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Purpose. In this study, we aimed to develop and validate a noninvasive method based on radiomics to evaluate the expression of
Ki67 and prognosis of patients with non-small-cell lung cancer (NSCLC). Patients and Methods. A total of 120 patients with
NSCLC were enrolled in this retrospective study. All patients were randomly assigned to a training dataset (n� 85) and test dataset
(n� 35). According to the preprocessed F-FDG PET/CT image of each patient, a total of 384 radiomics features were extracted
from the segmentation of regions of interest (ROIs). 0e Spearman correlation test and least absolute shrinkage and selection
operator (LASSO), after normalization on the features matrix, were applied to reduce the dimensionality of the features.
Furthermore, multivariable logistic regression analysis was used to propose a model for predicting Ki67. 0e survival curve was
used to explore the prognostic significance of radiomics features. Results. A total of 62 Ki67 positive patients and 58 Ki67 negative
patients formed the training set and test training dataset and test dataset. Radiomics signatures showed good performance in
predicting the expression of Ki67 with AUCs of 0.86 (training dataset) and 0.85 (test dataset). Validation and calibration showed
that the radiomics had a strong predictive power in patients with NSCLC survival, which was significantly close to the effect of
Ki67 expression on the survival of patients with NSCLC. Conclusion. Radiomics signatures based on preoperative F-FDG PET/CT
could distinguish the expression of Ki67, which also had a strong predictive performance for the survival outcome.

1. Introduction

Lung cancer is one of the leading malignant tumours
worldwide with a high incidence rate and high mortality.
Non-small-cell lung cancer (NSCLC) is the most common
pathological type of lung cancer in all pathological types,
accounting for 85% of all lung cancer patients [1, 2]. Because
of the lack of early specific clinical symptoms, lymph node
metastasis or distant metastasis has often occurred before
diagnosis, which has a major impact on the treatment and
prognosis. 0e five-year survival rate of lung cancer is less
than 20% [3], although with the emergence of new drugs or
treatment methods to improve the survival rate of lung
cancer patients, at the same time, the same treatment
method in time, the patients reflect a huge difference.

0erefore, new biomarkers related to patient outcomes are
needed to stratify the prognostic risk of patients.

Ki-67 is a nuclear protein expressed in the active phase of
the cell cycle, except the G0 phase. 0e proliferation index
(PI) of Ki-67 has been widely used as a marker of cell
proliferation. Previous studies have shown high Ki-67 ex-
pression negative effect on disease-free survival, relapse-free
survival, and overall survival in non-small-cell lung cancer
[4–6].0e expression level of Ki-67 still has many challenges
in clinical practice. In addition, these invasive methods are
not only invasive but also may lead to bleeding, pneumo-
thorax, and increase the possibility of tumour metastasis.
Imaging technology can directly or indirectly reflect his-
topathological changes caused by the expression of genes
and cytokines. Radiomics features can be used to quantify
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the spatial distribution of image pixels and grayscale and to
reflect the corresponding molecular pathological changes at
the microscopic level [7].

Radiomics is a new method of medical imaging research,
which is a new noninvasive technology using medical im-
aging analysis and data in-depth analysis. 0e workflow of
radiomics includes (1) medical image preprocessing, (2) ROI
segmentation, (3) radiomics feature extraction, and (4)
feature dimension reduction model establishment. Lots of
clinical endpoints are associated with radiomics, in lung
cancer, including survival time [8], differentiation of benign
and malignant pulmonary nodules [9–11], and recurrence
and distant metastasis [12, 13]. In recent years, the use of
radiomics to decode tumour genotypes has attracted more
and more attention. One study [14] has shown that the
prediction model combined with radiomics characteristics
and clinical risk factors may promote the individualized
prediction of PD-L1 expression in patients with NSCLC. At
the same time, many studies have explored the use of ra-
diology to determine the EGFR mutation status in lung
cancer tissues [15–19].

