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Small RNA profiles from Panax 
notoginseng roots differing in sizes 
reveal correlation between miR156 
abundances and root biomass 
levels
Yun Zheng   1,2, Kun Chen1, Zhenning Xu1, Peiran Liao1, Xiaotuo Zhang2, Li Liu1,  
Kangning Wei4, Diqiu Liu1,3, Yong-Fang Li4, Ramanjulu Sunkar5 & Xiuming Cui1,3

Plant genomes encode several classes of small regulatory RNAs (sRNAs) that play critical roles in 
both development and stress responses. Panax notoginseng (Burk.) F.H. Chen (P. notoginseng) is an 
important traditional Chinese herbal medicinal plant species for its haemostatic effects. Therefore, the 
root yield of P. notoginseng is a major economically important trait since the roots of P. notoginseng 
are the parts used to produce medicine. To identify sRNAs that are critical for the root biomass of P. 
notoginseng, we performed a comprehensive study of miRNA transcriptomes from P. notoginseng 
roots of different biomasses. We identified 675 conserved miRNAs, of which 180 pre-miRNAs are also 
identified, and three TAS3 loci in P. notoginseng. By using degradome sequencing, we identified 79 
conserved miRNA:target or tasiRNA:target interactions, of which eight were further confirmed with the 
RLM 5′-RACE experiments. More importantly, our results revealed that a member of miR156 family and 
one of its SPL target genes have inverse expression levels, which is tightly correlated with greater root 
biomass contents. These results not only contributes to overall understanding of post-transcriptional 
gene regulation in roots of P. notoginseng but also could serve as markers for breeding P. notoginseng 
with greater root yield.

MicroRNAs are important small non-coding RNAs that play essential regulatory roles in plant development and 
stress responses1–3. Transcribed by RNA polymerase II4, the primary transcripts of miRNAs often form typical 
hairpin structures that are cleaved twice by Dicer Like proteins (DCL1) in nucleus5. After being exported to cyto-
plasm, miRNAs are loaded into an RNA-induced silencing complex (RISC) that normally contains an Argonaute 
(AGO) protein, and guide the RISC to cause site-specific cleavage or to repress the translation of mRNA targets6, 7.

Root tissue is derived from root apical meristem (RAM) that comprises highly active root initials and inactive 
quiescent center. Different layer of root system such as epidermis, cortex, endodermis, pericycle and vascular 
bundles originates from root initials firstly from mitotic divisions followed by expansion and differentiation8. 
Because plant miRNAs largely regulate diverse families of transcription factors, miRNAs in primary roots could 
function in gene regulatory networks that control root cell division, cell elongation, cell differentiation into 
various layers of root system and maintenance of the root apical meristem activity including quiescent center. 
Furthermore, root development is intimately linked with the integration of auxin-mediated gene regulation. In 
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this context, miRNAs such as miR393 that regulates auxin receptor(s), TIR1 and closely related auxin-related 
F-box proteins (AFBs), whereas miR160, miR167 and miR390-dependent TAS3 siRNAs regulate 8 members of 
auxin response factors in Arabidopsis6, 9, 10, thus, miRNAs are critical players in auxin signaling. Indeed, it was 
shown that miR160, by targeting ARF17, determines the primary root length in Arabidopsis11. Similarly, miR164 
regulation of NAC1 transcription factor is required for normal root development12. Furthermore, miR165/166 
that regulate PHABULOSA (PHB) and PHAVULOTA (PHV) transcription factors and miR165/166-mediated 
repression of PHB/PHV genes is critical for proper embryonic root development13 and differentiation of the 
xylem14. Additionally, by targeting three SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes, 
miR156 plays a role in lateral root development in Arabidopsis15. Thus, miRNAs play critical roles in growth and 
development of plant roots16–18. It is interesting to note that miR156 overexpression could enhance shoot biomass 
accumulation as shown recently in switchgrass, a bioenergy plant species19.

Panax notoginseng (Burk.) F.H. Chen (P. notoginseng) is an important traditional Chinese herbal medicine 
and mainly grown in Yunnan province of China. Gensinosides, the unique medical compounds, are exclusively 
isolated from roots of Panax species. P. notoginseng had been cultivated for more than 400 years20 and used as 
medicine in China for its hemostatic properties21. The root of P. notoginseng is also used to produce Chinese 
herbal medicines, such as Yunnan Baiyao for curing trauma and bleeding20. Because the yield of P. notoginseng 
roots is of great medical, economic and social importance, it is interesting to scrutinize whether some miRNA 
and/or siRNAs play a role in the root yield of P. notoginseng. Thus far, there is only one published report on miR-
NAs in P. notoginseng22 which only examined mature miRNAs. Without pre-miRNAs, it is difficult to estimate 
the number of conserved miRNAs, since a pre-miRNA often generates several isomiRs. Furthermore, studying 
miRNA populations in P. notoginseng plants differing in their root biomass contents could lead to identification 
of miRNA markers for better root yield.

Thus, we performed a research to identify miRNAs and siRNAs in P. notoginseng plants with varying root 
biomasses. By sequencing small RNAs from 17 root samples with varying root biomasses, we identified 675 
conserved miRNAs, 72 putative novel miRNAs, and 3 TAS3 loci in P. notoginseng. Statistical analysis show that 
two members of the miR156 family have significantly higher expression levels in P. notoginseng roots with larger 
biomass contents. By sequencing a degradome library of P. notoginseng root, we identified 79 conserved and many 
non-conserved targets for the miRNAs and tasiRNAs. The expression levels of one member of miR156 family and 
one of its targets were significantly correlated with the root biomasses in P. notoginseng. These results provide a 
comprehensive view of sRNA transcriptomes and sRNA-guided regulatory networks in the root of P. notoginseng 
and offer new insights for identifying markers and breeding more productive P. notoginseng.

