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Abstract

There are two schools of thought in statistical analysis, frequentist, and Bayesian. Though the two 

approaches produce similar estimations and predictions in large-sample studies, their 

interpretations are different. Bland Altman analysis is a statistical method that is widely used for 

comparing two methods of measurement. It was originally proposed under a frequentist 

framework, and it has not been used under a Bayesian framework despite the growing popularity 

of Bayesian analysis. It seems that the mathematical and computational complexity narrows access 

to Bayesian Bland Altman analysis. In this article, we provide a tutorial of Bayesian Bland Altman 

analysis. One approach we suggest is to address the objective of Bland Altman analysis via the 

posterior predictive distribution. We can estimate the probability of an acceptable degree of 

disagreement (fixed a priori) for the difference between two future measurements. To ease 

mathematical and computational complexity, an interface applet is provided with a guideline.
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1. Introduction

In exercise science and medical and clinical studies, researchers want a reliable method of 

measurement. When a new method of measurement is developed, it is compared to the 

current method (i.e. the gold standard). To test if the two methods of measurement have an 

acceptable degree of disagreement, a statistical method known as Bland Altman analysis is 

widely used (Bland & Altman, 1986; Hopkins, 2000; Spineli, 2019; Tytler & Seely, 1986). 

In a seminar paper, Bland and Altman (1986) proposed a statistical method (one that was 

later named Bland Altman analysis) in which researchers calculate the mean difference 

between two measurements and an interval which is referred to as the limits of agreement 
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(LOAs). An overview and examples of reporting absolute agreement indices are provided in 

the literature (Giavarina, 2015; Looney, 2018).

There are two competing philosophies in statistics, frequentist and Bayesian (Bland & 

Altman, 1998). Despite the growing popularity of Bayesian analysis, nearly all (if not all) 

Bland Altman analysis has been implemented by a frequentist approach. A Bayesian 

approach is found in the literature but the focus was on repeated measurements (Schluter, 

2009) which is more complex than the original Bland Altman analysis (which is cited more 

than 45,000 times as of April 2020). In this paper, we explore Bland Altman analysis in a 

Bayesian framework.

A reason why the frequentist approach may be more attractive than a Bayesian approach is 

due to its simple calculations. In the frequentist approach, approximate confidence intervals 

for the true mean difference and the true (population) LOAs have closed-form expressions. 

On the other hand, a Bayesian approach often does not have a closed-form expression for 

point and interval estimations. Instead, researchers must choose an appropriate model and 

follow three steps. First, they need to express their belief about the model parameters (e.g. 

the mean, μ, and variance, σ2, of a normal distribution) through a probability model (called a 

prior). Then they need to express the likelihood of observing a sample given the model 

parameters. Finally, the prior belief and the likelihood are combined to update their belief 

about the model parameters (called a posterior). This Bayesian analysis often requires 

multivariate calculus, increasing computational difficulty. Another crucial challenge in 

Bayesian analysis is the specification of a prior (i.e., what model is appropriate for the 

prior). If a prior is not carefully chosen, it may lead to an unreasonable posterior, particularly 

in a small sample size.

One advantage of a Bayesian approach is the utilization of prior knowledge (because 

researchers must have some prior information to eliminate implausible parameter values), 

and experienced and knowledgeable researchers can benefit from Bayesian analysis 

particularly in a small-sample study. For instance, if timing gates and a stopwatch are 

compared to measure gait speeds of a 20-meter walk (Martin et al., 2019), researchers 

probably assume that the expected difference of the two measurements should not exceed 

one second or even one half of a second. Another advantage is the intuitive and natural 

interpretation of a result. Consider, for instance, a frequentist’s 95% confidence interval. 

Once a confidence interval is calculated from a sample, researchers cannot make a 

probabilistic statement (which is commonly done in an incorrect way). In a frequentist 

framework, a probability is interpreted as the proportion of times an event happens when the 

same experiment is repeated a large number of times (which is not realistic in practice). In a 

Bayesian framework, a probability can quantify the strength of one’s belief about an 

unknown parameter, and the probability can be updated after observing data (because a 

belief can react to new data). Therefore, a Bayesian 95% credible interval can be interpreted 

as “researchers believe that the true (unknown) parameter value is within the interval with a 

probability of 0.95 after observing data” which is a different interpretation of a frequentist’s 

95% confidence interval. Though this subjective interpretation is intuitive, Bayesian analysis 

has not been used in the past due to computational complexity. However, computational 

challenges should not be an issue anymore given today’s advanced computing tools. In fact, 
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Bland Altman analysis is a two-parameter problem, so it can be handled by various 

computational methods.

In the literature, Bayesian methods are not rare for complex statistical problems, but we 

cannot find any for the relatively simple Bland Altman analysis. Schluter (2009) wrote 

“Until now, there have been no published Bayesian methods focusing on measurement 

method comparison studies. This is perhaps surprising given the increased utilization of 

Bayesian techniques . . . ” The popular seminar paper of Bland and Altman (1986) was 

published 23 years before Schluter (2009), and since then, a Bayesian approach to Bland 

Altman analysis has not been formulated (to our best knowledge). It is probably due to a 

lack (or absence) of explanations of a Bayesian approach for researchers who use Bland 

Altman analysis. The aim of this article is to briefly review the frequentist approach for 

Bland Altman analysis (Section 3) and to outline the procedure for a Bayesian approach 

(Section 4) with an applied example (introduced in Section 2.1). In this article, we suggest 

assessing the degree of agreement between two methods of measurement via a posterior 

predictive distribution (e.g., calculation of the probability that the absolute difference will be 

within a fixed value in future observations) instead of a hypothesis test for the true 

(population) LOAs. Since the mathematical and computational contents can be heavy for 

some readers and practitioners, an interface R Shiny applet is developed (https://

kalari.shinyapps.io/BBAA/) with a guideline in the Appendix.

