decrease with eccentricity.

In addition to investigating model MSTd responses in the ground plane scenario, we used

the model to explore important discrepancies in the object motion human judgments obtained

by Niehorster [21] across the frontoparallel plane and ground plane experiments. In particular,

self-motion component speeds of 1˚/s (2˚ object eccentricity condition) and 2˚/s (4˚ object

eccentricity condition) for the ground plane stimuli yielded 84% and 72% mean flow parsing

gains in the human data (Fig 7b), respectively. This differs markedly from the corresponding

mean flow parsing gains in the frontoparallel plane scenario of 67% and 50% (Fig 5a),

respectively.

Simulation 2: Methods. Niehorster [21, Chap. 4] has run an experiment in which static

observers viewed stimuli simulating travel over a ground plane (depth range 0.56–25 m) con-

sisting of dots while a probe dot moved linearly over this ground plane. The probe dot was

placed 2˚ or 4˚ below the FOE of the flow field and moved rightward at a constant speed on

the ground plane that corresponded to an initial optical speed of 2.5˚/s. Two different simu-

lated translation speeds, 5.7 m/s and 2.9 m/s (producing self-motion component speeds of 1˚/s

Fig 7. (a) Optic flow from the ground plane scenario used in Simulation 2. The red arrow shows the observer-relative motion of a small moving object.

We scaled the length of the object vector 3x for visibility. (b) Model and human flow parsing gains. Error bars denote SEM.

https://doi.org/10.1371/journal.pcbi.1007397.g007

A model of how depth facilitates scene-relative object motion perception

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007397 November 14, 2019 15 / 29

https://doi.org/10.1371/journal.pcbi.1007397.g007
https://doi.org/10.1371/journal.pcbi.1007397


and 2˚/s, respectively), were used. As before, human observers made judgments about the tra-

jectory of the moving probe object according to the procedure described in the methods sec-

tion (see Retinal Motion Nulling in General Methods).

Simulation 2: Model ground units. We introduced MSTd units sensitive to the optic

flow generated by self-motion over a ground plane to accommodate the displays in Simulation

2. The motion pattern is proportional to the vector field

Li;j;x;y ¼ fvgnd;dx; vgnd;dyg ¼ ððx � iÞðy � jÞ; ðy � jÞ2Þ ð8Þ

in which (i, j) represents the direction of travel and Λi,j, x, y is only defined for y� j (i.e. at the

horizon and below). We generated motion patterns as specified by Eq 8 and extracted the

directions and speeds using Eqs. S2 and S3 (see Supporting Information). We then used a pro-

cedure that is similar to that used to create MSTd gradient cell units: we generated direction

templates Td,i,j,x,y according to Eqs. S13 and S14, substituting Λi,j,x,y for the radial pattern

χi,j,x,y, and generated speed templates Es,i,j,x,y according to Eqs. S16–S18, substituting the

ground speed gradient and quintiles for ρx,y,0 and r4;6
s , respectively. To account for the sparsity

of the ground templates (i.e. no flow defined above the horizon), we normalized by the number

MT+ inputs in each ground template rather than the total number of cells with distinct RF

Fig 8. MSTd ground units. (a) Regions of a ground unit’s RF tuned to a central heading that exhibit maximal sensitivity to the indicated MT+ speeds

and directions. (b) Connection weights among the different speed-tuned inputs along a subset of the directions for the slowest speed subunit. Weights

shown prior to normalization.

https://doi.org/10.1371/journal.pcbi.1007397.g008
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positions across the visual field (x̂ŷ) in Eq. S14. We plugged these direction and speed tem-

plates into the function IGC
i;j ð�Þ (Eq. S20), along with the MT+ activity Nþx;y;d;s. The MSTd dynam-

ics and feedback connectivity are directly analogous to those of the gradient cells.

Simulation 2: Simulation results. The optic flow in the ground plane scenario only

weakly activated model MSTd band-pass, speed summating, and gradient cells. Fig 9a shows

the activity for different band-pass units, which garnered the highest activity within the group.

Band-pass cell activity was about half that obtained in Simulation 1 (Fig 6e) and was spatially

dispersed across the subpopulation, indicating uncertainty in the self-motion estimate, partic-

ularly above the horizon.