Results
Samples and characteristics of P. notoginseng plants.  We collected 59 plants of P. notoginseng (see 
Supplementary Tables S1) grown in Wenshan County, Yunnan, China and recorded nine different attributes for 
these plants (as defined in Table S2), and calculated the correlation coefficients for 7 features. The results show 
that the Total Root Mass (TRM), the major parameter of yield, is significantly positively correlated with other 
five parameters, i.e., Root Mass (RM), Height (HT), Middle Leaf Length (MLL), Middle Leaf Width (MLW), and 
Total Leaf Area (TLA) (see Fig. 1a). For example, TRM and TLA have a significant correlation coefficient of 0.782 
(P = 0) (Fig. 1b). These results indicate that plants with larger TLA could serve as a marker for higher root yields. 
Because TLA are not easily available, the MLL (with the second largest correlation coefficient) alternatively is a 
good indicative feature that could be used in practice.

Small RNA profiles of P. notoginseng.  Based on the integrity and quantity of the extracted RNAs, we 
selected 17 total RNA samples that belong to different groups of plants defined by the TRMs (see Materials and 

Figure 1.  The correlation coefficients between characteristics of P. notoginseng plants. (a) The correlation 
coefficient matrix of Total Root Mass (TRM), Root Weight (RM), Height (HT), Middle Leaf Length (MLL), 
Middle Leaf Width (MLW), and Total Leaf Area (TLA). (b) The plot and correlation coefficient of TRW vs. 
TLA.
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methods). The small RNAs of these 17 selected samples were sequenced using Illumina HiSeq. 2000 sequencer. 
Upon sequencing of these 17 small RNA libraries, each library yielded approximately 11 million qualified reads, 
thus in total, we obtained over 190 million qualified reads represented by more than 38 million unique reads. 
These reads were aligned to transcript database of P. notoginseng, non-coding RNAs, pre-miRNAs in miRBase 
(v21), and repeats (Table S3). The reads and unique sequences of 21 nucleotides (nt) and 24 nt are over-represented 
than those of other lengths (Figure S2a). But the reads/unique sequences mapping to pre-miRNAs only have a 
peak at 21 nt (Figure S2b).

Conserved miRNAs in P. notoginseng.  We were able to identify 180 pre-miRNAs of P. notoginseng after 
aligning the conserved miRNAs in other species to a transcript database of P. notoginseng (Table S4). In addition, 
we identified another 340 mature miRNAs by aligning the sRNA profiles to the mature miRNAs in the miRBase 
(v21) (Table S4). When compared to two model species, Arabidopsis thaliana and rice, we found 165 members 
that belong to 22 miRNA families that are highly conserved (Table 1). Fifty six precursors of these 165 miRNAs 
were identified (Table 1). The secondary structure and the distribution of reads of one of the newly identified 
pre-miRNAs are shown in Fig. 2a and b, respectively.

In comparison with a previous report22 (see Fig. 2c), 161 conserved mature miRNAs overlapped between the 
published study22 and ours, but most importantly, 539 new miRNAs were identified in our study.

As shown in Fig. 2d, to identify miRNAs that may contribute to the biomasses of roots, the plant samples were 
classified into three groups, Small, Medium and Large based on the TRMs (details given in Materials and 
Methods). The miRNAs with at least 10 reads per ten million (RPTM) sequencing tags in either the Small or Large 
group were compared (Table S5). Interestingly, we found that two miR156 family members (MIR156g-5p and 
miR156e in Fig. 2e and f, respectively) show significantly higher expression levels in the Large group than in the 
Small group (multiple test corrected = . × −P 6 9 10 4 and = . × −P 4 4 10 4, respectively). MIR156g-3p is also 
more abundant in the Large group than in the Small group (multiple test corrected = . × −P 1 5 10 4, Fig. 2g).

Novel miRNAs in P. notoginseng.  We found 72 novel pre-miRNAs (Table S6), of which 6 examples were 
shown in Fig. 3. The precursors of these miRNAs form good hairpin structures (Fig. 3a) and the mature miRNAs 
on both the 5′ and 3′ arm of the hairpin structures are detected in the sequencing libraries. Figure 3b shows that 
most small RNAs generated from these pre-miRNAs are mature miRNAs on either 5′ or 3′ arms. Other novel 
miRNAs in Table S6 are similar to the 6 examples shown in Fig. 3. Only one novel miRNA has shown significantly 
lower expression level (multiple test corrected = . × −P 2 9 10 4) in the Large group (Table S7).

The degradome of P. notoginseng root.  After removing low quality reads from over 37 million raw 
sequencing reads, we obtained around 12.5 million qualified sequencing reads from the degradome of P. notogin-
seng root. The majority (87.7%) of these qualified reads could be mapped to the transcriptome of P. notoginseng 
root (Table S8), suggesting that the obtained degradome is of high quality.

miRNA family Arabidopsis Rice P. notoginseng

miR156/529/535 10 12 30(5)

miR159 3 6 12(2)

miR160 3 6 5(6)

miR162 2 2 3(1)

miR164 3 6 7(3)

miR165/166 9 13 12(1)

miR167 4 10 6(4)

miR168 2 2 3(2)

miR169 14 18 14(4)

miR170/171 4 9 13(6)

miR172 5 4 7(6)

miR319 3 2 6(3)

miR390 2 1 6(0)

miR393 2 2 5(0)

miR394 2 1 1(0)

miR395 6 25 4(0)

miR396 2 8 11(5)

miR397 2 2 6(2)

miR398 3 2 3(1)

miR399 6 11 6(1)

miR403 1 0 3(2)

miR408 1 1 2(2)

sum 89 149 165(56)

Table 1.  Number of conserved miRNA genes in P. notoginseng.
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Conserved miRNA targets in P. notoginseng.  We used the SeqTar algorithm23 for processing degra-
dome reads and subsequently to identify targets that have been cleaved as a result of miRNA or TAS3-siRNA 
activity. This analysis revealed 79 conserved targets for 21 conserved miRNA families and TAS3 generated 
tasiARFs (see Table 2, Table S9 and Fig. 4). Three conserved miRNA:target relations, i.e., miR395:sulfate trans-
porter, miR398:CCS1, and miR408:Plantacyanin were not found in P. notoginseng, probably due to non availa-
bility of the transcript information. Another reason could be the low expression levels of miR395, miR398 and 
miR408 in normal conditions since these three miRNA families are induced in stress conditions3. The miR156 
family has five SPL targets in P. notoginseng (Table 2).