There are tutorials of the Bland and Altman analysis in frequentist framework (Giavarina, 

2015; Looney, 2018), and the LOAs have been widely used in the research of physical 

education and exercise science (Christmas et al., 2017; Kastelic & Šarabon, 2019; Mason et 

al., 2020; Kastelic & Monfort-Pañego & Miñana-Signes, 2020; Overstreet et al., 2016). As 

researchers become more experienced, they may be able (and willing) to express their 

knowledge before collecting data (i.e., prior information), and the Bayesian framework will 

provide a space to express their prior information in the statistical analysis. The intended 

contributions of this paper are (1) to provide a Bayesian perspective on comparing two 

methods of measurement, (2) to provide the Bayesian approach with a user-friendly 

computational applet with a guideline, and (3) to show how to elicit researchers’ prior 

knowledge in a tractable manner (which is to be combined with observed data in the 

Bayesian analysis).

2. Model assumptions

Suppose that we want to analyze the agreement of two measurement methods. Let Di be the 

difference between the two outcomes when the i th subject was measured by each method for 

i = 1, 2, ..., n, where n is a fixed sample size. Assume D1, ..., Dn are independent random 

variables (referred to as the independence assumption). In addition, assume each Di follows 

a normal distribution with some true average difference μ and some true standard deviation 

σ (referred to as the normality assumption). The normality assumption is denoted Di∼N(μ, 
σ2), and it is graphically presented in Figure 1. The independence assumption and the 

normality assumption are maintained throughout this paper, whether we use a frequentist 

approach (Section 3) or a Bayesian approach (Section 4).

Alari et al. Page 3

Meas Phys Educ Exerc Sci. Author manuscript; available in PMC 2021 May 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://kalari.shinyapps.io/BBAA/
https://kalari.shinyapps.io/BBAA/


2.1. Applied example

To illustrate both approaches we will be using the following example throughout the 

manuscript. Gait speed is a useful predictor of various health outcomes, and is something 

that clinicians can measure conveniently. (Martin et al., 2019). To measure gait speed, a 

patient is asked to walk a fixed distance (e.g., 20 meters), and the time is recorded in 

seconds. There are two methods of measuring gait speed (m/s), a timing gate and a 

stopwatch. A timing gate is known to be highly accurate and reliable, but it is relatively 

expensive when compared to a stopwatch. If the difference between the measurement by a 

timing gate and the measurement by a stopwatch is small, clinicians may prefer a stopwatch. 

For the purpose of demonstration, we consider a hypothetical example based on the 

estimates by Martin et al. (2019).

Suppose that a difference of δ = 0.1 seconds is practically negligible when a timing gate and 

a stopwatch are used to measure the time for a 20-meter walk (i.e. we are setting the 

acceptable limit to be δ = 0.1). A hypothetical sample of size n = 10 is given in Table 1. Let 

xi and yi denote the measurements by the timing gate and by the stopwatch, respectively, and 

(xi, yi) are observed from the ith subject. The difference between the two measurements is 

calculated as di = yi – xi as shown in the table. The unknown average difference μ is 

estimated by the sample mean d = 1
n ∑i = 1

n di, the sum of n observed differences divided by 

n. The unknown variance σ2 is estimated by the sample variance s2 = 1
n − 1 ∑i = 1

n di − d 2, 

the sum of square distances between di and d divided by n – 1. The unknown standard 

deviation σ is then estimated by s = s2. Given the data in Table 1, the resulting sample 

mean and sample standard deviation are d = 0.066 and s = 0.0237.

3. Frequentist approach

3.1. Limits of agreement and frequentist interpretation

By the empirical rule under the normality assumption, a random difference Di (to be 

observed in the future) is between μ – 1.96σ and μ + 1.96σ with a probability of 0.95, and 

these limits are estimated by l = d − 1.96s and u = d + 1.96s, respectively. Given the data in 

Table 1, the resulting 95% limits of agreement (95% LOAs) are l = 0.020 and u = 0.112, and 

the 95% LOAs would be typically interpreted as “a difference between two measurements 

will be between 0.020 and 0.112 seconds with a probability of 0.95.” This interpretation 

appears to be widely accepted in literature, but it sounds strange because data collected in 

another study will result in different values of 95% LOAs. An accurate frequentist 

interpretation is more cumbersome because the frequentist interpretation of a probability 

requires repeating the same experiment (e.g. collecting a sample of size n = 10) infinitely 

many times.

From the perspective of statistical theory, the resulting 95% LOAs (0.020, 0.112) are not 

intended to capture a future outcome of Di with a probability of 0.95. If the sample size n is 

very large, the aforementioned interpretation of 95% LOAs is approximately correct. 

However, if researchers really intend to capture a future random variable Dn+1 with a 
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probability of 0.95 (regardless of the sample size n), the interval d ± t0.975, n − 1s 1 + 1
n

should be used, where t0.975,n – 1 = 2.262 is the 97.5 th percentile of the T distribution with n 
– 1 degrees of freedom (e.g., t0.975,9 = 2.262). Given the data in Table 1, the resulting 

interval would be (0.010, 0.122), and this is called the prediction interval (Geisser, 1993).