This contrasts with the concentrated activity among ground units (Fig 9b) that signal the

observer’s central heading direction, indicating higher confidence in the self-motion estimate

compared to the frontoparallel plane stimuli. Because MSTd units compete with one another

in a network that normalizes activity, the concentrated activity goes hand-and-hand with a

stronger activity peak that was�33% greater than the maximum from Simulation 1. Greater

peak MSTd activity resulted in stronger suppressive feedback to units in MT− and MSTv. This

is evident in the greater ratio between inhibitory feedback to excitatory input signal integrated

by MT− units with RFs centered on the moving object (compare red and blue curves in Figs 9c

and 6a). The stronger inhibitory feedback signal induces a larger shift in the object motion sig-

nal over time (Fig 9d).

The larger MSTd activity peak in the ground plane scenario combined with the greater

inhibitory feedback signal results in a flow parsing gain that is consistent with the pattern in

the human data (Fig 7b). It is worth noting that the smaller model gain for the object at 4˚

eccentricity than the object at 2˚ eccentricity (Fig 7b) occurred because of the distance-depen-

dent model function that decreases feedback weights to MT−/MSTv cells that have receptive

Fig 9. Model results for ground plane scenario (Simulation 2). (a) MSTd band-pass cell activity. (b) MSTd ground unit activity. (c) Excitatory and

inhibitory signals integrated by MT units that process object motion. (d) Time course of the shift in the object direction signal represented in the model

MSTv toward the world-relative direction. Black curve (frontoparallel plane) reproduced from Fig 6c. Blue curve corresponds to simulation of 4˚ object

ground plane condition.

https://doi.org/10.1371/journal.pcbi.1007397.g009
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fields faraway from the preferred singularity position of the maximally active MSTd cell

(Eq. S28).

The close correspondence between the model flow parsing gains and the human data in

both the frontoparallel plane (Fig 5a) and ground plane (Fig 7b) scenarios suggests that

increased suppression through improved global pattern selectivity could explain the discrep-

ancy in the magnitude of human flow parsing gains obtained across the stimuli used in Simula-

tions 1 and 2. The broad and relatively weak MSTd activity in the frontoparallel plane scenario

limited the extent to which self-motion signals could transform object motion signals from ret-

inal to world-relative reference frames through the surround suppression mechanism.

Increased surround suppression in the ground plane scenario due to the greater MSTd activity

and increased pattern selectivity allowed the model to factor out a greater proportion of the

observer’s self-motion, thereby improving the accuracy of object motion signals.

Simulation 3: The influence of binocular disparity on accuracy of object

motion perception

Simulation 3 focuses on how model MSTd processes optic flow that accompanies motion par-

allax with binocular disparity. We simulated stereo visual displays from Niehorster & Li [2]

consisting of wire-frame cubes arranged in a 3D volume (Fig 10a–10c). We focused on three

particular conditions to probe the contributions of local (‘No Local Frontal View’ condition)

and global (‘Full’ condition) surround suppression signals as well as the role of local depth

(‘No Local Depth’ condition). The Full condition includes full-field stereo optic flow and

should fully recruit the model mechanisms. The No Local Depth condition removes a cross-

section of cubes at depths nearby the moving object and should probe the contributions of

local depth signals in the model. The No Local Frontal View condition removes a local 4˚ vol-

ume surround the moving object and should inactivate local feedforward inhibition.

We also used the model to investigate an apparent conflict in the human data with respect

to whether the accuracy of self-motion perception depends on the speed of self-motion. While

the human frontoparallel plane data from Niehorster [21] used in Simulation 1 (Fig 5a) show a

dependence of self-motion speed on flow parsing gain, the data on the stereo wire-frame sce-

nario from Niehorster & Li [2] showed no such decline. We therefore furthermore simulated

the stereo conditions of Niehorster & Li [2] that vary the speed of self-motion to compare

model dynamics with those obtained in the frontoparallel plane scenario (Simulation 1).