Twenty two conserved miRNA:target pairs were verified with the degradome reads (with at least 1 valid degra-
dome read, as shown in Table S9). For examples, miR160 family targets three ARF family members (Fig. 4a–c, 
respectively); miR166x targets one HD-Zip family member (Fig. 4d); miR167d targets an ARF family member 
(Fig. 4e); miR171 family targets two SCL family members (Fig. 4f and g, respectively); miR393 targets an F-box 
family member (Fig. 4h) and miR396 targets a GRF family member (Fig. 4i).

We chose ten of the 79 conserved targets for further validation using RLM 5′-RACE experiments (Table S10). 
Eight of these 10 selected targets were successfully validated, of which six were shown in Fig. 4a,b,e,f,h and i, 
respectively. One SPL gene, TR103070 |c5_g1_i1, targeted by miR156f and one GRF gene, TR53089 |c0_g1_i1, 
targeted by MIR396n, were also confirmed in the RLM 5′-RACE experiments (with 10/10 and 5/5 cleavage fre-
quencies, respectively) (see Figure S3).

Other targets of conserved miRNAs.  In addition to the conserved targets, conserved miRNAs are 
known to targeting additional genes in diverse plant species. Thus, we also examined potential novel targets 
for conserved miRNAs. This scrutiny has identified over thirty seven thousand targets for six hundred con-
served miRNAs (Table S11). More than one hundred of these targets were reliably confirmed by the degra-
dome sequencing profile, with at least 10 valid reads (Table S11). Nine of these targets were shown in Fig. 5, i.e., 
miR156g-5p targets TR92350 |c0_g2_i15, a putative ribokinase gene (Fig. 5a); miR159 targets TR79313 |c0_g1_
i3, an unknown gene (Fig. 5b); miR172aa-5p targets TR96810 |c0_g4_i7, a putative ADP-ribosylation factor 3 
gene (Fig. 5c); MIR169af targets TR142486 |c0_g1_i1, a TIFY 6B gene (Fig. 5d); miR391a-5p targets TR96206 

Figure 2.  Conserved miRNAs of P. notoginseng. (a) The secondary structure of one of the identified pre-
miRNAs, pre-miR156g. The red and blue parts are the mature miRNAs on the 5′ and 3′ arm of the pre-miRNA. 
(b) The distributions of small RNA reads on one of the identified pre-miRNAs, pre-miR156g in Part a. (c) 
The number conserved miRNAs reported in an existing study22 (in the circle of Wei2015) and this study. 
(d) The histogram of the numbers of samples with different Total Root Weights. S, M and L represent the 
Small, Medium, and Large groups, respectively. (e) to (g) The comparisons of the normalized abundances of 
miR156g2-5p, miR156e and miR156g-3p, respectively, in the Small and Large groups.
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|c0_g1_i2, a putative calcium-transporting ATPase 10, plasma membrane-type, gene (Fig. 5e); MIR482f-5p tar-
gets TR101667 |c12_g12_i1, an unknown gene (Fig. 5f); miR1509a targets TR101667 |c12_g6_i7, an unknown 
gene (Fig. 5g); MIR2118c targets TR1771 |c0_g1_i1, a putative TMV resistance protein N-like gene (Fig. 5h); and 
miR6135s10-5p targets TR101613 |c13_g4_i1, an unknown gene (Fig. 5i).

miR1507, miR1509 and miR2118 are 22 nt miRNAs that initiate the productions of phased siRNAs by target-
ing NB-LRR disease resistance genes, transcription factor, and NB-LRR genes, respectively, in Medicago truncat-
ula24. In addition to legumes, these families were conserved in other plant species24. All these three families were 
detected in our sequencing libraries (Table S4), indicating these three families were conserved in P. notoginseng as 
well. In addition to TR101667 |c12_g6_i7 shown in Fig. 5g, eight other unknown genes were shown to be targeted 
by miR1509 in P. notoginseng with strong cleavage effects (Table S11). The miR2118c target in Fig. 5h is putative 
TMV resistance protein, suggesting that it is a potential NB-LRR disease resistance gene.

TR101613 |c13_g4_i1 in Fig. 5i is a putative cis-target of miR6135s10-5p because this miRNA is encoded by 
the same gene. Previously, it has been noticed that several conserved miRNAs cleave their own primary tran-
scripts10. Our results suggest that self-repressions exist even in non-conserved miRNAs.

These results suggest that conserved miRNAs may have other functions than targeting the conserved targets 
shown in Table 2.