3.2. Hypothesis testing

Giavarina (2015) noted that “the best way to use the Bland Altman plot would be to define a 
priori the limits of maximum acceptable differences (limits of agreement expected), based 

on biologically and analytically relevant criteria, and then to obtain the statistics to see if 

these limits are exceeded, or not.” In this regard, two parameters of interest in the Bland and 

Altman analysis are θ1 = μ – 1.96σ (lower limit) and θ2 = μ + 1.96σ (upper limit), and 

approximate confidence intervals for these parameters can be calculated (Bland & Altman, 

1986; Giavarina, 2015; Lu et al., 2016; Stöckl et al., 2004).

Lu et al. (2016) developed a sample size formula for hypothesis testing H0: θ1 < – δ or θ2 > 

δ versus H1: θ1 ≥ – δ and θ2 ≤ δ, where δ (acceptable limit) is fixed before observing data. 

At the significance level α = 0.05, the hypothesis test requires 95% confidence intervals for 

θ1 and θ2 given by

l1, u1 = d − 1.96s ± t0.975, n − 1
3s2
n = ( − 0.010, 0.049),

l2, u2 = d + 1.96s ± t0.975, n − 1
3s2
n = (0.083, 0.141),

respectively. Note that these intervals are to capture the unknown parameters θ1 = μ – 1.96σ 
and θ2 = μ + 1.96σ, respectively. According to Lu et al. (2016), the null hypothesis H0 is 

rejected (i.e., H1 is concluded) when – δ < l1 < u2 < δ. Given the data in Table 1, the 

resulting 95% confidence intervals are (l1, u1) = (–0.010, 0.049) for θ1 and (l2, u2) = (0.083, 

0.141) for θ2, so H0 is not rejected at α = 0.5 because u2 = 0.141 is greater than δ = 0.1. In 

this context, we have a lack of evidence to conclude that the timing gate and the stopwatch 

are practically different.

3.3. Region of practical equivalence

The idea of fixing the practically acceptable difference δ can be viewed as a region of 

practical equivalence (ROPE) in Bayesian inference. All possible values of (μ, σ) can be 

partitioned into two regions: (i) a small region where the two methods of measurement are 

practically the same (i.e., close enough) and (ii) elsewhere (not close enough). In the 

formulated hypothesis testing, H1 represents the small region, and H0 represents elsewhere. 

For example, if δ = 0.1 is the maximum acceptable difference between the two methods of 

agreement, H1: θ1 > – 0.1 and θ2 < 0.1 can be expressed as μ – 1.96σ > – 0.1 and μ + 1.96σ 
< 0.1. These two inequalities are equivalent to σ < a + bμ and σ < a – bμ respectively, where 

a = 0.1
1.96  and b = 1

1.96 . The two inequalities are represented by the shaded zone in Figure 2.
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We can calculate a credible interval and see if it covers a portion of ROPE (Kruschke, 2015). 

Since we have a two-dimensional ROPE for (μ, σ), we need to calculate a credible region 

(Note: the term “credible interval” is used for one parameter, and the term “credible region” 

is used for two or more parameters). Alternatively, we can calculate the posterior probability 

of H1 to quantify the updated belief that the true parameter values are within the fixed 

ROPE.

3.4. Alternative perspective of acceptable agreement

Note that hypothesis testing and confidence intervals are used to make statements about 

unknown parameters (not future outcomes). Kim and Wand (2020) discussed a strange case 

in the hypothesis testing discussed in Section 3.2. For instance, let δ = 0.1, and assume the 

true parameter values are μ = 0.05 and σ = 0.03. In this case, θ2 = μ + 1.96σ = 0.1088 

exceeds δ = 0.1 (i.e., H0 is true), but P(–δ < Di < δ) = 0.9522 exceeds 0.95 (which may be an 

acceptable probability of agreement). The two statements “H1: θ1 ≥ −δ and θ2 ≤ δ” and “P(–

δ ≤ Di ≤ δ) ≥ 0.95” are not equivalent (Kim & Wand, 2020). The former statement is 

regarding the two parameters θ1 = μ – 1.96σ and θ2 = μ + 1.96σ, and the latter statement is 

regarding the random variable Di. The researcher’s perspective is crucial to determine the 

method of analysis. If we focus directly on Di and its observed future value, an alternative 

perspective of the acceptable agreement should be based on the probability P(–δ ≤ Di ≤ δ). 

Researchers who are more interested in answering the probabilistic question “What is the 

probability that the difference between two measurements (to be observed in future) is 

within (–δ, δ) = (–0.1, 0.1)” should use this alternative perspective. This question can be 

answered in a Bayesian approach (specifically at the end of Section 4.4).

4. Bayesian approach

In literature, the term “frequentist” has been rarely (or never) used for the current practice of 

Bland Altman analysis because a Bayesian approach has not been considered by many (and 

most) researchers. We believe that the frequentist approach gained popularity because of 

simple formulas and easy calculations. A Bayesian approach involves more mathematics and 

programming, but it is more flexible (in terms of addressing a research question) and easier 

to provide a probabilistic interpretation (as opposed to the frequentist interpretation of a 

probability which requires the hypothetical assumption of repeated experiments; Section 

3.1).

For readers who are unfamiliar with Bayesian methods, van de Schoot et al. (2014) provided 

a gentle introduction to Bayesian analysis. Kruschke (2015) wrote a book about Bayesian 

analysis with concrete examples and programming codes. Bland and Altman (1998) wrote a 

short article to compare between frequentist and Bayesian analysis.

