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A striking characteristic of the Western North American flora is the repeated evolution of hummingbird pollination from insect-

pollinated ancestors. This pattern has received extensive attention as an opportunity to study repeated trait evolution as well as

potential constraints on evolutionary reversibility, with little attention focused on the impact of these transitions on species diver-

sification rates. Yet traits conferring adaptation to divergent pollinators potentially impact speciation and extinction rates, because

pollinators facilitate plant reproduction and specify mating patterns between flowering plants. Here, we examine macroevolution-

ary processes affecting floral pollination syndrome diversity in the largest North American genus of flowering plants, Penstemon.

Within Penstemon, transitions from ancestral bee-adapted flowers to hummingbird-adapted flowers have frequently occurred,

although hummingbird-adapted species are rare overall within the genus. We inferred macroevolutionary transition and state-

dependent diversification rates and found that transitions from ancestral bee-adapted flowers to hummingbird-adapted flowers

are associated with reduced net diversification rate, a finding based on an estimated 17 origins of hummingbird pollination in our

sample. Although this finding is congruent with hypotheses that hummingbird adaptation in North American Flora is associated

with reduced species diversification rates, it contrasts with studies of neotropical plant families where hummingbird pollination

has been associated with increased species diversification. We further used the estimated macroevolutionary rates to predict the

expected pattern of floral diversity within Penstemon over time, assuming stable diversification and transition rates. Under these

assumptions, we find that hummingbird-adapted species are expected to remain rare due to their reduced diversification rates. In

fact, current floral diversity in the sampled Penstemon lineage, where less than one-fifth of species are hummingbird adapted, is

consistent with predicted levels of diversity under stable macroevolutionary rates.

KEY WORDS: BiSSE, diversification, FiSSE, flower, HiSSE, hummingbird pollination, macroevolutionary equilibrium, Penstemon,

pollination syndrome.

Impact summary
An important goal of evolutionary biology is to un-

derstand processes that determine trait diversity within

groups of related species. Flowers adapted to hum-

mingbird pollinators have evolved many independent

times in North American flowering plants from insect-

pollinated ancestors, providing an excellent example of

convergent evolution. This pattern suggests the evolu-

tion of hummingbird-adapted flowers has often been

favored. Little is known about whether transitions to

hummingbird pollination impacts species diversifica-

tion rates such as speciation and extinction rates. We ad-

dress this issue by examining floral diversification in the

largest flowering plant genus endemic to North America,

Penstemon, which includes nearly 300 species. During
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diversification, species with hummingbird-adapted

flowers evolved from bee-adapted ancestors 12–20

times independently, yet hummingbird-adapted species

are relatively rare. Either insufficient time has passed

for hummingbird-adapted species to reach high fre-

quencies within Penstemon or perhaps hummingbird

pollinated species are kept rare due to reduced diver-

sification rates, such as reduced speciation rate or in-

creased extinction rates. We used a statistical approach

to estimate rates of transitioning between floral types

along with rates of speciation and extinction associ-

ated with each floral type. We found that, despite a high

rate of transitioning to hummingbird adaptation, species

with hummingbird-adapted flowers have a lower rate of

species diversification. Based on this reduced diversifi-

cation rate, hummingbird-adapted species are expected

to remain rare over evolutionary time, at a frequency

similar to the currently observed level, suggesting that

the macroevolutionary effects of pollinator adaptation

have been consistent during Penstemon diversification.

Across species, certain traits are common while others are

rare. Understanding how trait and functional diversity is estab-

lished and maintained within lineages is a fundamental goal for

explaining patterns of biodiversity (Simpson 1953; Losos et al.

1998; Schluter 2000; Wagner et al. 2012). A compelling pattern is

parallel evolution where multiple transitions to the same derived

state have occurred within a lineage. Given that parallel evolu-

tion is often viewed as strong evidence of adaptation, we might

expect the derived state to become common within a lineage. Yet

in certain cases, the derived state remains relatively rare, despite

multiple origins. A classic example of this pattern is the evolution

of self-fertilization in plants (Stebbins 1974; Igić et al. 2008).

Other examples include the evolution of host specialization in

bark beetles, the evolution of sociality in spiders, and the evolu-

tion of asexuality (Kelley and Farrell 1998; Agnarsson et al. 2006;

Schwander and Crespi 2009). This pattern of rarity despite high

rates of transition to the derived state can lead to a phylogenetic

pattern of “tippiness,” as well documented for certain transitions

in flower color (Ng and Smith 2018).