Figure 3.  Some of the novel miRNAs of P. notoginseng. (a) The secondary structures of six novel miRNAs. (b) 
The distributions of small RNA reads on the novel pre-miRNAs in Part a.
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Validating expression patterns of miR156g-5p and its targets with qRT-PCR.  To further vali-
date the roles of miR156g-5p and its targets in accumulation of root biomass, we collected 16 P. notoginseng 
roots with different TRMs and examined the expression levels of miR156g-5p and two SPL genes that are tar-
geted by miR156g-5p. These 16 root samples were also classified into three groups using the same criteria as the 
samples for sRNA sequencing profiles. The obtained results were shown in Fig. 6. miR156g-5p has shown 
gradually increasing expression levels when the TRM of the samples increases (Fig. 6a), while the two SPL 
genes have shown gradually decreasing levels. The correlation coefficient between the expression levels of 
miR156g-5p and SPL5 and the TRMs of the samples are significant positive and negative (P 1 0 10 4= . × −  and 
8 4 10 3. × − , in Fig. 6b and c, respectively), respectively. SPL4 also has a negative correlation coefficient, −0.43, 
with the TRM of the sample, but insignificant (P 0 096= . ). The expression levels of miR156g-5p and SPL5 is 
also significantly negatively correlated (P = 0.02, Fig. 6d), indicating that miR156g-5p represses SPL5. 
miR156g-5p and SPL5 has shown significantly higher and lower expression levels in roots of larger biomasses 
( = . × −P 6 7 10 5 and . × −8 5 10 3, t-test, Fig. 6e and f, respectively), respectively. The other target, SPL4, has 
lower expression levels in roots with larger biomasses but slightly insignificant ( = .P 0 065, t-test). These results 
suggest that miR156g-5p does contribute to the increases of the root biomasses by repressing SPL5, as well as 
SPL4 at a less significant level.

Targets of non-conserved novel miRNAs.  We predicted 162 targets for the novel non-conserved miR-
NAs (Table S12). Four of the predicted targets of novel miRNAs were shown in Figure S3, i.e., t7697358 targets 
TR52460 |c0_g4_i1, a putative 60S ribosomal protein gene (Figure S4a); t8973631 targets TR97626 |c1_g2_i7, 
an unknown gene (Figure S4b); t40632331 targets TR97419 |c0_g1_i2, an unknown gene (Figure S4c); and 
t33730249 targets TR101500 |c9_g5_i1, a 40S ribosomal protein Sa-2-like gene (Figure S4d). TR97626 |c1_g2_i7 
is a putative anti-sense target of t8973631, which is encoded by anti-sense strand of TR97626 |c1_g2_i6.

TAS3 and tasiRNAs in P. notoginseng.  We found three TAS3 loci in P. notoginseng (Fig. 7). These three 
TAS3 loci have two typical miR390 complementary sites around the conserved tasiRNAs (Fig. 7a–c). Each of 

miR family Target gene family Arabidopsis Rice P. notoginseng

miR156/529/535 SPL transcription factors 11 10 5

miR159/319 MYB transcription 
factors 7 2 5

miR159/319 TCP 5 4 1

miR160 ARF transcription factors 3 4 5

miR162 DCL 1 1 1*

miR164 NAC transcription 
factors 7 6 5

miR165/166 HD-Zip transcription 
factors 6 4 8

miR167 ARF transcription factors 2 4 3

miR168 Argonaute 1 6 1

miR169 HAP2 transcription 
factors 7 8 4

miR170/171 SCL transcription factors 4 5 5

miR172 AP2 transcription factors 6 5 9

miR390/391 TAS3 3 3 3

miR393 F-Box 5 2 3

miR394 F-Box 1 1 1

miR395 SO2 Transp. 1 3 0

miR395 APS 3 1 1

miR396 GRF 7 12 6

miR397 Laccase 3 16 2

miR398 CSD 2 2 1*

miR398 CCS1 1 1 0

miR399 PO4 Transp. 1 4 3

miR399 E2-UBC 1 1 1*

miR403 Argonaute 2 2 0 1*

miR408 Laccase 3 2 1

miR408 Plantacyanin 3 7 0

TAS3-siR ARF 3 5 4

sum 99 119 79

Table 2.  Number of conserved miRNA targets in P. notoginseng. *means the numbers include targets with 4 to 
5 mismatches.
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these three TAS3 encodes two conserved tasiRNAs that target the ARF family genes, i.e., the tasiARFs (Fig. 7a 
and d). The second tasiARFs, from the 3′ miR390 site, encoded by these three TAS3 loci are the same, and the first 
tasiARFs are different only at the last nucleotide (Fig. 7d).

Figure 4.  The t-plots and miRNA complementary sites of some conserved targets. The x-axis is the position 
on the transcript, and y-axis is the number of degradome reads detected from a position. The arrows in the 
upper parts correspond to the positions pointed by the arrows of the same colours in the lower parts. In Part 
(a) to (i), the numbers above the red arrows indicate the number of degradome reads from the position. In 
Part (a,b,e,f,h) and (i), the numbers in the parenthesis are the cleavage frequencies determined by the RLM 5′-
RACE experiments. (a) MIR160n:TR94099 |c1_g2_i4 (an ARF gene). (b) MIR160k-5p:TR97308 |c3_g1_i1 (an 
ARF gene). (c) miR160h-5p:TR99908 |c9_g3_i1 (an ARF gene). (d) MIR166x:TR95807 |c0_g2_i1 (an HD-Zip 
gene). (e) miR167d:TR101210 |c4_g1_i4 (an ARF gene). (f) miR171l:TR102096 |c6_g1_i4 (an SCL gene). (g) 
miR171l:TR100216 |c1_g1_i3 (an SCL gene). (h) miR393:TR98951 |c0_g1_i6 (an F-Box gene). (i) miR396b-
5p:TR96826 |c3_g1_i1 (a GRF gene).
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These three TAS3 loci generate many small RNAs (Fig. 7e–g). Among them, the conserved tasiARFs are 
highly expressed (Fig. 7e–g). The expression levels of tasiARFs in the Small and Large groups have no significant 
differences.

These tasiARFs generated by these three TAS3 loci target five ARF family genes (Fig. 7h and Table 2). One of 
the ARF family member, TR97315 |c3_g3_i1 in Fig. 7i, were verified by the degradome sequencing profile and 
cleaved by tasiARFs at two different sites (Fig. 7i and j).

The three TAS3 loci of P. notoginseng are closely related to TAS3 loci in several dicot species, such as Nicotiana 
tabacum, Solanum lycopersicum and Olea europaea (Figure S5a). The tasiARFs encoded in the three TAS3 loci of 
P. notoginseng is also close to the tasiARFs of dicot plant species (Figure S5b and c).