Simulation 3: Experimental data. Niehorster & Li [2] had static observers view stimuli

simulating travel at 0.30 m/s through a cloud of wire-frame objects (depth range 0.69–1.03 m)

while a probe dot moved linearly through this cloud. The scene was rendered in stereo and

four display conditions were presented to observers in which the wire-frame objects were dis-

tributed differently in the cloud. Three of these conditions are used for the current simulations:

1) a Full condition in which the wire-frame objects were distributed throughout the entire

depth range of the cloud; 2) a No Local Depth condition in which no objects were placed in the

central 50% of the depth range of the cloud; and 3) a No Local Frontal View condition in which

no objects were placed within 4˚ from the probe in the frontal view of the display. The probe

dot was visible during the last 200 ms of each 1 s trial and was placed 4˚ to the left or right of

the FOE of the display, at the center depth of the cloud. The probe moved linearly upward in

the cloud at a speed that corresponded to a vertical optical speed of 2˚/s at the midpoint of the

probe’s trajectory, at which moment the horizontal optical speed component of the probe due

to simulated self-motion was also 2˚/s. As before, human observers made judgments about the

trajectory of the moving probe object according to the procedure described in the methods

section (see Retinal Motion Nulling in General Methods).
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Fig 10. (a) Full, (b) No Local Depth, and (c) No Local Frontal View conditions (Simulation 3). Reproduced from

Niehorster & Li [2]. (d) The flow parsing gain achieved for these conditions by the model and the human observers.

Error bars denote SEM.

https://doi.org/10.1371/journal.pcbi.1007397.g010
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In their Experiment 2, Niehorster & Li [2] furthermore had static observers perform the

same task using the Full display condition while varying simulated self-motion speed. Transla-

tion speeds of 0.24 m/s, 0.39 m/s, 0.54 m/s, and 0.69 m/s were used which corresponded to a

horizontal optical speed component of the probe due to simulated self-motion of 1.6˚/s, 2.6˚/s,

3.6˚/s, and 4.6˚/s, respectively.

We used the motion of the vertices of the wireframe objects as input to the model.

Simulation 3: Model disparity tuning. We made two overarching changes to augment

the model with disparity tuning in areas MT and MST. First, we designed separable disparity

filters and multiplicatively combined them with those for direction and speed to produce units

throughout the model that are jointly tuned along all three dimensions. This is consistent with

neural data showing that disparity tuning in MT [34] and in many cases in MSTd [30] is

largely independent of speed and direction. Second, we introduced a disparity-dependent gain

(Fig 2d) in MT and MSTd signals to account for the tendency for neural responses to be

greater for an optic flow stimulus viewed binocularly than when viewed monocularly in other-

wise similar conditions [20]. The gain decreased with depth, consistent with the weak tendency

for disparity sensitivity to become coarser with depth [35]. Supporting Information S1 details

the specific modifications that were made.

Simulation 3: Results. Fig 11a plots the activity of model MSTd band-pass cells tuned to

the disparity that matches that of the object in the Full condition. The activity distribution is

highly peaked, indicating confidence in the self-motion estimate. Fig 11b quantifies this using

kurtosis, defined as the normalized fourth moment of each population response distribution.

The plot demonstrates increased kurtosis in each subpopulation response, compared to all

responses in the frontoparallel plane scenarios and most ground plane scenarios (Simulations

1 and 2). This means that MSTd units showed increased selectivity to the global motion pat-

tern that corresponds to the observer’s self-motion. Due to the normalizing property of the

MSTd competitive network, this means that the unit that signals the self-motion estimate

sends a stronger signal than in the frontoparallel and ground plane simulations. Crucially,

MSTd units require a strong enough input to engage the recurrent mechanism (see threshold

in Eq. S21); otherwise the competition would pathologically enhance weak, noisy, and unreli-

able motion signals. The disparity-dependent gain in MT signals allowed the network to more

fully recruit the recurrent mechanism than in the frontoparallel and ground plane scenarios

(Fig 11c).

Fig 11d shows the shift in the object motion signal toward a world-relative reference frame

in the Full condition. The stronger suppressive feedback signal induced by the enhanced

MSTd self-motion estimate resulted in greater and earlier modulation in the object direction

than in the frontoparallel and ground plane scenarios. The modulation plateaued after�150

msec due to saturation in the maximally active MSTd unit: it could not generate a much stron-

ger suppressive feedback signal (see Fig 11a; panel 4).