Under the normality assumption (Section 2), the model parameters are μ and σ which are 

unknown and to be estimated after observing data. For mathematical convenience, the 

standard deviation σ is transformed to τ = 1
σ2  which is referred to as precision. Given the 

precision τ, the standard deviation is σ = 1
τ . A greater precision means a smaller standard 
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deviation (i.e. the two methods of measurement tend to agree more). In other words, τ is just 

an alternative way of quantifying uncertainty. A Bayesian inference for (μ, τ) requires three 

steps.

i. Model data, (d1, ..., dn) or simply d . The probability model for d  given the 

model parameters (μ, τ) is denoted by f(d ∣ μ, τ), and it is referred to as the 

likelihood function or simply likelihood (Section 4.1). It quantifies the likelihood 

of observing d  if the values of the model parameters (μ, τ) are given.

ii. Model researcher’s belief about (μ, τ) via a probability model f (μ, τ) prior to 

observing data (d1, ..., dn). The probability model f (μ, τ) is referred to as the 

prior distribution or the prior density function (Section 4.2). For example, if f (0, 

4) = 0.2 and f(0, 1) = 0.1, the researcher is expressing that μ = 0 and τ = 4 (σ = 

0.5) is twice more plausible than μ = 0 and τ = 1 (σ = 1). Since μ can be any real 

number and τ can be any positive real number, we need a mathematical function 

f (μ, τ) to model researcher’s belief efficiently.

iii. Update the researcher’s belief about (μ, τ) given data d . The updated probability 

model for (μ, τ) given d  is denoted by f(μ, τ ∣ d ), and it is referred to as the 

posterior distribution or the posterior density function (Section 4.3). All 

statistical inferences are from the updated model f(μ, τ ∣ d ), and it is derived by 

combining the prior f (μ, τ) and the likelihood f(d ∣ μ, τ) (Note: they are 

combined using Bayes theorem, hence the name Bayesian inference).

4.1. Likelihood

Under the independence assumption and the normality assumption given μ and τ = 1
σ2 , the 

likelihood of observing d  is quantified as

f(d ∣ τ, μ) = ∏
i = 1

n τ
2π

1
2e−

τ di − μ 2

2 ∝ τ
n
2e− τ

2 nv + n(d − μ)2 (1)

where d = 1
n ∑i = 1

n di and v = 1
n ∑i = 1

n di − d 2. To quantify the likelihood, we do not need 

to know all individual values of d = d1, …, dn , and it is sufficient to summarize the data by 

the two statistics d and v (referred to as sufficient statistics). Note that the sample variance in 

the frequentist approach is s2 = 1
n − 1 ∑i = 1

n di − d 2, so v = n − 1
n s2.

4.2. Prior

A popular prior distribution for the normal model parameters (μ, τ) is the normal-gamma 

distribution which is given by

f(μ, τ) ∝ τa0 − 1
2e−b0τe

−λ0τ μ − μ0
2

2
(2)
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for – ∞ < μ < ∞ and τ > 0. The values of (a0, b0, μ0, λ0) are chosen to reflect the 

researcher’s state of knowledge about (μ, τ) before observing data d . The value of μ0 

reflects the best guess of μ, and the value of λ0 reflects the pseudo sample size (i.e. given τ, 

a larger value of λ0 makes the prior belief about μ stronger). It will be shown (in Equation 

(6) of Section 4.3) that μ0 and λ0 are combined with d  and n to determine a posterior 

estimate for μ, and λ0 can be interpreted as the relative amount of information when μ is 

estimated by a weighted average of μ0 and d . The value of 
a0 − 0.5

b0
 reflects the best guess of 

τ, and a smaller value of a0 and a larger value of b0 make the prior belief of τ stronger. 

However, a0 and b0 also affect the strength of the prior belief about μ, so it is not simple to 

accurately choose the values of (a0, b0, μ0, λ0) by trial and error. To specify the prior in a 

tractable manner, guidance is provided in Section 4.5. Note that Equation (2) is often 

denoted by

(μ, τ) ∼ NG a0, b0, μ0, λ0 ,

the subscript “0” is used to emphasize that these are the parameters of the prior distribution.

In practice, Bayesian analyses are commonly performed by “letting data speak out.” In other 

words, when researchers do not have useful prior information about (μ, τ), values of (a0, b0, 

μ0, λ0) may be chosen in a certain way such that the prior f(μ, τ) has negligible influence on 

the posterior f(μ, τ ∣ d ). In this case, the posterior f(μ, τ ∣ d ) would be dominated by the 

likelihood f(d ∣ τ, μ). For instance, if we are uninformed about (μ, τ), we may choose a0 = 

0.5, b0 = 0.000001, μ0 = 0, and λ0 = 0.000001, and the prior distribution (modeled by the 

normal-gamma distribution in Equation (2)) becomes

f(μ, τ) ∝ e−0.000001τe
−0.000001τ(μ)2

2 ≐ 1.

This prior distribution will not affect the posterior distribution. It is because the posterior 

inference is based on the product of the likelihood f(d ∣ τ, μ) and the prior f (μ, τ) (Equation 

((3)) in Section 4.3). To this end, if f (μ, τ) = 1, the posterior will be dominated by the data 

(likelihood) only. When researchers want to incorporate substantive prior information about 

the parameters (μ, τ), appropriate values of (a0, b0, μ0, λ0) can be found by a tractable 

manner (see Section 4.5).

Note that the normal-gamma prior is not the only way of specifying a prior. There are many 

forms of f (μ, τ) that researchers may choose. For example, if researchers are finding it 

challenging to express their prior beliefs about μ and τ simultaneously, one can choose a 

prior model f (μ) for μ (often a normal model) and a prior model f (τ) for τ independently, 

and by the definition of independence in probability theory, one can let f (μ, τ) = f (μ) f (τ). 