In the face of patients with NSCLC, targeted personal-
ized treatment of precision medicine has gradually become
the guiding ideology of treatment. 0e spatiotemporal
heterogeneity of tumours limits the reuse of invasive biopsy
in tumour patients [20]. Medical imaging determines tu-
mour heterogeneity, which means that it is an ideal way to
capture tumour heterogeneity through noninvasive means.
0erefore, radiomics can be used as a potential molecular
substitute to optimize the treatment selection and man-
agement of cancer [21]. To judge the expression of Ki67 in
patients with NSCLC by noninvasive and easily available
radiomics is of positive significance for the prognosis
stratification of patients with NSCLC.

2. Methods

2.1. Patients. 0is study was reviewed and approved by the
ethics committee of our unit, and according to the ethical
principles, the relevant informed consent of the audience
was exempted. We retrospectively collected the records of
316 patients from January 2010 to February 2016. After
screening, 120 eligible patients were finally included in the
study. 0e inclusion criteria were as follows: (a) confirmed
NSCLC by postoperative pathology, (b) undergoing 18F-
FDG PET/CT scanning within 2weeks before any impaired
operation, and (c) underwent surgery or other standard
radiotherapy and chemotherapy, according to the treatment
guidelines. 0e exclusion criteria were as follows: (a) partial
loss of images, (b) received radiotherapy, chemotherapy, or
other treatments for the tumour before the scan, (c) con-
firmed other types of cancer before the scan, (d) tumours too
small to delineate or FDG negative uptake, and (e) no
postoperative pathological reports. We randomly divided
the patients into a training dataset (n� 84) and test dataset
(n� 36), with a ratio of 7 : 3. Patients’ characteristics with
NSCLC are shown in Table 1. 0e Ki-67 index was reported
in pathological reports, and its principle was calculated by
the percentage of positive cells. 0e low expression of Ki-67

was defined as a positive staining of ≤40%, and the high
expression of Ki-67 was more than 40% [22]. Information
about survival time in this study was obtained through the
patient’s normative review or telephone.

2.2. ImageAcquisition. Patients underwent PET/CTimaging
using 18F-FDG, with a purity >99%, which came from GE
minitrace II, Tracelab FDG preparation (GE Healthcare,
Milwaukee, Wisconsin). All PET/CT scans were performed
in a free-breathing mode, but no action was taken to correct
the motion. Patients need to fast for more than 6 hours
before the examination, and their blood glucose should be
controlled below 7mmol/L. Patients were intravenously
injected with 18F-FDG (4MBq/kg) and underwent a PET/
CT scan of the skull base to the upper part of the thigh. A
three-dimensional pet model was used. 0e matrix was
192×192, and the exposure time was 2min/bed. Low-dose
spiral CT was performed at 120–140 kV. After CT attenu-
ation correction, time-of-flight, and point spread function
algorithms were used to reconstruct PET images, including
two iterations and 24 subsets.

2.3. Radiomics Processing Flow. PyRadiomics (https://pypi.
org/project/pyradiomics/), an open-source tool, was used to
process images and extract imaging features. Image bio-
marker Standardization Initiative (IBSI) guidelines [23]
were considered to be the key guiding spirit of this work. We
have preprocessed the image, which ensures the consistency
of the three axial scales of the image in three dimensions. A
total of 384 radiomics features were extracted from pre-
processed PET/CT images, including first-order and higher-
order features, which contained shape, histogram, gray-level
dependency matrix (GLDM), gray-level co-occurrence
matrix (GLCM), gray-level size zone matrix (GLSZM), and
gray-level run length matrix (GLRLM). All features were
processed by standard score normalization, which was
undoubtedly to ensure normalization of data. Because the
dimension of feature space is high, we compared the sim-
ilarity of each feature pair. If the Pearson Correlation Co-
efficient (PCC) value of the feature pair was larger than 0.90,
one of them was removed. After the process of relevance
selection, the dimension of the feature space was reduced,
and each feature was independent of the others. 0en, we
used the LASSO method to further select features, which is
characterized by fitting the generalized linear model, vari-
able selection, and complexity adjustment at the same time
(Figure 1). 0e standardization steps of LASSO include
determining the optimized hyperparameter λ, ensuring the
minimum deviation of the model. Features that were with
nonzero coefficients were preserved for the model. Multiple
parameters with meaningful coefficients were used to form
the final R-score.