In addition to the three TAS3 targeted by miR390, we also found that MIR2118c targets two putative NB-LRR 
genes, TR1771 |c0_g1_i1 (Fig. 5h) and TR96289 |c1_g1_i1 (Table S11). As shown in Figure S6, these two tran-
scripts could generate phased siRNAs (phasiRNAs) ( = . × −P 2 1 10 4 and 3 3 10 4. × − , Hypergeometric test, 
respectively, see Materials and methods for details). The MIR2118c complementary sites on both transcripts ini-
tiate the generations of the 21 nt phasiRNAs, and the phase scores of the two transcripts are larger than 5 

Figure 5.  The t-plots and miRNA complementary sites of some non-conserved targets of conserved 
miRNAs. (a) miR156g-5p:TR92350 |c0_g2_i15 (a putative ribokinase gene). (b) miR159:TR79313 |c0_g1_i3 
(an unknown gene). (c) miR172aa-5p:TR96810 |c0_g4_i7 (a putative ADP-ribosylation factor 3 gene). (d) 
MIR169af:TR142486 |c0_g1_i1 (a putative TIFY 6B gene). (e) miR391a-5p: TR96206 |c0_g1_i2 (a putative 
calcium-transporting ATPase 10, plasma membrane-type, gene). (f) MIR482f-5p: TR101667 |c12_g12_i1 (an 
unknown gene). (g) miR1509a:TR101667 |c12_g6_i7 (an unknown gene). (h) MIR2118c: TR1771 |c0_g1_i1 (a 
TMV resistance protein N-like gene) (i) miR6135s10-5p: TR101613 |c13_g4_i1 (an unknown gene).
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(Figure S6a and b) (see Materials and methods for details). TR96289 |c1_g1_i1 is also targeted by miR482 at a 
complementary site that is highly overlapped with the MIR2118c complementary site (Figure S6c).

Discussion
Our comparative miRNA profiles in roots of varying sizes (small, medium and large) clearly revealed the roles of 
miRNAs, particularly the miR156 family, in root biomass accumulation in P. notoginseng. The abundances for 
miR156g-5p and miR156e varied significantly between the roots with different sizes. Roots with smaller size have 
lower abundances while the roots with larger size have extremely high abundances (Fig. 2). In general the 
sequencing-based profiles are trustworthy but there are instances where sequencing profiles differed from the 
qRT-PCR or even small RNA blot analysis. Therefore we independently validate these findings with qRT-PCR 
experiments. Our qRT-PCR analysis also indicated that the expression levels of miR156g-5p and SPL5 have sig-
nificant positive and negative correlation coefficients ( = . × −P 1 0 10 4 and . × −8 4 10 3, in Fig. 6b and c, respec-
tively), respectively, with the TRMs of the samples. During phase changes, i.e., from vegetative to reproductive 
growth, in leaves of Arabidopsis, miR156 expression decreases, and SPL expression increases25. In consistent with 
this, the expression level of miR156g-5p is negatively correlated with that of its target, SPL5, in P. notoginseng 
roots (Fig. 6d).

In shoots, genes specifically transcription factors and miRNAs form a network and coordinate the process 
of transition from vegetative to reproductive phase26. In this network, the suppression of miR156 is critically 

Figure 6.  Validating expression patterns of miR156g-5p and its two SPL target genes with qRT-PCR. (a) The 
relative expressoin levels of miR156g-5p and two SPL target genes, and the TRMs of 16 samples. SPL4 and SPL5 
are TR75240 |c1_g1_i1 and TR94274 |c1_g1_i1, respectively. The bars and error bars represent the mean values 
± standard deviations. S, M and L represent the Small, Medium, and Large groups, respectively. (b) The relation 
between the expression level of miR156g-5p and TRMs of the samples. (c) The relation between the expression 
level of SPL5 and TRMs of the samples. (d) The relation between the expression levels of miR156g-5p and SPL5. 
(e) The comparison of the expression levels of miR156g-5p in the Small and Large groups. (f) The comparison 
of the expression levels of SPL5 in the Small and Large groups.

http://S6a and b
http://S6c


www.nature.com/scientificreports/

1 0SCIeNTIfIC Reports | 7: 9418  | DOI:10.1038/s41598-017-09670-8

important, which allows surge in the abundances of SPL transcription factors whose activity is critical for 
turning-on several genes to initiate the reproductive phase26. Given the critical role of miR156 in suppressing SPL 
genes, miR156 has been exploited to enhance biomass accumulation of switchgrass19, a critical target trait in bio-
energy plants. Similar results were also obtained in Arabidopsis, rice and maize17. Although, the exact mechanism 
involved in shoot biomass enhancement in miR156 over-expressing plants is unknown other than the suppression 
of SPL genes, which in turn could be suppressing the genes required for transiting into flowering phase. By con-
trast to the shoot phenomenon, the contributing factors for root biomass is largely unknown. More recent studies 
have suggested that miR156 regulated SPL genes repress adventitious root development in Arabidopsis15, 27.

