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Abstract: “Surrounding matters” is a phrase that has become more significant in recent 

times when discussing polymeric materials. Although regular polymers do respond to 

external stimuli like softening of material at higher temperatures, that response is gradual and 

linear in nature. Smart polymers (SPs) or stimuli-responsive polymers (SRPs) behave 

differently to those external stimuli, as their behavior is more rapid and nonlinear in nature 

and even a small magnitude of external stimulus can cause noticeable changes in their shape, 

size, color or conductivity. Of these SRPs, two types of SPs with the ability to actively 

change can be differentiated: shape-memory polymers and shape-changing polymers. The 

uniqueness of these materials lies not only in the fast macroscopic changes occurring in their 

structure but also in that some of these shape changes are reversible. This paper presents a 

brief review of current progress in the area of light activated shape-memory polymers and 

shape-changing polymers and their possible field of applications.  

Keywords: smart materials; shape-memory polymers; shape-changing polymers;  

liquid-crystalline networks; liquid-crystalline elastomers; azobenzenes  

 

1. Smart Polymer Materials 

Smart materials have revolutionized material science due to their capability of executing specific 

functions in response to changes in stimuli and, therefore, have potential applications in many areas; 
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for instance, as actuators, sensors and micro-pumps. Some SPs have the ability to actively move, on 

applying an appropriate stimulus. The characteristic feature that actually makes them “smart” is their 

ability to respond in a specific way, to very slight changes in the surrounding environment, such as 

temperature, pH, light, magnetic or electric field, or the presence of biological molecules. The 

uniqueness of these materials lies not only in the fast macroscopic changes occurring in their structure 

but also that some of these shape changes are reversible [1–4]. Depending on their response to external 

stimuli, smart polymers can be further classified into two sub-groups: shape-memory polymers (SMPs) 

and shape-changing polymers (SCPs).  

This paper presents a brief review on current progress in the area of light activated shape-memory 

polymers and shape-changing polymers and their possible field of applications. This review will not 

cover shape-memory polymers and the shape-changing polymers using stimuli other than light as they 

are already been a part of some excellent reviews [3,5–11]. 

1.1. Shape-Memory Polymers (SMPs) 

SMPs have the unique ability of returning to its original or permanent state after being transformed 

or altered by the external stimulus. This temporary shape is stable until the SMP is exposed to an 

appropriate stimulus such as heat or light (see Figure 1). SMP can go up to two or sometimes three 

shape transformations and the most popular way to achieve this is to use temperature as an external  

stimulus [12]. Along with the temperature change, the shape change of SMPs can also be triggered by 

light [13], electricity [14,15] or magnet [16]. The movement occurring during recovery is predefined as 

it reverses the mechanical deformation, which leads to the temporary shape. 

Figure 1. Schematic representing the molecular mechanism of photoinduced SMP [13],  

(a) stretching by applying stress, (b) photo-fixing by illumination with light of wavelength 

λA, (c) removal of external stress, (d) photo-cleaving by exposing to light of wavelength λB.  
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The shape-memory effect (SME) is not an intrinsic material property but a functionalization of a 

material and the SME depend only combining polymers molecular architecture along with a tailored 

processing and programming methods. Generally, SMPs are crosslinked polymer networks equipped 

with suitable molecular switches, which are sensitive to external stimuli. The crosslinks can be 

chemical (covalent bonds) or physical in nature (intramolecular interactions). 

1.2. Shape Changing Polymers (SCPs) 

SCPs alter their shape, e.g., shrink or bend, as long as they are exposed to an appropriate stimulus 

and the original shape is achieved as soon as the stimulus is terminated, demonstrated schematically in 

Figure 2. This shape-changing capability can be repeated several times (without applying any stress). 

A SCP is different from a SMP in that the geometry of the movement of the sample is determined by 

its original three-dimensional shape [4,17]. Most commonly used stimuli for SCPs are heat and light. 

Light is a particularly fascinating stimulus because it can be precisely modulated in terms of 

wavelength, polarization direction and intensity, allowing non-contact control. To be light responsive, 

polymers have to be equipped with photosensitive functional groups or fillers, e.g., cinnamic acid or 

azobenzenes [18]. The incorporation of such photosensitive groups or molecules into a tailored 

polymer surrounding in combination with functionalization process is a well-established strategy for 

transferring effects from the molecular level into effects that are macroscopically visible.  

Figure 2. Schematic representation of photo-responsive SCP process. Polymer chains 

functionalized with photo-active molecules subject to shape change on exposing it to 

suitable wavelength of light. The original shape is recovered as soon as the stimulus is 

turned off.  
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Photo-responsive liquid-crystalline elastomers (LCEs) are one of the interesting classes of smart 

materials because they combine the anisotropic aspects of LC phases and the rubber elasticity of 

polymer networks. 