Fig 12 plots the feedback signal, along with the other excitatory and inhibitory signals inte-

grated by MT− units that have the moving object in their receptive fields in the Full, No Local

Depth, and No Local Frontal View conditions. Given the similarity in the global flow across

the conditions, the suppressive feedback signal from MSTd remains largely unchanged. How-

ever, removing only the fiducial points at nearby depths from the object diminishes, but does

not eliminate, surround disparity signals, which yields weak local inhibition (Fig 12b). Locally

removing elements throughout the volume abolishes local inhibitory signals (Fig 12c). Across

the three conditions, the direction represented by model object motion signals yielded flow

parsing gains that correspond to human judgments (Fig 10d).

We simulated four additional stereo conditions of Niehorster & Li [2] to focus on the issue

of whether object motion perception depends on the speed of self-motion (Fig 13). As the
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speed of self-motion increases, so does its relative contribution to the object’s retinal motion

potentially making it more challenging to factor out the appropriate amount of the self-motion

component. In the frontoparallel plane scenario, MSTd activity was relatively weak (Fig 6d

and 6e), preventing the model from factoring out enough of the self-motion component at

faster speeds. In the stereo scenario, however, the model demonstrates a weak dependence on

the self-motion speed (Fig 13). This occurred because the stronger motion signals in the stereo

simulation engaged the recurrent mechanism, which enhanced the MSTd self-motion estimate

and allowed the model to compensate for the larger self-motion component proportion over a

broad range of self-motion speeds.

Discussion

Neurophysiological studies have identified subpopulations of neurons in primate MSTd tuned

to characteristic patterns of direction, speed, and disparity. Using a neural model that simu-

lates key functional properties of these neurons, we demonstrated that these MSTd neurons,

along with local inhibitory signals in MT, may explain human object motion perception dur-

ing simulated self-motion through scenes with different monocular and binocular depth cues.

The frontoparallel plane scenario that created ambiguity about depth (no depth variation and

plane at an indeterminate depth) elicited weak-to-moderate MSTd activity across the different

subpopulations. This resulted in weak modulation of the object motion signal, especially at

faster self-motion speeds, consistent with human judgments about object direction. Simulated

Fig 11. (a) MSTd band-pass cell activity for the Full Stereo condition. (b) Kurtosis of the most active MSTd subpopulation response, which measures

the peakedness of distribution, in each simulation. (c) Strength of the recurrent signal generated by the most active MSTd subpopulation in each

simulation (Eq. S21). A zero value in this panel indicates that the MSTd signal did reach the appropriate threshold to engage the recurrent mechanism.

(d) Time course of the object direction signal in model MSTv. Black and blue curves reproduced from Fig 9d.

https://doi.org/10.1371/journal.pcbi.1007397.g011
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Fig 12. Object motion signals in MT in the (a) Full Stereo, (b) No Local Depth, and (c) No Local Frontal View

conditions. Blue is the object motion signal in MT−, green is the inhibitory feedback signal from MSTd, red is the

surround (local) inhibition within MT. y-axis is activation, x-axis is direction (0–360˚ in 15˚ increments). Local

inhibition refers to the inhibitory signal due to feedforward lateral inhibition from units tuned to similar directions,

speeds, and disparities in MT Layer 4/6.

https://doi.org/10.1371/journal.pcbi.1007397.g012
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self-motion over a ground plane (continuous depth variation) resulted in more vigorous and

selective responses in MSTd. The most active MSTd units sent stronger feedback signals that

better suppressed the self-motion component and resulted in more accurate scene-relative

object motion signals in MT and MSTv. Finally, we examined how disparity dependent

changes in MT signal gain influence object motion responses within our model of MT/MST.

We found that increases in MT signal gain not only increased the strength of MSTd responses,

but enhanced their selectivity (Fig 11b). This was because the elevated disparity dependent

gain more effectively recruited recurrent feedback mechanisms within MSTd (Fig 11c). The

increased selectivity in turn led to higher model flow parsing gains than in the other two

simulations.

The correspondence between the direction represented in model object motion signals and

human judgments (Figs 10d and 13) suggests that improved global flow estimation within a

MT−MSTd neural circuit similar to that in the proposed model could serve as a mechanism for

perceiving world-relative object motion perception during self-motion. In humans, the areas

may correspond to the MT complex and area V6, respectively [36]. Precise depth information

(e.g. through binocular disparity) may facilitate this process through enhanced identification

of the global motion pattern due to the observer’s self-motion in MSTd. That is, the presence

of speed gradients, binocular disparity, and other sources of reliable depth information may

do more than simply increase the gain of self-motion signals—it suppresses the activity of

MSTd units tuned to combinations of motion parallax and disparities that are unlikely to cor-

respond to the observer’s self-motion. This can be appreciated in Fig 11b, which summarizes

the kurtosis (peakedness) of the MSTd population, a measure of model pattern selectivity,

across our simulations.