Other pertinent studies that support our reported findings here include tuber development in potato28, 29. 
Although potato tubers are not roots per se but a role for miR156 in tuber development is unequivocally estab-
lished28, 29. More over a recent study that reported miRNA profiles from roots of P. notoginseng also showed 
that miR156 levels were the most highly expressed relative to other miRNA families22. They also reported that a 
few members of miR156 were most abundant in roots compared to shoots and leaves of P. notoginseng22. Taken 

Figure 7.  The three identified TAS3 loci and their encoded tasiRNAs in P. notoginseng. (a) The sequences of 
the three putative TAS3 loci in P. notoginseng. The red and blue regions are 5′ and 3′ miR390 complementary 
sites, respectively. The regions of upper case nucleotides are mature tasiRNAs that target ARF family members, 
or tasiARFs. (b) The 5′ miR390 binding sites on TAS3 transcripts. Only the commonly aligned nucleotides are 
aligned to miR390. (c) The 3′ miR390 binding sites on TAS3 transcripts. (d) The mature tasiRNAs that target 
ARF family members derived from TAS3a/b/c loci. (e) to (g) The distribution of small RNA reads in the three 
TAS3 loci. (h) The ARF genes that are targeted by tasiARFs encoded by TAS3a/b/c. (i) The t-plots of one of 
the ARF genes, TR97315 |c3_g3_i1, that is targeted by tasiARFs. The arrows in the this part correspond to the 
positions pointed by the arrows of the same colours in the Part j. (j) The two TAS3a_D8(+) complementary 
sites on TR97315 |c3_g3_i1.
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together, all these prior direct and indirect evidences as well as our findings that miR156 levels greatly differed 
between roots of different sizes imply that miR156 could also contribute to the root biomass accumulation, which 
can be exploited for improving root biomass contents using miR156 overexpression strategy. Because miR156 
represses SPL genes, the strategies such RNAi or CRISPR-mediated silencing of SPL genes could offer as alterna-
tive approaches to enhance root biomass. These and other possibilities need worth exploring in future not only in 
this plant species but also in other root crops.

NB-LRR disease resistance genes that are targeted by the miR482/miR2118 superfamily could generate pha-
siRNAs in fabaceae and several other families24, 30, 31. We found that there are miR2118 genes in P. notoginseng 
and NB-LRR genes targeted miR2118 and miR482 could generated phasiRNAs, indicating that the phasiRNAs 
generation system initiated by miR482/miR2118 induced cleavage on NB-LRR transcripts is also conserved in 
Araliaceae, and is more widely conserved than previously reported.

miRNAs, such as miR160 and miR393, may participate in the disease resistance of plants18. Our results suggest 
that miR2118 might play a role in disease resistance in P. notoginseng through its regulation of the NB-LRR genes, 
in addition to miR160 and miR393.

One existing study compared differently expressed miRNAs in P. notoginseng roots at different ages22. In com-
parison, we explored miRNAs that have different expressed levels in roots of different biomasses but at the same 
age. When compared with this report22, our work have significantly improve the understanding of miRNAs in P. 
notoginseng in several aspects. First, we found additional conserved miRNAs. As shown in Fig. 2c, we found 514 
conserved miRNAs that have not been reported previously. Second, 180 precursor sequences of conserved miR-
NAs were also found in this study while no precursor sequences were reported in previous studies. Third, we 
employed degradome sequencing to confirm some targets of conserved miRNAs and novel miRNAs. Fourth and 
the most importantly, we verified that miR156g-5p and one of its targets, SPL5, had significantly higher and lower 
expression levels in P. notoginseng roots with larger biomasses (Figs 2e, 6e and f), respectively. The expression level 
of miR-156g-5p is significantly negatively correlated with that of SPL5 (P 0 02= . , Fig. 6d). These results provide 
evidence that miR-156g-5p does contribute to the increases of the root biomasses in P. notoginseng by repressing 
the SPL5 gene.

Conclusion
We identified 675 conserved miRNAs and seventy two novel miRNAs in P. notoginseng by sequencing the small 
RNAs of 17 P. notoginseng roots. Three TAS3 loci were identified in P. notoginseng. Seventy nine conserved targets 
of conserved miRNAs and TAS3 derived tasiRNAs were identified by using the degradome sequencing and the 
SeqTar algorithm. Eight of these 79 targets were further validated using the RLM 5′-RACE experiments. These 
results significantly improved our understanding of miRNA-guided gene regulatory networks in P. notoginseng. 
Ever more importantly, our results demonstrated that two miR156 members have significantly higher expression 
levels in P. notoginseng roots of larger biomasses, indicating their potential usages as biomarkers for selecting 
P. notoginseng strains with larger root biomasses. One SPL target of miR156g-5p, SPL5, has significantly lower 
expression levels in roots of larger biomasses. We also show that the expression level of miR156g-5p is positively 
correlated with the TRMs of P. notoginseng, while the expression level of SPL5 is negatively correlated with the 
TRMs, suggesting that miR156g-5p contributes to the increased TRMs of P. notoginseng by repressing SPL5.

Materials and methods
Samples and small RNA sequencing.  Fifty nine P. notoginseng plants grown in Wenshan County, 
Yunnan, China were selected in the study (Table S1). Nine characteristics (defined in Table S2 and Figure S1), 
i.e., Total Root Mass (TRM), Root Mass (RM), Height (HT), Middle Leaf Length (MLL), Middle Leaf Width 
(MLW), Number of Complex Leaves, Total Leaf Area (TLA), Leaf Number (LN), and Leaf Pattern of the plants 
were measured and recorded.

The roots collected from 59 different P. notoginseng plants were frozen in liquid nitrogen immediately. The 
samples were stored at −80 °C until RNAs were extracted. Total RNAs were extracted from root tissues using the 
Trizol reagent (Invitrogen, Thermo Fisher Scientific Inc., USA) according to the manufacturer′s protocol. The 
integrities of the RNAs were checked using an ultraviolet spectrophotometer (Hoefer, MA, USA), based on the 
ratio of the optical density at 260 nm to that at 280 nm (OD260/280) and were also assessed by electrophoresis in 
a denaturing formaldehyde agarose gel, based on visual comparison with the 18S and 28S ribosomal RNAs. The 
RNA samples with OD260/280 between 1.8 and 2.0 were checked for the total quantities. Only samples with at 
least 20 μg were chosen for preparation of sRNA sequencing libraries. The small RNAs of the 17 qualified samples 
were isolated from total RNAs and were sequenced using Illumina HiSeq. 2000 sequencer. The 17 obtained small 
RNA sequencing profiles had been deposited into the NCBI SRA database under the series accession number 
SRP082250.