In theory, the prevalence of a given derived trait state within a

lineage depends on rates of both species diversification and tran-

sitions between states, as well as the stability of these processes

over time (Maddison 2006; Maddison et al. 2007). If transition

and diversification rates are stable over time, the frequency of

the derived state will reach an equilibrium value that is predicted

from the macroevolutionary rates (Maddison et al. 2007). There-

fore, there are at least three explanations for why a derived state

might be currently rare. First, the rare state may currently be at or

near an equilibrium frequency. Under this explanation, the derived

state is rare at equilibrium either because it has a lower diversifica-

tion rate (speciation rate – extinction rate) than the common state,

because there is a higher rate of transitioning from the rare state to

the common state than in the reverse direction, or both. We term

this the “near equilibrium” explanation. Second, the derived trait

may be rare because insufficient time has passed for it to reach

its (potentially higher) equilibrium frequency. This explanation

does not require differences in diversification rates or asymmetric

transition rates. We term this the “approaching equilibrium” ex-

planation. Finally, if transition and/or diversification rates change

over time, there is no predicted equilibrium frequency. In this

case, the derived state may be rare because current processes fa-

vor an alternative trait state, or because there has been insufficient

time to reach high frequencies. We term this the “nonequilibrium”

explanation.

Although state-dependent diversification and unequal tran-

sition rates between states have frequently been documented

(e.g., Tripp and Manos 2008; Goldberg et al. 2010; Beaulieu

and Donoghue 2013; Weber and Agrawal 2014; Blanchard and

Moreau 2017; Nakov et al. 2017), we are just beginning to under-

stand how these processes combine to explain extant patterns

of diversity (O’Meara et al. 2016). One current limitation in

distinguishing equilibrium and nonequilibrium explanations for

trait rarity is a lack of appropriate tools. Commonly used state-

dependent speciation and extinction (SSE) models that estimate

state-dependent diversification and transition rates assume these

rates are stable over time, and implementations of these models

have not yet included validated methods for determining whether

these rates are temporally stable. Absent such tools, we adopt

a different approach by asking whether a near equilibrium ex-

planation is sufficient to account for rare trait frequencies in a

phylogeny.

Here, we address this question by examining the impact of

floral adaptation to primary pollinator on species diversity in the

genus Penstemon. Flowers are a key component of functional

diversity within angiosperm-dominated ecosystems (e.g., Barrett

et al. 1996; Strauss and Whittall 2006; Stevenson et al. 2017).

Floral diversity is driven in part by interactions with pollinators,

which lead to divergence in pollination syndromes—multitrait

adaptations to a specific pollinating agent (Faegri and Van der Pijl

1979; Fenster et al. 2004). At the genus level, evolutionary tran-

sitions in primary pollinator can occur on a rapid timescale and

can show asymmetric transition rates (Stebbins 1970; Stebbins

1974; Thomson and Wilson 2008), suggesting selective and de-

velopmental constraints influence rates of transitioning to a new

pollinator. It is plausible that traits conferring pollinator adapta-

tion influence species diversification rates, given that pollinators
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facilitate reproduction and specify mating patterns between plants

across a landscape. For example, innovative traits associated with

increased pollinator specialization, such as bilateral symmetry,

floral tubes, and nectar spurs, have been linked to increased

diversification rates (Hodges and Arnold 1995; Sargent 2004;

Fernández-Mazuecos et al. 2013; O’Meara et al. 2016; Fernández-

Mazuecos et al. 2018). Consequently, pollinator adaptation that

impacts species diversification rates has implications for the main-

tenance of floral diversity within flowering plant lineages.

Unique feature of the North American Flora is the repeated

origin of hummingbird pollination from insect-pollinated (often

bee-pollinated) ancestors (Stebbins 1989; Grant 1994; Abraham-

czyk and Renner 2015). Within this flora, Penstemon is the largest

endemic flowering plant genus and exhibits a dynamic history of

pollination syndrome evolution, with 12–20 transitions from bee

or wasp adaptation to hummingbird adaptation, but no obvious

reverse transitions (Wilson et al. 2007). Despite this large number

of evolutionary origins, hummingbird syndrome species remain

rare within Penstemon, either because hummingbird syndrome

species have a reduced diversification rate, because there is an

even higher rate of transitioning from hummingbird back to bee

syndrome, or because parallel evolution of hummingbird adapta-

tion is a recent phenomenon and there has not yet been enough

time for hummingbird syndrome species to reach high frequen-

cies within the genus. This impressive evolutionary replication

makes Penstemon an attractive system to test whether pollinator

adaptation impacts species diversification rates in North Ameri-

can Flora and whether current trait diversity can be accounted for

by a near equilibrium explanation.

To provide a framework for our study, we first updated

a phylogenomic dataset to sample over 80% of species in a

large clade within Penstemon. We then used macroevolution-

ary analyses to demonstrate that hummingbird-adapted species

have a substantially reduced diversification rate compared to bee-

adapted species. Our analyses were unable to detect unequal tran-

sition rates, despite our expectation that transitions from bee-

to hummingbird-adapted species have been much more common

than reverse transitions. Finally, we used inferred macroevolu-

tionary rate parameters to model the evolution of trait diversity

assuming constant rate parameters. This analysis indicates that the

current relative proportion of bee- versus hummingbird-adapted

species in this Penstemon clade, with bee-adapted species approx-

imately four times as common as hummingbird-adapted species,

is consistent with a near equilibrium explanation.