2.4. Statistical Analysis. R software (version 4.0.4, https://
www.Rproject.org) and SPSS statistical software (version
21.0; IBM) were used for statistical analysis in our study. We
first compared the clinical information of the training set
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Table 1: Clinical characteristics of patients.

Clinical features Total Training dataset Test dataset
No. of patients 120 85 35
Mean age (95% CI) 55.58 (53.19–57.98) 55.46 (52.63–58.29) 55.87 (51.18–60.59)
Sex
Male 74 (62%) 51 (60%) 23 (66%)
Female 46 (38%) 34 (40%) 12 (34%)
TNM stage
I 39 (33%) 25 (29%) 14 (40%)
II 60 (50%) 46 (54%) 14 (40%)
III 21 (17%) 14 (17%) 7 (20%)
Lobulation
Yes 84 (70%) 62 (73%) 22 (63%)
No 36 (30%) 23 (27%) 13 (37%)
Spiculation
With 61 (51%) 40 (47%) 21 (60%)
Without 59 (49%) 45 (53%) 14 (40%)
Shape
Irregular 59 (49%) 38 (45%) 21 (60%)
Regular 61 (51%) 47 (55%) 14 (40%)
Boundary pleural
Invasion 75 (63%) 52 (61%) 23 (66%)
Noninvasion 45 (37%) 33 (39%) 12 (34%)
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Figure 1: Least absolute shrinkage and selection operator for selecting features.

Journal of Healthcare Engineering 3



and the test set randomly and ensured that the two groups
were not interfered with by other factors. All statistical tests
were two-sided, with a significance level of 0.05. 0e PPC
and LASSO were used for feature selection. Receiver op-
erating characteristic (ROC) analysis was used to test the
diagnostic performance of the radiomics model.We used the
decision curve analysis (DCA) curve to judge the difference
between R-score and other clinical features. We used the
survival curve to judge the stratification ability of Ki67 and
R-score on the prognosis of patients with NSCLC.

3. Results

3.1. Clinical Characteristics of Patients. We divided the pa-
tients with NSCLC (74 men, 46 women) into two groups,

including the training dataset (n� 85) and the test dataset
(n� 35). 0e clinical characteristics of the patients are
summarized in Table 1. In these two groups, we found that
there was no clear statistical difference in the clinical
characteristics between the training dataset and the test
dataset (P> 0.05).

3.2. Selection and Establishment of a Radiomics Model. By
PCC and LASSO, a total of six important radiomic features
were selected (Figure 2). We established a formula, using
selected radiomic features, for predicting the expression of
Ki67 in patients with NSCLC:

R − score � 0.722∗HaralickCorrelation angle 45 offset 7

+ 0.023∗Correlation AllDirection offset 1 SD

+ 0.339∗GLCMEntropy AllDirection offset 1 SD

+ 0.35∗ Inertia angle 45 offset 7 − 0.181∗ ShortRunEmphasis angle 90 offset 1

+ 0.08∗Maximum3DDiameter + 0.168.

(1)

0rough training dataset and test dataset, R-score
showed good resolution (Figure 3). In the training dataset,
the area under curve (AUC) was 0.86 (95% CI, 0.78–0.94)
and accuracy was 0.82 (95% CI, 0.73–0.90) with sensitivity
0.85 and specificity 0.79. In the test dataset, the AUC was
0.85 (95% CI, 0.71–0.98) and accuracy was 0.83 (95% CI,
0.66–0.93) with sensitivity 0.94 and specificity 0.72. To
further test our model, we drew calibration curves on two
datasets, and the results showed that R-score was accurate
and generalized in predicting the expression of Ki67
(Figure 4).

3.3. �e Prognosis of Patients with NSCLC. Follow-up data
were collected fromOctober 2010 to January 2021.0emean
and median follow-up periods were 58.35 (95% CI,
52.89–63.81) and 56.50 (range, 8.00–110.00) months, re-
spectively. We found that the positive expression of Ki67
could be a good prognostic factor (Figure 5). 0en, we used
R-score to group the patients, which also achieved great
prediction results (Figure 6).