In this case, the forms of f (τ) and f (μ) are flexible as long as they are legitimate probability 

models on the possible values of τ and μ (i.e. τ > 0 and 1< μ < ∞).
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4.3. Posterior

The Bayesian inference follows the spirit of the Bayes’ theorem

f(μ, τ ∣ d ) = f(d ∣ μ, τ)f(μ, τ)
f(d )

∝ f(d ∣ μ, τ)f(μ, τ), (3)

where the likelihood f(d ∣ μ, τ) is in Equation (1) and the prior f (μ, τ) is in Equation (2). 

The function f(d ) is called the marginal likelihood, but it is not important for our purposes. 

Using Bayes’ theorem in Equation (3), the posterior distribution is given by

f(μ, τ ∣ d ) ∝ f(d ∣ μ, τ)f(μ, τ)

∝ τ
n
2e− τ

2 nv + n(d − μ)2 τa0 − 1
2e−b0τe

−λ0τ μ − μ0
2

2

∝ τa1 − 1
2e−b1τe

−λ1τ μ − μ1 2

2 ,

(4)

where

a1 = a0 + n
2

b1 = b0 + n
2 v + λ0 d − μ0

2

λ0 + n

μ1 = λ0μ0 + nd
λ0 + n

λ1 = λ0 + n .

(5)

The subscript “0” is used to signify a parameter of the prior distribution (as noted above) 

while the subscript “1” signifies a parameter for the posterior distribution. Note that the 

posterior distribution presented in Equation (4) is in the form of the normal-gamma model 

(compare to Equation (2)), and we denote the posterior distribution by

(μ, τ) ∣ d ∼ NG a1, b1, μ1, λ1 .

In other words, the prior knowledge expressed via the normal-gamma model NG(a0, b0, μ0, 

λ0) is updated by the normal-gamma model NG(a1, b1, μ1, λ1) by updating the old values of 

(a0, b0, μ0, λ0) with the new values of (a1, b1, μ1, λ1) after observing a sample of size n. In 

Equation (5), note that μ1 (referred to as the posterior mean of μ) can be expressed as

μ1 = λ0
λ0 + nμ0 + n

λ0 + nd . (6)

It is a weighted average of μ0 (prior guess for μ) and d (sample mean to estimate μ) weighted 

by λ0 and n, respectively. Therefore, λ0 and n can be interpreted as the contribution of the 
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prior and data, respectively, to the posterior inference for μ. To this end, researchers can 

gauge how strong their prior belief about μ was relative to the sample size n.

In summary, the Bayesian inference is based on the seven numbers (n, d, v, a0, b0, μ0, λ0) 

which constitute (a1, b1, μ1, λ1). The analytic approach to the posterior f(μ, τ ∣ d ) requires 

some calculus. Without a background in calculus, the posterior f(μ, τ ∣ d ) still can be 

analyzed numerically using Gibbs sampling, and an example is given in Section 4.4. A more 

detailed explanation of the Gibbs sampling can be found in Supplemental Note 1.

4.4. Applied example

Consider the same data in Section 3.3, and suppose a prior is fixed at a0 = 0.5, b0 = 

0.000001, μ0 = 0, and λ0 = 0.000001 to express very weak prior knowledge about (μ, τ) as 

discussed in Section 4.2. A sample R code for Gibbs sampling is given in Supplemental 

Note 2. The function named BA.Bayesian in the Supplemental Note 2 should be loaded in R, 

then the following lines can be submitted to input the data d = d1, …, dn  and to run the 

function.

### Input data (difference between two measurements) data = c(0.04, 0.09, 0.05, 0.1, 0.07, 

0.05, 0.08, 0.06, 0.09, 0.03)

### Run BA.Bayesian function

BA.Bayesian(d = data, delta = 0.1, a0 = 0.5, b0 = 1e-6, mu0 = 0, lambda0 = 1e-6)

After running this code, R outputs the following posterior inference for (μ, σ, θ1, θ2) and the 

posterior distributions seen in Figure 3.

$post

mean 2.5% 5% 25% 50% 75% 95% 97.5% mu 0.066 0.051 0.054 0.061 0.066 0.071 0.078 

0.081 sigma 0.023 0.015 0.016 0.019 0.022 0.026 0.033 0.037 theta1 0.021 − 0.010 − 0.003 

0.014 0.023 0.030 0.038 0.041

theta2 0.111 0.091 0.093 0.102 0.109 0.118 0.135 0.142 diff 0.066 0.016 0.026 0.051 0.066 

0.081 0.105 0.115

$post.h1

[1] 0.1853

$post.pred.agree

[1] 0.9233

The posterior distributions in Figure 3 are interpreted as follows:

• Upper left panel: After observing the sample (d1, ... , dn) of size n = 10, we are 

95% sure that μ is between 0.051 and 0.081 (vertical dashed lines), and the 
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interval (0.051, 0.081) is called a 95% credible interval (CI) for μ. The posterior 

distribution of μ is centered at 0.066 (the vertical solid line, indicating the 

average of the posterior distribution), and 0.066 is called the posterior mean of μ.

• Upper middle panel: The posterior mean of σ is 0.023, and a 95% CI for σ is 

(0.015, 0.037).

• Upper right panel: The two parameters of interest are θ1 = μ – 1.96σ and θ2 = μ 
+ 1.96σ, and θ1 and θ2 depend on the two model parameters μ and σ jointly. The 

scatter plot provides the joint posterior distribution of (μ, σ), and the dotted line 

represents the boundary between the null hypothesis H0: θ1 < – 0.1 or θ2 > 0.1 

and the alternative hypothesis H1: θ1 ≥ –0.1 and θ2 ≤ 0.1. The inner zone 

represents H1, and the proportion of (μ, σ) located inside the zone of H1 is 0.183 

which is called the posterior probability of H1. After observing the data, we 

believe H1 is true with a probability 0.183.