Analysis of the small RNA sequencing profiles.  The obtained small RNA libraries were analyzed as 
described previously32–34. In brief, a unique count was created for each sequence after removing redundant reads. 
Then unique sequences mapped to known non-coding RNAs (rRNAs, tRNAs, snRNAs, snoRNAs) and repeats 
were removed from unique RNAs by aligning to databases Rfam (r11)35, NONCODE (v3.0)36, GtRNAdb37, Plant 
Repeat Databases38 and Repbase (r20)39 using SOAP240. Remaining reads were mapped to the miRBase database 
(r21)41 to calculate the frequencies of conserved miRNAs. After this step, the remaining unique reads were aligned 
to a self-assembled transcript database of P. notoginseng (Zheng and Cui, unpublished). This Transcriptome 
Shotgun Assembly project has been deposited at DDBJ/EMBL/GenBank under the accession GFRX00000000. 
The version described in this paper is the first version, GFRX01000000. The flanking regions (150 nt down stream 
and 150 nt upstream) of the matched loci were used to predict fold-back structures using RNAfold42. Then, the 
structures with at least 18 paired nucleotides and a folding energy of smaller than −40 Kcal/mol were kept as 
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putative precursors for further analysis. Next, the small RNA reads were mapped to the obtained putative pre-
cursors. Finally, novel miRNA identification and annotation were strictly based on appearance of miRNA* and 
predictable fold back structures for the miRNA precursor sequences, as suggested by Meyers et al.43.

Degradome sequencing profile and processing.  P. notoginseng plants used in the degradome sequenc-
ing profile and the qRT-PCR experiments were grown in a shading greenhouse at Kunming University of Science 
and Technology (24°51′0′′ N, 102°52′2′′E, altitude 1835 m), Kunming, Yunnan, China. During the experiments, 
the daily average temperature was 25 °C, the daily maximum difference in temperature was 10 °C and humidity 
was 60–80%.

The root of a P. notoginseng plant was frozen in liquid nitrogen immediately after harvesting. The total 
RNA from the root of a P. notoginseng plant was extracted using the Trizol reagent (Invitrogen, Thermo Fisher 
Scientific Inc., USA) according to the manufacturer′s protocol. The integrity of the RNA was checked with an 
ultraviolet spectrophotometry (Hoefer, MA, USA) and 2100 BioAnalyzer (Agilent Technologies, Santa Clara, CA, 
USA). The degradome of polyadenylated transcripts was sequenced using Illumina HiSeq. 4000 sequencer. The 
obtained sequencing profile had been deposited into the NCBI SRA database under the series accession number 
SRP087606. The obtained degradome sequencing profile was filtered to remove low quality reads that have low 
scored nucleotides (<20). Then, the 3′ adapters in the remaining reads were removed.

Identification of conserved miRNAs.  As described previously33, mature miRNA sequences from all plant 
species downloaded from the miRBase (v21)41 were combined to obtain unique miRNA sequences. Next, these 
unique miRNA sequences were used as queries against the self-assembled P. notoginseng transcript database using 
BLASTN to predict known miRNA homologs in P. notoginseng that were not represented in small RNA librar-
ies. Hits with no more than two mismatches were identified and the flanking regions (150 nt down stream and 
150 nt upstream) to the mapped mature miRNAs were isolated and used to predict fold-back structures using the 
RNAfold42. The predicted fold-back structures were examined for the presence of miRNA on the same arm of the 
hairpin as the known family members from other plants. These precursor sequences were further evaluated by 
MIRcheck44 and selected candidates that have ≤6 mismatches, ≤2 bulged or asymmetrically unpaired nucleo-
tides, and ≤3 continuous mismatches within the mature miRNA.

We compared the identified conserved miRNAs with those reported previously22. If the sequences of a mature 
miRNA was the same as reported earlier22, the conserved miRNA was named the same as reported previously22. 
The remaining conserved miRNAs were named by using upper case MIR followed by the family name, and alpha-
betical letters in lower case if these have not been reported earlier22.

The numbers of conserved miRNA family members were counted if mature miRNAs were detected in the 
sequencing libraries. For mature miRNAs without pre-miRNAs, we count the numbers of conserved mature 
miRNAs that target the conserved gene families. If two mature miRNAs only have one or two different nucleo-
tides at 5′ or 3′ end, they were regarded as the same member of a same miRNA family if the pre-miRNAs of these 
miRNAs were not available.

Identifying the deregulated miRNAs in roots of different biomasses.  All 59 selected samples were 
assigned to three groups based on their Total Root Masses (TRMs). The samples in the Medium group have TRM 
values within mean value (m) minus and plus 0.5 × standard deviation (s) of the 59 TRM values. The samples in 
the Small and Large group have TRM values smaller than m − 0.5 × s and larger than m + 0.5 × s, respectively. 
The Groups of the samples were listed in Table S1. The raw abundance of miRNAs were normalized to Reads Per 
Ten Million (RPTM) sequencing reads. The miRNAs with a mean abundance of at least 10 RPTM in either the 
Small or the Large group were selected. Then, the normalized abundances of selected miRNAs were compared 
with edgeR45. miRNAs with multiple-test corrected P-values of smaller than 0.05 were regarded as significantly 
deregulated miRNAs in the Small and Large group.

Identification of TAS3 loci in P. notoginseng.  As reported previously46, TAS3 derived tasiARFs, i.e., siR-
NAs that target the ARF family genes47, 48, from Arabidopsis and rice were aligned to the self-assembled transcript 
database of P. notoginseng, then we examined the typical miR390 complementary sites around the matched loci.