Methods
STUDY SYSTEM

Penstemon is a North American flowering plant genus of nearly

300 species. Most species are adapted to pollination by bees or

wasps and display a bee pollination syndrome: short and wide

corollas, blue or purple color, anthers and stigmas located within

the corolla tube, lower petals forming a landing platform for bees,

and producing a small amount of concentrated nectar. Over 30

Penstemon species are adapted to hummingbird pollination and

display a typical hummingbird pollination syndrome: long and

narrow corollas, red color, anthers and stigmas exserted outside

the corolla tube, lower petals reduced or reflexed, and production

of a large amount of dilute nectar (Wilson et al. 2006). These

two syndromes form distinct clusters in multidimensional space

that correspond to well-defined bee and hummingbird syndromes

that accurately predict pollinator visitation (Wilson et al. 2004,

2006; Wilson and Jordan 2009). A few “despecialized” species

show partial adaptation to hummingbird pollination (i.e., large

nectar volume and magenta flowers) but retain bees as pollinators

(Wilson et al. 2006). Transitions to other pollination syndromes

are rare in this genus (Wilson et al. 2007; Thomson and Wilson

2008).

TAXON SAMPLING AND CHARACTER DATA

Previously we used multiplexed shotgun genotyping (MSG)

(Andolfatto et al. 2011) to generate genome-wide DNA sequence

data for phylogenomic analysis of 75 species (Wessinger et al.

2016). Here, we add data for an additional 45 species, yield-

ing a dataset of 120 Penstemon species. Our additional sam-

pling was largely focused on the “crown clade” described in

Wessinger et al. (2016) (sect. Ambigui, sect. Coerulei, sect.

Gentianoides, subg. Habroanthus, sect. Leptostemon, and sect.

Spectabiles) because it contains a relatively large number of

hummingbird-adapted species. Our final dataset includes 104 of

the presumed 126 species (82.5%) in this clade, with bee and

hummingbird syndrome species sampled at similar rates (83%

and 79%, respectively). We dichotomized sampled crown clade

species into bee syndrome (including despecialized species: P.

bicolor, P. floridus, P. hartwegii, P. isophyllus, P. parryi, and

P. pseudospectabilis) and hummingbird syndrome (humming-

bird specialists) according to Wilson et al. (2007). This strict

dichotomization allows us to specifically test the macroevolution-

ary effect of specialization to hummingbird pollinators. Character

state data is found in Table S1. Voucher information for all 120

samples included in the present analysis is deposited in Dryad

(https://doi.org/10.5061/dryad.58qg7ct).

DNA SEQUENCING, PHYLOGENETIC INFERENCE,

AND STATE-INDEPENDENT DIVERSIFICATION

ANALYSES

We extracted DNA from new samples, prepared and sequenced

MSG libraries, and generated aligned sequence data matrices from

raw sequencing reads for the full set of 120 Penstemon species

(“full dataset”) and the 104 crown clade species (“crown dataset”).
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For each concatenated dataset, we inferred a maximum likelihood

(ML) phylogeny using IQ-TREE version 1.6.2 (Nguyen et al.

2014) and a species tree using SVDquartets, which models vari-

ation in underlying gene trees due to incomplete lineage sorting

(ILS; Chifman and Kubatko 2014). Details of these steps fol-

low Wessinger et al. (2016) and are provided in the Supporting

Information.

We rescaled crown dataset trees to be ultrametric (propor-

tional to relative time) with a BEAST2 analysis (Bouckaert et al.

2014), constraining the tree topology and constraining the total

tree length to 1. We summarized postburnin tree distributions with

maximum clade credibility trees that were used in downstream

analyses (see Supporting Information for BEAST2 details). In

the text, we refer to the ultrametric ML tree as “crown-ML” and

the ultrametric SVDquartets tree as “crown-SVD.” We also gen-

erated a set of trees by artificially truncating the terminal branches

of the crown-ML tree, so that the tree length is reduced by 5%,

7.5%, or 10%, using the treeSlice function in the R package phy-

tools (Revell 2012). We used this set of trees to explore whether

inferred terminal branch lengths, which may be inflated by gene

tree discordance, affect our hidden state analyses (see Results sec-

tion). In the main text, we present analyses of the tree with 10% of

the length truncated (hereafter “crown-ML-cropped”) and present

analyses of the 5% and 7.5% truncated trees in the Supporting In-

formation. This truncation necessarily collapsed one pair of taxa

(both bee syndrome) into a single tip, which we assigned to bee

syndrome.

We quantified patterns of phylogenetic discordance using

the quartet concordance (QC) metric (Pease et al. 2018). This

metric is the proportion of total taxon quartets having rela-

tionships concordant with the given tree topology. We calcu-

lated QC values for each node in the crown-ML and crown-

SVD trees using the quartetsampling program (https://www.

github.com/fephyfofum/quartetsampling).

For the crown-ML and crown-ML-cropped trees, we es-

timated character-independent patterns of diversification using

Bayesian Analysis of Macroevolutionary Mixtures implemented

in BAMM version 2.5.0 (Rabosky 2014). Details are found in the

Supporting Information.