• Lower left panel: The posterior mean of θ1 = μ – 1.96σ is 0.021, and a 95% CI 

for θ1 is (–0.011, 0.041).

• Lower middle panel: The posterior mean of θ2 = μ + 1.96σ is 0.111 with a 95% 

CI (0.091, 0.142).

Note that all, but one, of the observed differences d1, ..., d10 are within 0.1 seconds (with one 

boundary case d4 = 0.1), and the posterior probability of H1 is as low as 0.183.

There are infinitely many 95% CIs for a parameter. In the above results, a 95% CI is 

calculated by the 2.5 th percentile and the 97.5 th percentile of the posterior distribution, and 

it is referred to as the central CI. When the posterior distribution is unimodal (i.e. a single 

peak), we can find the shortest interval as follows (Section 25.2.2 of Kruschke, 2015). Note 

that the 1st percentile and the 96th percentile can serve as a 95% CI, and the 1.5 th percentile 

and the 96.5 th percentile can serve as another 95% CI. Among infinitely many 95% CIs, the 

shortest CI is called the highest (posterior) density interval (HDI), and it provides a more 

precise (shorter) interval estimation when the posterior distribution is skewed (e.g. for σ in 

Figure 3). See Table 2 to compare the length of the central 95% CI and the length of 95% 

HDI for each parameter. The lengths are the same for μ because the posterior distribution of 

μ is symmetric, and the length of HDI is slightly shorter for σ, θ1, and θ2, but the difference 

seems negligible (about 0.002–0.003 seconds). When the posterior distribution is 

multimodal (i.e. multiple peaks), a different method of finding HDI is needed according to 

the formal definition of an HDI (Section 4.3.4 of Kruschke, 2015).

As mentioned in Section 3.4, the question of interest is the probability that the difference 

between the two measurements will be between (−δ, δ) = (−0.1, 0.1) in the future. In this 

regard, let D be a random difference (comparing stopwatch to timing gates) to be observed 

in the future. The probability model of D (informed by observed data d ) is referred to as the 

posterior predictive distribution, and it is shown in Figure 4 (generated by the R code in the 

Supplemental Note 2). As shown in the R outputs given earlier in this section, we are 95% 

sure that the difference will be between 0.016 and 0.115 (2.5% and 97.5% of the row named 
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diff), and we believe that the difference will be within δ = 0.1 seconds with a probability of 

0.9233 (post.pred.agree) which we denoted as P( − δ ≤ D ≤ δ ∣ d ) = 0.9233.

Recalling our applied example from section 2.1, if the probability of 0.9233 is an acceptable 

level of agreement (which should be judged based on practical significance), the stopwatch 

should be recommended rather than the more expensive timing gates. Otherwise, the 

stopwatch should not be recommended as a replacement for the timing gates.

According to Bayesian theory, the posterior predictive distribution of D follows a scaled and 

shifted T distribution (Murphy, 2007). It can be generated from N(μ, σ) by using posterior 

samples of (μ, σ), and the posterior probability of −δ ≤ D ≤ δ can be approximated 

numerically.

4.5. Prior specification

The Bayesian (posterior) inference is a combination of prior knowledge and empirical 

evidence (data). So far, we have considered the vague prior a0 = 0.5, b0 = 0.000001, μ0 = 0, 

and λ0 = 0.000001, which does not substantially influence the posterior inference. However, 

researchers are sometimes knowledgeable (or have a strong opinion) about the model 

parameters (μ, τ), where τ = 1
σ2  (i.e., σ = 1

τ ). The most distinguishable feature of Bayesian 

inference (compared to frequentist inference) is the influence of prior, in our context the 

choice of (a0, b0, μ0, λ0). As aforementioned in Section 4.2, it is fairly challenging to 

specify (a0, b0, μ0, λ0) which properly reflects the researcher’s prior knowledge, so we 

introduce an induced prior specification in this section (Christensen et al., 2011).

For an induced prior specification on the parameters μ and σ = 1
τ , researchers can be asked 

the following questions: (1) What is your best guess for σ? Call it σ. (2) What is the upper 

bound uσ such that you (researcher) believe that P(σ ≤ uσ) = 0.95? (3) What is the lower 

bound lμ and upper bound uμ for the mean difference μ such that you believe that P(lμ ≤ μ ≤ 

uμ) = 0.95?

For the purpose of demonstration, suppose a researcher (who has been involved in walk 

studies in the past) provided the following answers: (1) My best guess for the standard 

deviation σ (of the difference between two measurements) is σ = 0.05 (estimated by the 

sample standard deviation of the previous study). (2) I am 95% sure that the standard 

deviation σ does not exceed uσ = 0.1, that is P(σ < 0.1) = 0.95 (a guess based on previous 

experiences; unlikely that σ exceeds 0.1 seconds in a walk study). (3) I am 95% sure that the 

average difference μ is between lμ = 0.5 and uμ = 0.5 seconds, that is P(−0.5 ≤ μ ≤ 0.5) = 

0.95 (a guess based on experience; quite certain that |μ| is within 0.5 seconds). By the 

specified values, σ = 0.05, uσ = 0.1, lμ = −0.5, and uμ = 0.5, we can find (a0, b0, μ0, λ0) = 

(2.71, 0.0093, 0, 0.086). A method of finding these values is described in the Supplemental 