Fig 13. The flow parsing gain achieved by the model and the human observers for different self-motion speeds with stereo optic flow

(Simulation 3). Error bars denote SEM.

https://doi.org/10.1371/journal.pcbi.1007397.g013
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Does object motion perception during self-motion depend on the speed of

self-motion?

Our simulations reconcile an apparent discrepancy between the data from Niehorster [21]

showing that flow parsing gain decreases as the speed of self-motion increases (Fig 5a) and

those from Niehorster & Li [2] that exhibit no such relationship (Fig 10d). As the observer’s

speed of self-motion increases, so does the proportion of self-motion component in the

object’s retinal motion. This increases the demands on mechanisms that factor out the self-

motion component to recover world-relative object motion. Considering how model MSTd

responses saturated and even declined at faster self-motion speeds in the frontoparallel plane

scenario (Niehorster [21]; Fig 6d), the feedback mediated mechanism proposed here cannot

send a strong enough signal up with the amount of suppression that is required to support

accurate object motion signals. The disparity-dependent gain in the stereo scenario (data from

Niehorster & Li [2]; Fig 12a) allowed the model to effectively suppress the self-motion compo-

nent over a larger range of self-motion speeds due to the recurrent dynamics. The normalizing

property of the recurrent MSTd network leads to the prediction that there may be a limiting

factor or bottleneck in the recovery of world-relative object motion at even faster self-motion

speeds. That is, the flow parsing gain may eventually decline at faster self-motion speeds than

those examined here.

Global pattern estimation and heading

Our results are consistent with the hypothesis that depth information allows the visual

system to better estimate the retinal pattern of motion during self-motion. That is, different

environments and viewing conditions may enable neurons with RFs positioned in different

locations across the visual field to generate direction, speed, and disparity signals that better

capture the observer’s world-relative movement. This does not necessarily imply improved

heading estimation or sensitivity to the singularity position (e.g. FOE) within the global optic

flow field.

Indeed, heading estimation is well-known to be accurate in sparse, improvised environ-

ments [37]. In the model mechanisms proposed here, many MSTd neurons may exhibit sensi-

tivity to the observer’s heading, but far fewer may integrate the appropriate direction, speed,

and disparity across the visual field to accurately signal the global pattern that arises due to the

observer’s self-motion. The specificity in tuning to optic flow along these dimensions is impor-

tant because moving objects may occupy any region of the visual field and yet the visual system

must still factor out the appropriate amount of self-motion component.

The proposed model focuses on patterns of self-motion induced by observer translation; it

does not directly address optic flow that contains a combination of translation and rotation

that may arise during eye and head movements or movement along a curved path. It is pres-

ently unclear the extent to which humans recover world-relative object motion when the

global pattern contains both translation and rotation, considering that human object motion

perception has only been studied in a limited range of simplistic conditions [38]. However,

assuming humans are capable of world-relative object motion perception in the presence of

both translation and rotation, in principle, the visual system could rely on a solution that solely

depends on non-visual (e.g. vestibular) signals, one that that solely depends on vision, or one

that depends on a combination thereof.

Considering that non-visual information improves the accuracy of world-relative object

motion perception in humans [10, 12, 39] and MSTd neurons exhibit systematic vestibular

tuning [40], multisensory integration may play an important role in enhancing the specificity

of the estimated self-motion pattern, especially when it contains rotation [41]. Indeed,
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congruence between visual-vestibular signals appears to improve selectivity, perhaps some-

what akin to the effects of increased MT signal gain in the model [20]. Multisensory integra-

tion may also facilitate the recovery of world-relative object motion when the visual signal is

weak or noisy (e.g. due to impoverished depth information or in low light). Additional studies

are needed to assess the contributions of multisensory tuning on the object motion responses.