STATE-DEPENDENT DIVERSIFICATION ANALYSES

We fit SSE models to test whether transition rates between polli-

nation syndromes are asymmetric and whether syndrome-specific

diversification rates differ in Penstemon. All SSE analyses were

restricted to the crown clade trees, where species sampling was

high (82.5%). Model parameters include state-specific speciation

rates (λ0, λ1), state-specific extinction rates (μ0, μ1), and tran-

sition rates between states (q01, q10), where state 0 denotes bee

syndrome and state 1 denotes hummingbird syndrome. We fit

four BiSSE models (Maddison et al. 2007) that differ in their

constraints on parameter values. Model B1 has no constraints,

model B2 constrains equal transition rates, model B3 prevents

transitions from hummingbird to bee syndrome, and model B4

constrains speciation and extinction rates to be equal across pol-

lination syndromes (Table 1). We used the HiSSE framework to

additionally model an unobserved character, with states A and

B, that potentially impacts species diversification (Beaulieu and

O’Meara 2016). We considered three hidden state models. Model

CID2 is a character-independent model where the hidden charac-

ter, but not the observed character (pollination syndrome), affects

diversification rate. Model H1 is a full HiSSE model where both

the hidden and observed characters can affect diversification, with

no constraints on parameter values. Finally, the CID4 model is

similar to CID2, but the hidden character has four states. We pro-

vide additional details of these models and our approach in the

Supporting Information.

We generated posterior distributions of parameter values and

sampled ancestral character states using MCMC implemented in

RevBayes (Höhna et al. 2016) for the crown-ML, crown-SVD,

and crown-ML-cropped datasets. Because estimation of extinc-

tion fractions can be prone to bias (Rabosky 2010; Beaulieu and

O’Meara 2015; Rabosky 2016), we report net diversification rates

(ri = λi – μi). We compared marginal likelihoods of competing

models using Bayes factors, here as twice the difference in

marginal log likelihoods (Kass and Raftery 1995). Details of our

RevBayes analyses are provided in the Supporting Information.

We used the nonparametric FiSSE statistic (Rabosky and

Goldberg 2017) to additionally test for an association between

pollination syndrome and diversification rate in the crown-ML,

crown-SVD, and crown-ML-cropped datasets. Details are pro-

vided in the Supporting Information.

TESTS OF MODEL ADEQUACY

We simulated trees under candidate models and compared them

to our empirical tree to assess whether a given model is an ad-

equate description of our data (Pennell et al. 2015). For each

candidate model, we simulated 1000 trees of 104 species using

the R package diversitree (FitzJohn 2012), drawing evolution-

ary rate parameters from the posterior distributions estimated by

RevBayes (see above). For each replicate tree, we calculated four

metrics: (1) number of hummingbird syndrome tips, (2) number of

hummingbird syndrome tips per origin (Bromham et al. 2015), (3)

sum of sister clade differences (measure of phylogenetic signal)

(Fritz and Purvis 2010); and (4) tip age rank sum (relative length

of hummingbird syndrome tip branches) (Bromham et al. 2015).

Additional detail is provided in the Supporting Information. Met-

rics were calculated using the R package phylometrics (Hua and

Bromham 2016). We performed these simulations for models B1,

B2, B3, and B4 estimated from the crown-ML, crown-SVD, and

crown-ML-cropped trees.
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Table 1. SSE models analyzed using MCMC in RevBayes for the crown-ML tree.

Bayes factors relative to competing models

Model Marginal lnL B1 B2 B3 B4 H1 CID2 CID4

B1:
r0�r1, q01�q10

−380.395 −0.01 −0.238 8.782 −4.464 1.097 −2.83

B2:
r0�r1, q01 = q10

−380.39 0.01 −0.228 8.792 −4.454 1.107 −2.82

B3:
r0�r1, q10 = 0

−380.276 0.238 0.228 9.02 −4.227 1.334 −2.592

B4:
r0 = r1, q01�q10

−384.786 −8.782 −8.792 −9.02 −13.25 −7.686 −11.612

H1:
r0A�r1A�r0B�r1B,
qAB�qBA, q01�q10

−378.163 4.464 4.454 4.227 13.25 5.561 1.634

CID2:
r0A = r1A�r0B = r1B,
qAB�qBA, q01�q10

−380.943 −1.097 −1.107 −1.334 7.686 −5.561 −3.926

CID4:
r0A = r1A�r0B = r1B�
r0C = r1C�r0D = r1D,
14 transition rates

−378.980 2.83 2.82 2.592 11.612 −1.634 3.926

Marginal log-likelihoods (lnL) of each model are given along with pairwise Bayes factor model comparisons. Here, Bayes factors (Bf) are calculated as twice

the difference in marginal log-likelihoods. Values > 1.16 indicate the focal model is preferred over the competing model, and values < –1.16 indicate the

competing model is preferred over the focal model. Values satisfying this criterion are in bold. See Table S2 for confidence intervals of inferred parameters.