Note 3 for readers who are interested in the thorough mathematics behind the scenes, but 

these calculations are automatically done in the interface R Shiny applet, so it is not required 

by users. Users are asked to input (σ, uσ, lμ, uμ) as described in the Appendix. Otherwise, the 

uninformed (vague) prior used in Section 4.2 is implemented by default.
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Using this informative prior and the same data, the posterior inference is as follows:

> BA.Bayesian(d = data, delta = 0.1, a0 = 2.71, b0 = 0.00093, mu0 = 0, lambda0 = 0.086)

$post

mean 2.5% 5% 25% 50% 75% 95% 97.5% mu 0.065 0.051 0.053 0.061 0.065 0.070 0.077 

0.080 sigma 0.023 0.016 0.017 0.020 0.022 0.025 0.031 0.033 theta1 0.021 − 0.006 0.000 

0.014 0.022 0.029 0.037 0.039 theta2 0.110 0.092 0.094 0.102 0.109 0.116 0.130 0.135 

difference 0.065 0.017 0.025 0.049 0.065 0.081 0.104

0.113

$post.h1

[1] 0.1734

$post.pred.agree

[1] 0.9278

The above results are fairly close to the results with the vague prior in Section 4.4 because 

the amount of prior information λ0 = 0.086 was relatively small (when compared to the 

sample size n = 10). As shown in Equation (6) of Section 4.3, the posterior mean of μ is

μ1 = 0:086
0.086 + 10(0) + 10

0.086 + 10(0.066)
= 0.0085(0) + 0.9915(0.066) = 0.065.

In words, the sample mean d = 0.066 is weighted by 0.9915 and the prior guess μ0 = 0 is 

weighted by 0.0085 in the posterior estimation for μ.

The impact of a prior specification can be substantial particularly when λ0 is large relative to 

n and a prior guess deviates from observed data. For the purpose of demonstrating this point, 

let us consider another prior given by σ = 0.1, uσ = 0.25, lμ = 0.1, and uμ = 0.1 which results 

in (a0, b0, μ0, λ0) = (1.68, 0.027, 0, 14.38) (using the R Shiny applet). This prior is fairly 

strong in a sense that λ0 = 14.38 is greater than the sample size n = 10. Furthermore, the 

prior guess σ = 0.1 with P(σ < 0.25) = 0.95 appears to be an overestimate relative to the 

observed sample standard deviation s = 0.0237. Given the same data presented in the 

previous example, this strong prior (which conflicts with the observed data) results in the 

following posterior inference.

$post

mean 2.5% 5% 25% 50% 75% 95% 97.5% mu 0.027 − 0.008 − 0.002 0.016 0.027 0.038 

0.056 0.062 sigma 0.085 0.058 0.061 0.072 0.082 0.094 0.119 0.129 theta1 − 0.139 − 0.234 

− 0.212 − 0.160 − 0.132 − 0.111 − 0.086- − 0.079
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theta2 0.193 0.133 0.140 0.165 0.187 0.214 0.267 0.287 difference 0.028 − 0.146 − 0.116 − 

0.029 0.027 0.086 0.172 0.202

$post.h1

[1] 0

$post.pred.agree

[1] 0.7311

In this case, the posterior mean for μ is calculated by the weighted average

μ1 = 14.38
14.38 + 10(0) + 10

14.38 + 10(0.066) = 0.027

which is closer to the prior guess μ0 = 0 rather than the data d = 0.066. In addition, the 

posterior mean 0.085 for σ is substantially closer to the prior guess σ = 0.1 rather than the 

data s = 0.0237. Since this strong prior expressed relatively large σ (when compared to the 

previous prior), P( − 0.1 ≤ D ≤ 0.1 ∣ d ) = 0.7311 is substantially smaller than the previously 

resulting probability of 0.9278.

To critique the influence of a prior, it is recommended to revisit Equation (4) in Section 4.3. 

The posterior values (a1, b1, λ1, μ1) are determined by prior (a0, b0, λ0, μ0) and data (n, d, 

v). In particular, a large value of λ0 is highly influential when a prior guess μ0 and an 

estimate d for μ are distant. In addition, the prior can be affected by the difference between a 

prior guess σ and an estimate (s or v) for σ. In practice, the posterior result from a strong 

prior and the posterior result from a vague prior (e.g. the prior first introduced in Section 

4.4) are compared to critique the prior influence.

5. Discussion

Although Bland Altman analysis is not new to the literature, there is very little on Bland 

Altman analysis through a Bayesian lens. To this end, our goal was to provide researchers a 

Bayesian framework to complete Bland Altman analysis. We summarize this procedure as 

follows: (1) specify a normal-gamma prior on (μ, τ), where τ = 1/σ, (2) conduct Gibbs 

sampling for a posterior sample of (μ, τ), (3) summarize the posterior distribution of (μ, τ) 

and any combination of (μ, τ) such as μ ± 1.96σ, and (4) summarize the posterior predictive 

distribution for future outcomes to assess the degree of agreement between two different 

methods of measurement for a given threshold value of δ. To help researchers navigate a 

prior specification and reduce the technical challenges, an applet (https://kalari.shinyapps.io/

BBAA/) is provided.