For miR2118 targets, we checked whether the downstream regions of the miR2118 complementary sites gen-
erated phased 21 nt siRNAs. A self-written program was used to scan the regions till the end of the transcripts 
using a window of 210 nt (ten 21 nt phases). A two-nucleotide positive offset was used to calculate the positions 
of siRNAs on the anti-sense strand because the existence of two-nucleotide over-hang at the 3′-end of siRNA 
duplex24, 31, 34, 49–51. Then a P-value was calculated for each of the windows using a modified version of methods 
in ref. 51,
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where n was the number of unique 21 nt sRNAs mapped within a window, k was the number of phased unique 
21 nt sRNAs within the window, and m was the number of phases. m was set to 10 in this study.

And a phase score was calculated for each position of the regions using the method in ref. 52. For a window 
started at a position with more than three phased unique sRNAs, i.e., when k ≥ 3,
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where Pi was the number of phased reads at the ith phase from the position, Ui was the number of non-phased 
reads at the ith phase from the position, and m was the number of phases in the window, and k was the number of 
unique phased siRNAs in the window. m was 10 in this study.

Identification of miRNA/tasiRNA targets in P. notoginseng.  The putative annotations of target 
mRNAs were obtained by aligning the sequences of the self-assembled transcript database to the NCBI nr/nt 
database. The IDs of all mRNA transcripts, as well as the transcripts of primary miRNAs and TAS3, were given in 
the Supplementary Materials.

The targets of miRNAs and tasiRNAs were predicted with the SeqTar algorithm23. For conserved miRNAs, the 
targets that had less than four mismatches were used for further analysis. The conserved target families with 4 to 
5 mismatches were also kept for further analysis if there were no targets in the same family with less mismatches. 
For novel miRNAs, only targets with at least 1 valid read and less than 4 mismatches were used.

Validation of miR156g-5p and its targets with qRT-PCR.  We collected roots of 16 P. notoginseng 
plants grown in Kunming, Yunnan, China to validate the expression levels of miR156g-5p and two SPL genes 
targeted by it using the quantitative real-time PCR (qRT-PCR) experiments. The roots collected were frozen 
in liquid nitrogen immediately. For total RNA isolation, the samples were thawed at room temperature and 
homogenized in 1 ml of Trizol reagent (Invitrogen, Thermo Fisher Scientific Inc., USA), and an RNA prep pure 
kit (Invitrogen, Thermo Fisher Scientific Inc., USA) was used according to the manufacturer′s protocol. Then 
2 μg of total RNA was reverse-transcribed to cDNA for miRNAs using the miRcute miRNA First-Strand cDNA 
Synthesis Kit (TIANGEN BIOTECH, Beijing, China). 4 μg RNA was reverse-transcribed to cDNA for target 
genes using Thermo Scientific RevertAid First Strand cDNA Synthesis Kit (Thermo Scientific, Massachusetts, 
USA). In the second step, qRT-PCR of the miRNA was carried out using miRcute miRNA qPCR Detection Kit 
(TIANGEN BIOTECH, Beijing, China) for 120 s at 94 °C, followed by 40 cycles of 20 s at 94 °C and 34 s at 60 °C. 
And qRT-PCR of the mRNA was carried out using Roche SYBR Green Master mix (Roche, Basel, Swiss) for 120 s 
at 95 °C, followed by 40 cycles of 15 s at 95 °C and 60 s at 60 °C. The expression levels of PnACT2 (P. notoginseng 
actin) and U6 were used as the internal controls to standardize the RNA and miRNA samples for each reaction, 
respectively. Three biological replicates for each experiment were performed. The Ct (2−ΔΔCt) was used to calcu-
late the fold changes53. The qRT-PCR primers used in the study were listed in Table S13, and the reverse primers 
of miR156g-5p and 5.8S ribosomal RNA were provided by miRcute miRNA qPCR Detection Kit. The 16 samples 
were classified into three groups based on their TRM values using the threshold values determined with the 59 
root samples used in the sRNA sequencing profiles. The obtained relative expression levels of miR156g-5p and the 
two SPL genes were compared for the samples in the Small and Large groups.

RLM 5′-RACE validations of some identified miRNA targets.  Modified 5 ′-RACE 
assay was performed using the GeneRacer Kit  (Invitrogen) to validate 10 identif ied tar-
gets (as listed in Table  S13). Briefly, 5 μg total RNA was ligated with GeneRacerTM RNA Oligo 
(5′-CGACUGGAGCACGAGGACACUGACAUGGACUGAAGGAGUAGAAA-3′) and reverse transcription 
was performed using SuperScriptTM III Reverse Transcriptase and oligo dT(18) primer. The resulting cDNA was 
used as template for PCR amplification with GeneRacer 5′ primer (5′-CGACTGGAGCACGAGGACACTGA-3′) 
and a gene-specific reverse primer. A second nested PCR was performed using GeneRacer 5′ nested primer 
(5′-GGACACTGACATGGACTGAAGGAGTA-3′) and a gene specific nested primer. The amplified prod-
ucts were run on a 2% agarose gel, bands with expected size were purified using QIAquickⓇ Gel Extraction Kit 
(QIAGEN) and ligated onto T Vector pMD 19 (Simple)(Takara), following transformation and clone PCR, plas-
mids were isolated and subjected to Sanger sequencing. Gene specific primers used were listed in Table S13.

Phylogenetic analysis of TAS3 and tasiRNAs.  The phylogenetic trees of the predicted TAS3 loci and 
their derived tasiRNAs were constructed with the Bootstrap Neighboring-Joining algorithm implemented in 
ClustalX (version 2.1)54 and visualized with TreeView55.

Data availability statement.  The 17 P. notoginseng small RNA-seq profiles and the P. notoginseng 
degradome sequencing profile were available in the NCBI SRA database under the series accession numbers 
SRP082250 and SRP087606, respectively. The self-assembled transcript database was available in the DDBJ/
EMBL/GenBank database under the accession GFRX00000000. The version described in this paper is the first 
version, GFRX01000000.
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