EQUILIBRIUM PROPORTIONS OF POLLINATION

SYNDROME IN PENSTEMON

We calculated the expected proportions of bee versus humming-

bird syndrome species at equilibrium and the time taken to reach

equilibrium, assuming stable macroevolutionary rates, under can-

didate models using a numerical approach. We sampled parameter

values for a given model from posterior distributions to obtain a

distribution of equilibrium proportions under models B1, B2, B3,

and B4 estimated from the crown-ML, crown-SVD, and crown-

ML-cropped trees. Model and simulation details are provided in

the Supporting Information.

Results
PENSTEMON PHYLOGENOMIC DATA INDICATES

SUBSTANTIAL DISCORDANCE

The ML and SVDquartets phylogenies for the full dataset of 120

species are fairly congruent, with minor topological differences,

and the ML tree has higher bootstrap values than the SVDquartets

tree (Fig. 1 and Fig. S1). Both trees show evidence of substan-

tial gene tree discordance according to the calculated QC values

(Fig. S2). Such discordance has been found in previous datasets,

and has been attributed to a history of ILS and/or hybridization

between lineages in Penstemon (Wolfe et al. 2006; Wessinger

et al. 2016). These population genetic processes are consistent

with rapid speciation events and the hypothesis that Penstemon

represents a continental radiation in North America during the

late- or post-Neogene (Wolfe et al. 2006). Given the similarity

between the crown-ML and crown-SVD trees in terms of topo-

logical relationships and diversification rates, we report results of

downstream analyses for the crown-ML tree based on its higher

bootstrap and concordance values. All analyses on the crown-SVD

tree produced similar results and are presented in the Supporting

Information. Summary information for the aligned datasets and

phylogeny concordance values can be found in the Supporting

Information.

BISSE MODELS ASSOCIATE HUMMINGBIRD

SYNDROME WITH A REDUCED DIVERSIFICATION

RATE

Hummingbird syndrome species have a reduced diversification

rate relative to bee syndrome species, according to BiSSE anal-

yses of the crown-ML tree (Fig. 2A; Table S2). This difference

is statistically significant, since the unconstrained BiSSE model

(model B1) is significantly preferred over the model with equal

diversification rates for bee and hummingbird syndrome (model

B4; Table 1). The FiSSE analysis on this dataset corroborates

this conclusion: the inverse equal splits speciation rate for bee

syndrome species is greater than that for hummingbird syndrome

EVOLUTION LETTERS OCTOBER 2019 5 2 5
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Figure 1. Maximum likelihood tree inferred for the full sample of 120 Penstemon species. Hummingbird specialist species are marked

with red dots. Nodes are colored according to bootstrap support values: black is greater than 95%, gray is 75–95%, white is less than

75%. Arrow indicates ancestral node to the crown clade. Representative flowers of each pollination syndromes are shown.

species (�0 = 2.56, �1 = 2.06), a difference that is significantly

larger than expected if diversification rate is not associated with

pollination syndrome (P = .018).

The BiSSE analyses could not determine whether transition

rates are asymmetric. Under the unconstrained model B1, the dis-

tributions for transition rates are partially overlapping, with tran-

sitions from hummingbird to bee syndrome (q10) shifted toward

lower values compared with transitions from bee to hummingbird

syndrome (Fig. 2A; Table S2). Models that constrained transition

rates to be equal (B2) or unidirectional from bee to hummingbird

syndrome (B3) were not significantly preferred over the uncon-

strained model, although the unidirectional model had the highest

marginal likelihood (Table 1). The ancestral character reconstruc-

tion estimates about 17 transitions to hummingbird syndrome

within the sampled species that have occurred near the tips of the

tree, with no evidence of reversals from hummingbird to bee syn-

drome (Fig. 2A). Each origin of hummingbird syndrome includes

just one or two species (Fig. 2A). See Figure S3 for the ancestral

character reconstruction under the BiSSE model showing taxon

names.
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Figure 2. Posterior parameter distributions and ancestral character states for models estimated from the crown-ML tree. (A) Estimates

for full BiSSE model B1 and (B) estimates for full HiSSE model H1. For ancestral states, colors correspond to the posterior probabilities for

a given state. In panel A, blue = state 0 (bee syndrome), red = state 1 (hummingbird syndrome). In panel B, light blue = state 0A, light

red = state 1A, blue = state 0B, red = state 1B.

A known caveat of the BiSSE model is that trait-dependent di-

versification can be incorrectly inferred when diversification rate

variation exists that is independent of the modeled trait (Rabosky

and Goldberg 2015). In contrast to the BiSSE model, FiSSE rarely

implicates trait-dependent diversification where none exists, even

in simulations of complex rate heterogeneity (Rabosky and Gold-

berg 2017). Therefore, the significant FiSSE result suggests that

the BiSSE results are primarily capturing syndrome-dependent

differences in diversification.