While the Bayesian approach is more computationally expensive, it has some benefits that 

the frequentist approach does not have. The Bayesian method allows researchers to 

incorporate their prior knowledge in their analysis. Researchers should have at least some 

knowledge to rule out implausible values of (μ, σ), and it is useful especially in a small-
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sample (pilot) study. In addition, the interpretation of the posterior probability 

P( − δ ≤ D ≤ δ ∣ d ) is more intuitive and more reflective of what researchers seek (the 

probability of seeing an acceptable difference). It provides a simple probabilistic statement 

regarding the future difference between two measures in the Bayesian framework. In the 

frequentist framework, a resulting 95% LOAs (l, u) is also a statement about the future 

difference between two measures, but an accurate interpretation of the resulting (l, u) cannot 

be directly related to the probability of seeing an acceptable difference. According to the 

frequentist interpretation of probability, it requires the hypothetical assumption of repeating 

the same experiment (to calculate l and u) and repeating future observations (to see if the 

future difference is between l and u). As we repeat the same experiment, values of l and u 
will vary, so the interpretation of an observed (l, u) is not straightforward. In addition, 

resulting 95% confidence intervals (l1, u1) for θ1 = μ – 1.96σ and (l2, u2) for θ2 = μ 1.96σ 
are statements about the model parameters, and an accurate interpretation of (l1, u2) in the 

frequentist framework can be challenging for many practitioners. The interval (l1, u2) is 

intended to capture both parameters θ1 and θ2, and it does not make a direct statement about 

the probability of capturing the future difference between the two measures.

The choice of a prior can be impactful on the posterior result. It may be difficult to set a 

threshold to flag that a prior has a poor effect on the posterior analysis. If two priors (e.g., a 

prespecified prior and a vague prior) result in substantially different posterior results, it may 

signify that the sample size n is too small (relatively to the amount of prior information λ0), 

so they may consider continuing data collection. The authors strongly believe that 

researchers should not change a prespecified prior after seeing the posterior result. The prior 

must be independent of observed data, and changing the prior after observing data is double-

dipping the data (inflating the amount of information contained in the data). If researchers 

are concerned about the prior sensitivity, the vague prior (the default option in the R Shiny 

applet) would be a safe option.

While the frequentist approach to Bland Altman analysis is widely used and is fairly simple 

to implement, the Bayesian Bland Altman analysis can be advantageous in helping 

researchers better understand and interpret their results. With today’s advanced technology, 

performing Bayesian inference is no longer a labored task. The process of constructing an 

informative prior and assessing the agreement between two methods of measurement via a 

posterior predictive distribution can be an alternative criterion for researchers to determine 

one measurement method over the other.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix: R Shiny Applet Guideline

In order to aid researchers with the computational complexity of Bayesian Bland Altman 

analysis, an R Shiny applet is developed. A user inputs (1) a value of δ, the acceptable 

degree of disagreement between the two methods of measurement, (2) d = d1, …, dn , the 

data of n differences, (3) a choice of prior described below, (4) a statistic for checking the 

normality assumption by the posterior predictive p-value, and (5) the size of a posterior 

sample (default: 10,000). To check the normality assumption, the posterior predictive p-

value is used (Gelman et al., 2013). An extremely small or large p-value indicates deviation 

from the normality assumption. The app provides two options for a statistic: the proportion 

of – δ < di < δ and skewness. Since the proportion is more meaningful from the practical 

perspective, it is set as default. A researcher has the following six options for choosing a 

prior.

• Vague prior (set as default): a0 = 0.5, b0 = 0.000001, μ0 = 0, and λ0 = 0.000001 

as described in Section 4.2 and applied in Section 4.4.

• Normal-gamma prior with a0, b0, μ0, and λ0: A user chooses values of a0, b0, μ0, 

and λ0 to reflect one’s prior knowledge.

• Normal-gamma prior with σ, uσ, lμ, and uμ: A user chooses values of σ, uσ, lμ, 

and uμ by answering the three questions in Section 4.5. The user does not need to 

find the values of a0, b0, μ0, and λ0. The applet does for the user.

• Independent normal and gamma priors with a0, b0, μ0, and λ0: This prior 

assumes μ∼N(μ0, 1/λ0) and τ∼Gamma(a0, b0) independently. A user chooses 

values of a0, b0, μ0, and λ0 to reflect one’s prior knowledge.

• Independent normal and gamma priors with σ, uσ, lμ, and uμ: A user chooses 

values of σ, uσ, lμ, and uμ by answering the three questions in Section 4.5. The 

user does not need to find the values of a0, b0, μ0, and λ0. The applet does for the 

user under the independent assumption μ∼N(μ0, 1/λ0) and τ∼Gamma(a0, b0).

• Independent uniform (flat) priors with lσ, uσ, lμ, and uμ. A user assumes that all 

possible values of (μ, σ) are equally plausible for lμ < μ < uμ and lσ < σ < uσ. In 

other words, the user specifies arbitrarily wide boundaries for μ and σ.

After receiving the user’s inputs, the applet produces posterior results, graphics seen in 

Figure 3 and Figure 4, and interpretations of some key posterior results. The figures for the 

posterior distributions can be saved by right clicking on the image and choosing “save image 

as.”
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Figure 1. 
The normality assumption Di∼N(μ,σ2).
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Figure 2. 
The region of practical equivalence (ROPE).
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Figure 3. 
Posterior distributions of (μ, σ, θ1, θ2).
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Figure 4. 
Posterior predictive distribution of D.
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Table 1.

A hypothetical sample of size n = 10.

Subject i Measurement by timing gate (xi) Measurement by stopwatch (yi) Difference di = yi − xi

1 12.01 12.05 0.04

2 11.87 11.96 0.09

3 12.41 12.46 0.05

4 11.82 11.92 0.10

5 12.25 12.32 0.07

6 11.87 11.92 0.05

7 12.19 12.27 0.08

8 12.41 12.47 0.06

9 12.30 12.39 0.09’

10 11.25 11.28 0.03
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