On the other hand, physiological evidence demonstrates that MSTd neurons are capable of

estimating the contributions of rotation using visual signals alone [42]. This suggests that non-

visual signals may not be necessary in a process that recovers world-relative object motion

when the global motion pattern contains rotation. Computational models of vision have pro-

posed two broad classes of solutions for addressing the presence of rotation, which have differ-

ent implications for recovering object motion signals: removing rotation before motion signals

reach MSTd [43] and estimating the rotation within MSTd [44–46]. The former approach has

proposed that rotation is removed within MT through a local subtractive process, perhaps

implemented with MT− inhibitory surrounds. In the context of the model proposed here, sub-

traction in MT would remove the rotational component and MSTd feedback could suppress

the remaining global translational component. By the alternative account, rotation could be

estimated within MSTd using cells sensitive to global laminar motion. Together with cells that

respond to the translational component, these cells could send feedback to MT− and MSTv to

suppress the retinal motion due to the observer’s self-motion. This is an important topic that

warrants further investigation.

Distinct pathways for self-motion and object motion

Evidence of two anatomically segregated subpopulations in MT—cells with reinforcing sur-

rounds (MT+) and those with suppressive (MT−) surrounds [17, 18]—guide the structure of

proposed model. It has been suggested that these cell types perform complementary func-

tions: MT+ cells may specialize in processing uniform ‘wide-field’ motion, whereas MT− cells

may specialize in processing local motion contrast [14, 15, 28, 47]. This functional specializa-

tion may contribute to self-motion and object motion sensitivity in areas further along in the

visual system. Indeed, Born and colleagues have provided evidence that among MT+ and MT−

cells, a higher proportion of MT+ cells project to MSTd and a higher proportion of MT− cells

project to MSTv [48]. Yu and colleagues have recently supported this finding by demonstrat-

ing that electrical microstimulation of MT+ cells influenced monkey heading judgments to a

greater extent than MT− cells [22]. The present model implements these apparent MT+–

MSTd and MT−–MSTv pathways in a ‘strong’ sense in that we do not include overlapping

projections (i.e., MT−–MSTd and MT+–MSTv). This omission may accentuate MSTd/MSTv

activation, potentially contributing to instances wherein the model overestimates the object

angle (e.g. Figs 5 and 13).

Mixed projections may facilitate the extent to which MSTd/MSTv could differentiate

between self-motion and object motion. For example, physiological [49] and modeling [13, 43,

50] studies have shown that large moving objects influence heading estimates produced by

MSTd neurons and it is possible to decode self-motion and object motion using visual signals

alone [49]. Band-pass cells in the present model with their differing speed selectivities may

facilitate this process in scenarios wherein the observer’s self-motion activates one group of

MSTd cells (e.g. Fig 11a) and the moving object activates a second group. Because moving

objects often occupy a smaller area of the visual field than the flow created by observer’s self-

motion relative to the stationary environment, we would expect the most active cells to repre-

sent the observer’s self-motion and the second most active cells to represent the object motion.

Interactions between these simultaneously active cells may help resolve uncertainty about self-
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motion and object motion. Considering that the moving objects in the present study were too

small to influence MSTd activation, this idea remains to be tested.

Pattern selectivity in MSTd

Despite the classical emphasis on radial or laminar full-field motion sensitivity of MSTd neu-

rons, tuning does not appear to be uniform throughout the RF [24, 51]. Individual neurons

appear to integrate a milieu of excitatory and inhibitory direction inputs that are not compati-

ble with a single coherent global pattern. Therefore, the pattern selectivity of MSTd neurons

may not fall into distinct full-field expansion, ground, and other categories; neurons may

instead respond to many global motion patterns with varying effectiveness. For instance,

through the diversity of subunits, the same neurons may signal the global motion pattern in

different scenarios (e.g. frontoparallel and ground plane scenarios). This would explain how

human object motion perception remains reliable and accurate in a wide range of environ-

ments and viewing conditions. The proposed model likely underestimates the extent to which

MSTd units carry out multiple functions. Future models should explore how the same units

may be flexibly recruited to estimate the global motion pattern in diverse circumstances with-

out increasing the number of distinct patterns to which cells are tuned. The present work dem-

onstrates that in principle cells with well-characterized properties organized in distinct

populations can account for human object motion perception during self-motion. It remains

to be seen whether a population of cells with increased functional overlap and redundancy

could exhibit similar behavior.
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