HIDDEN STATE MODELS MAY CAPTURE SYSTEMATIC

EFFECT ON TREE SHAPE

The HiSSE modeling framework is designed to overcome false

positive results from BiSSE analyses by including a second

hidden binary trait that can impact diversification in addition to

(or instead of) the observed focal trait. An appropriate null model

for comparison to the BiSSE model is the CID2 model that has

an equivalent number of diversification rate categories (two)

specified by the hidden character, not the observed character. For

EVOLUTION LETTERS OCTOBER 2019 5 2 7
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the crown-ML tree, the B1 model has a higher marginal likelihood

than the CID2 model, although the Bayes factor misses the

threshold for model preference (Table 1). The full HiSSE model

(model H1) is a better fit than either models B1 or CID2 (Table 1),

suggesting both pollination syndrome and a hidden character

impact diversification. Alternatively, H1 could be favored over

CID2 if our dataset contains rate heterogeneity that is independent

of pollination syndrome (Beaulieu and O’Meara 2016; Caetano

et al. 2018). Our CID4 model tests this latter possibility. The H1

model is a significantly better fit to the data than the CID4 model

(Table 1), supporting the hypothesis that pollination syndrome

impacts diversification rate. Interestingly, the CID4 model clearly

includes only two diversification rates (Fig. S4), indicating that

the most complex CID model for this tree is the CID2 model.

At face value, our HiSSE model results indicate that includ-

ing a binary hidden character, in addition to pollination syndrome,

is a better description of the data than the BiSSE model that only

includes pollination syndrome. However, on closer inspection, it

appears that the hidden state is likely capturing a systematic effect

on branch lengths in our tree. Our study utilized a large genomic

dataset to optimize branch lengths in the presence of substantial

gene tree discordance. Sources of gene tree discordance such as

ILS can artificially elongate terminal branches of a species tree

relative to internal branches, a phenomenon termed substitutions

produced by ILS (SPILS; Mendes and Hahn 2016). We suspect

that the hidden character in our HiSSE analysis is modeling this

effect based on the following observations. Nearly all internal

nodes are reconstructed as hidden state A (the state with a higher

diversification rate) with high probability, whereas tips are equiv-

ocally state A or B (Fig. 2B), suggesting hidden state transitions

are localized to terminal branches. The transition rate from hid-

den state B to A (qBA) is close to zero (Fig. 2B), consistent with a

unidirectional transition from state A to B. Importantly, the pos-

terior distribution of the transition rate from state A to B (qAB) is

extremely broad (Fig. 2B), suggesting it is a difficult parameter

to estimate from the data. Indeed, a systemic effect that increases

terminal branch lengths would not be properly modeled as a bi-

nary Markov process with transition rates that applies to the entire

tree. The ancestral character reconstruction and inferred parame-

ters for model CID2 show similar features (Fig. S5). The observed

gene tree discordance (Fig. S2) is consistent with the presence of

SPILS in our dataset. In addition, BAMM time-dependent di-

versification modeling indicates that diversification rates decline

toward the tips of the tree (Fig. S6).

ARTIFICIALLY CROPPING THE CROWN-ML TREE

REMOVES PREFERENCE FOR HIDDEN STATE MODELS

Given that the hidden state in our HiSSE model may be model-

ing the SPILs artifact, if we could somehow remove or diminish

the effect from our empirical tree, we should lose the clear pref-

erence for the hidden state models over the BiSSE model. Our

use of MSG data prevented us from applying coalescent-based

species tree approaches to reoptimize branch lengths. Instead,

we tested the potential effects of a SPILs artifact on our HiSSE

model results by artificially shortening the terminal branches of

the crown-ML tree, so that total tree length is reduced by 10%.

This crown-ML-cropped tree still displays evidence of syndrome-

specific diversification: the B1 model with reduced diversifica-

tion rate in hummingbird syndrome species is preferred over the

B4 model of equal diversification rates (Table 2). Moreover, the

FiSSE statistic still supports differential diversification (�0 = 3.5,

�1 = 2.67, P = 0.03). However, truncating the terminal branches

reduced preference of hidden state models such that the B1 model

is clearly preferred over the CID2 model and model H1 has a

similar marginal likelihood (is no longer clearly preferred) rel-

ative to model B1 (Table 2). Under both models, diversification

rates are higher for bee syndrome species, while there are no de-

tectable differences among transition rates (Fig. S7, Table S3). In

Table S4, we present model preference for analyses conducted on

the crown-ML tree with 5% and 7.5% truncation of tree length.

We find that with increasing truncation, we see a gradual loss of

preference of hidden state models and increased preference for

the B1 model.

Together, these results are consistent with our expectation

that truncating terminal branch lengths weakens the importance

of the hidden state, exposing asymmetry in syndrome-specific

diversification rates. We conclude that the B1 model is a more

appropriate model than H1 for modeling syndrome variation in

the Penstemon crown clade because the hidden state suggested

by HiSSE appears to represent a systematic effect on all terminal

branches, such as SPILS.