3.4. DCA for R-Score and Other Factors. To better explore
the role of radiomics in patients with NSCLC, we used the
DCA method for analysis. We defined size as the product
of the tumour’s long diameter and short diameter. In
lobulation, speculation, shape, and boundary pleural, if
there is no or no abnormality, we count it as 1; otherwise,
it was 2. We defined Cscore as the sum of the above-
mentioned four indicators. 0rough the DCA curve, we
could conclude that the omics model has better appli-
cation ability (Figure 7).

4. Discussion

In previous studies, it was difficult to achieve great Ki67
prediction results using CTor enhanced CTalone [24, 25].
We used PET data, which can well add tumour metabolic
information and achieve better classification. In this
study, we used PET/CT radiomics features to investigate
the expression of Ki67 and the prognosis of patients with
NSCLC.0rough the image before treatment, we obtained
a radiomics signature to predict the expression of Ki67
and defined its prognostic significance, including Max-
imum3DDiameter, GLCMEntropy, Inertia, Har-
alickCorrelation, Correlation, and ShortRunEmphasis. At
the same time, we also verified that radiomics just like
Ki67 has guiding significance for prognosis in patients
with NSCLC. A total of 384 radiomics features were
extracted from the segmentation of ROIs in PET/CT. To
remove redundant data and achieve better classification
results, we used PCC and LASSO methods commonly
used in feature selection [26, 27]. Maximum3DDiameter
is an important indicator of tumour size. 0is index was
included in the model, so in DCA comparison, we
compared the model with tumour size (product of long
diameter and short diameter) and determined a better
predictive value. A gray-level co-occurrence matrix
(GLCM) is a histogram of co-occurring grayscale values at
a given offset over an image, and GLCMEntropy is an
important index to reflect the degree of confusion of a
two-dimensional gray-level co-occurrence matrix, which
has been reflected in previous studies [28]. In head and
neck cancers, inertia features [29] showed a correlation
with epidermal growth factor receptor (EGFR). At the
same time, it is related to the expression of Ki67 in lung
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Figure 3: Receiver operating characteristic curve in the training dataset and test dataset.
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cancer tissues in our research, suggesting that this texture
parameter may be related to tumour heterogeneity and
prognosis. Haralick texture features could contain in-
formation about image texture features, such as quality,
grayscale linear correlation, contrast, the number and
nature of existing boundaries, and the complexity of the

image, which has been studied to explore its relationship
with tumour mutation [30] and recurrence [31]. Short-
RunEmphasis is often applied in the impact radiomics
model. Shang-Wen Chen [32] showed that the feature
extracted from PET/CT is related to the mutation of
carcinogenesis in colorectal cancer. 0rough these key
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features, our model shows good predictive power (two
datasets’ AUCs more than 0.8).

In the previous studies [8, 27, 33], radiomics showed a
great ability to predict survival. However, the interpretability
and rationality of the model have been questioned [34].
0erefore, we used radiomics to predict Ki67 and further
explained its role in prognosis. As seen in Figures 5 and 6,
radiomics shows a hierarchical predictive ability of clinical
outcomes similar to Ki67. Since it has been confirmed that
Ki67 is an independent predictor of lung cancer [6, 35], the
predictive ability of the radiomics model for survival of lung
cancer patients can be largely explained.

Our research has some limitations. First of all, this is a
retrospective study of a small dataset without external
validation, which may introduce selection bias. Secondly, we
only studied the expression of Ki67 in the prognosis of
patients with lung cancer and did not consider the influence
of other genes. Further research is necessary for the com-
prehensive evaluation of other genes.

5. Conclusions

Radiomics characteristics based on 18F-FDG PET/CT can
distinguish the expression of Ki67, and it also has a strong
ability to predict survival. 0is technical method will not
only increase the patient’s additional financial pressure or
physical harm but also can achieve precise management of
patients with NSCLC.
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