ESTIMATED MACROEVOLUTIONARY RATES PREDICT

EMPIRICAL PROPORTION OF THE HUMMINGBIRD

SYNDROME SPECIES

Trees simulated using rates estimated under model B1 for

the crown-ML tree are strikingly similar to the empirical tree

according to four metrics: number of hummingbird syndrome

tips, number of hummingbird syndrome tips per origin, sum

of sister clade differences, and tip age rank sum (Fig. 3). This

congruence suggests that the inferred parameter values for the

B1 model adequately predict the distribution of hummingbird

syndrome in the Penstemon crown clade. Trees simulated under

parameters estimated for models B2 and B3 display these

same patterns, indicating that asymmetric transition rates do

not strongly contribute toward the phylogenetic distribution of

hummingbird syndrome (Fig. 3). Trees simulated under model

B4 estimated parameters have significantly more hummingbird

syndrome tips per origin than the observed value of 1.2 (95%

confidence interval = 1.43–97.0), indicating that model B4
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Table 2. SSE models analyzed using MCMC in RevBayes for the crown-ML-cropped tree.

Bayes factors relative to competing models

Model Marginal lnL B1 B2 B3 B4 H1 CID2 CID4

B1:
r0�r1, q01�q10

−353.366 −0.138 −0.498 9.135 −0.778 7.538 5.53

B2:
r0�r1, q01 = q10

−353.297 0.138 −0.36 9.273 −0.64 7.676 5.668

B3:
r0�r1, q10 = 0

−353.117 0.498 0.36 9.633 −0.28 8.036 6.028

B4:
r0 = r1, q01�q10

−357.934 −9.135 −9.273 −9.633 −9.913 −1.597 −3.606

H1:
r0A�r1A�r0B�r1B,
qAB�qBA, q01�q10

−352.977 0.778 0.64 0.28 9.913 8.316 6.308

CID2:
r0A = r1A�r0B = r1B,
qAB�qBA, q01�q10

−357.135 −7.538 −7.676 −8.036 1.597 −8.316 −2.008

CID4:
r0A = r1A�r0B = r1B�
r0C = r1C�r0D = r1D,
14 transition rates

−356.131 −5.53 −5.668 −6.028 3.606 −6.308 2.008

Marginal log-likelihoods (lnL) of each model are given along with pairwise Bayes factor model comparisons. Here, Bayes factors (Bf) are calculated as twice

the difference in marginal log-likelihoods. Values > 1.16 indicate the focal model is preferred over the competing model, and values < –1.16 indicate the

competing model is preferred over the focal model. Values satisfying this criterion are in bold. See Table S3 for confidence intervals of inferred parameters.

Figure 3. Distributions of metrics for 1000 simulated trees of

104 species for selected models estimated from the crown-ML

tree. Green: model B1 (full BiSSE), yellow: model B2 (equal transi-

tion rates), orange: model B3 (unidirectional transitions), and red:

model B4 (equal diversification rates). Blue vertical lines indicate

observed value for the empirical dataset.

is unable to predict the characteristic “tippy” distribution

of hummingbird syndrome species in the Penstemon crown

clade.

HUMMINGBIRD SYNDROME SPECIES ARE RARE AT

MACROEVOLUTIONARY EQUILIBRIUM

Based on the estimates of macroevolutionary parameters from

model B1 for the crown-ML tree, the expected equilibrium propor-

tion of hummingbird syndrome species in the Penstemon crown

clade is substantially less than 0.5 (Fig. 4A). The observed pro-

portion of hummingbird syndrome species (0.183) falls within the

confidence intervals for this prediction. Moreover, the expected

time needed to reach 90% of equilibrium proportions is roughly

one time unit (the time taken from the root to the tips of the

crown-ML tree) (Fig. 4B). The distribution of expected propor-

tion of hummingbird syndrome species at equilibrium under the

B2 model, where transition rates are equal, does not differ substan-

tially from that calculated for the B1 model—both distributions

are centered on 0.16 (Fig. 4A). By contrast, the corresponding

distribution calculated for the B4 model, where diversification

rates are equal, is broad and is centered on 0.5 (Fig. 4A). This

result indicates that, within the context of our data, differential

diversification rates have a greater impact on skewing syndrome

proportions away from equality than asymmetric transition rates.
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Figure 4. Results from equilibrium calculations for the crown-

ML tree. (A) Distributions of the proportion of hummingbird syn-

drome species at equilibrium, blue vertical line indicates current

proportion of hummingbird syndrome species in the crown clade.

(B) Distributions of the time taken for the proportion humming-

bird syndrome species to reach 90% of the expected equilibrium

proportion. Green: model B1 (full BiSSE), yellow: model B2 (equal

transition rates), and red: model B4 (equal diversification rates).

Discussion
POLLINATION SYNDROME IMPACTS SPECIES

DIVERSIFICATION RATE

Penstemon is a continental radiation and the sources of diversifica-

tion rate variation that have shaped its history are likely to be com-

plex, including organismal traits, differences in geographic range,

and environmental or geological events. Our study necessarily

simplifies over this complexity to examine how pollination syn-

drome in particular impacts diversification. Our BiSSE, FiSSE,

and HiSSE analyses indicate that diversification rates in Penste-

mon are substantially higher for bee-pollinated species than for

hummingbird-pollinated species. We attribute our power to detect

differential diversification in the face of other potential sources

of diversification rate variation to the large number of trait ori-

gins in our dataset: an estimated 17 origins of the hummingbird

syndrome within the crown clade of Penstemon.

Previous comparative phylogenetic surveys have suggested

a potential association between hummingbird adaptation and re-

duced diversification rates in North America based on the ob-

servation that clades of hummingbird-adapted species are rare

and individual hummingbird-adapted species are often sister to

clades of bee-adapted species (Abrahamczyk and Renner 2015).

One exception is the genus Castilleja, where a hummingbird syn-

drome lineage has diversified into a species-rich clade (Tank and

Olmstead 2008). By contrast, reduced diversification rates asso-

ciated with hummingbird pollination have not been observed in

neotropical groups (e.g., Givnish et al. 2014; Lagomarsino et al.

2017; Serrano-Serrano et al. 2017), where hummingbird pollina-

tion has sometimes been associated with increased diversification

rates.

This discrepancy may result from the substantially greater

hummingbird diversity in the neotropics than in temperate North

America, allowing for niche differentiation among bird species to

drive plant species diversification. By contrast, hummingbird taxa

in North America are not functionally diverse (all species having

relatively short and straight bills) relative to bee pollinators that

vary in morphology, size, and behavior (e.g., Wilson et al. 2004).

Furthermore, differences in hummingbird behavior between the

two regions may differentially affect patterns of pollen dispersal

(Schmidt-Lebuhn et al. 2007, 2019). Unlike most tropical hum-

mingbird pollinators, the majority of North American humming-

bird species migrate seasonally over large distances, potentially

causing substantial gene flow across the landscape relative to

bee pollinators (Kramer et al. 2011). This could in theory re-

duce allopatric speciation rates in hummingbird-pollinated plant

species.

TRANSITION RATE ASYMMETRY MAY EXIST BUT IS

NOT STRONGLY SUPPORTED

There are an estimated 12–20 shifts from bee to hummingbird

pollination in Penstemon, but no obvious cases of the reverse

transition. Moreover, there are ecological and genetic hypothe-

ses for why shifts from bee to hummingbird adaptation may be

directionally biased in North American flora (Thomson and Wil-

son 2008; Barrett 2013; Wessinger and Rausher 2015). How-

ever, our analyses were unable to rule out symmetric transi-

tions in any of our analyses, mainly because the transition rate

away from hummingbird pollination was so poorly informed by

our dataset (no lineage in the data appears to have a long his-

tory of hummingbird pollination). We do note that in roughly

80% of the posterior distributions of transition rates illustrated in

Figure 2A, the rate of transitioning to hummingbird pollination is

greater than the rate of reversals back to bee pollination. There-

fore, there is no evidence that reverse transitions to bee adapta-

tion occur at a higher rate than forward transitions to humming-

bird adaptation, which means that a high reverse transition rate

is unlikely to contribute to the rarity of hummingbird syndrome

species.
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OBSERVED PHYLOGENETIC PATTERN IS CONSISTENT

WITH MACROEVOLUTIONARY PROCESSES NEAR

EQUILIBRIUM

Here, we found that the current observed proportion of bee and

hummingbird syndrome species is very near the predicted equi-

librium proportions obtained by assuming that macroevolutionary

rates are stable over time. Although this agreement of observa-

tion with expectation could be an unlikely coincidence, it is also

consistent with the near equilibrium hypothesis that macroevo-

lutionary rates in Penstemon are relatively stable, and that suf-

ficient time has passed to allow the proportion of hummingbird

species to have reached its predicted evolutionary equilibrium.

However, we cannot at present definitively rule out the possibil-

ity that macroevolutionary rates increase or decrease over time

(nonequilibrium explanation), perhaps in a state-specific man-

ner, because methods for assessing this possibility are not yet

available. Nevertheless, it is clear that at least part of the rea-

son hummingbird pollinated species are currently rare is that

their diversification rate is lower than that of bee-pollinated

species.

If it is the case that Penstemon has achieved macroevo-

lutionary equilibrium for pollination syndrome diversity, then

hummingbird syndrome Penstemon species should remain sub-

stantially less common than bee syndrome species as long as

syndrome-specific diversification rates remain relatively stable in

the future. In addition, this scenario would indicate that macroevo-

lutionary equilibrium can be achieved relatively rapidly for labile,

ecologically relevant traits. This outcome contrasts with the re-

sults of O’Meara et al. (2016), who found that several floral traits

in angiosperms as a group are far from their expected macroevo-

lutionary equilibrium. This contrast suggests that, in general, time

to reach equilibrium is likely to depend on the trait examined as

well as on the taxon and ecological context. All of these unique

features can influence both the amount of time that has been avail-

able for diversification, as well as the diversification and transition

rates.
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