2. Liquid Crystalline Materials 

Liquid crystals (LCs) are a unique state of matter between a solid and a liquid. The molecules in LC 

material typically do not exhibit any long-range positional order but they do show some extent of 

orientational order. The characteristic orientational order of the LC state is between the solid and liquid 

phases and this is the origin of the term mesogenic state, used synonymously with LC state [19].  

LC state can be achieved in two ways i.e., lyotropically, by varying a composition of a  

multi-component system, or thermopically, by varying temperature. A lyotropic LC phase is achieved 

by dissolving amphiphilic molecules in a solvent where their phase transitions can be observed through 

the addition or removal of solvent. Thermotropic LC structures are observed in a particular 

temperature range. At a high temperature, the LC material shows a typical isotropic behavior of a 

liquid while at too low temperatures it shows typical crystal structures of a solid. Moving from low to 

high temperature, the LC material exhibits various different structures [20]. The three important types 

of phases for calamitic LCs are nematic, smectic, and cholesteric shown schematically in Figure 3. 

Figure 3. Schematic representation of different Liquid crystal (LC) phases, (a) nematic 

phase, (b) smectic A phase, (c) smectic C phase, (d) cholesteric phase. 

 

In the nematic phase structure, LC molecules are arranged parallel to the molecular long axis while 

having the freedom of rotating and moving on either direction of their long axis. This particular 

orientation results in making a long range orientational order but a short positional order of the LC 

structure. An average direction of all the molecular long axes, defines the overall directional director 

“z” and due to this orientational order, they show anisotropy in various properties like, optical 

properties (birefringence), viscosity, electrical and magnetic response, etc. [20]. In contrary to the 

nematic phase, molecules in the smectic phase found at relatively lower temperatures and possess both 
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the orientational and positional order. They are biaxially oriented and form layers where they are not 

only aligned with respect to their long axis but also to one of their shorter axis. There are various types 

of smectic phases represented by the alphabets A, B, C, E, F, etc., depending largely upon their 

molecular arrangement within a layer. Smectic A and smectic C phases are most common among them 

and differ only by the position of molecular long axis with regard to the layer’s normal axis. In smectic 

A structure, molecular long axis is parallel to the layers normal axis while in smectic C phase it is 

tilted with an angle θ as shown schematically in Figure 3. Other categories have usually been classified 

according to the crystal structure of molecules within the layer e.g., in smectic B phase, molecules are 

arranged in hexagonal phase centered structure while in smectic E they form a orthorhombic  

assembly [21]. 

The chiral or the cholesteric phase is similar to that of the nematic phase on a local scale. As in the 

nematic phase, the molecules can be described by a director; however, the director in the cholesteric 

phase is twisted about an axis normal to the molecular orientation, following a helical path. The 

distance over which the molecular director rotates for a complete 360° along the helix axis is defined 

as the pitch of cholesteric helix. The twist can be right-handed or left-handed depending on the 

molecular conformation. Iridescent colors are characteristic of cholesteric phases [22,23]. 

3. Liquid-Crystalline Elastomers (LCEs) 

LCEs are unique materials that exhibit the properties of elastomers (entropic elasticity) and liquid 

crystals (self-organization) [24–27]. Due to the LC properties, mesogens in LCEs show an aligned and 

coupled crosslinked structure, which leads to many characteristic properties. Depending on the mode 

of alignment of mesogens in LCEs, they were classified as nematic LCEs, smectic LCEs, cholesteric 

LCEs, etc. [9]. 

The concept of LCEs was first proposed by de Gennes [28], since then it has been investigated 

extensively by researchers. A major breakthrough in the area of LCEs took place when Küpfer and 

Finkelmann [29] successfully synthesized nematic monodomain LCEs (see Figure 4). Since then, a 

variety of LCEs with various structures of backbone chain, along with various kinds of mesogens, have 

been prepared. One of the important factors in the synthesis of LCEs is to perform the polymerization 

reaction at temperatures where the system exhibits a LC Phase. LCEs are synthesized by several 

synthetic routes. One can distinguish them into four different synthetic pathways. 

The first method is commonly used and utilizes siloxane chemistry. In this synthetic route linear, 

non-functional/functional polyhydrosiloxane chain is coupled with the mesogenic groups and a 

crosslinking agent in one step. This reaction is platinum catalyzed, which results in the attachment of 

mesogens and crosslinking moieties to polyhydrosiloxane backbone [30]. Due to the reaction kinetics, 

vinyl groups react approximately two orders of magnitude faster than methacryloyl groups. This 

results in the crosslinking to occur in two steps. Fast reaction of vinyl groups leads to a weakly 

crosslinked network. Complete crosslinking is achieved in the second step by slowly reacting 

methacryloyl groups at high temperature. By using this synthetic method, various types of LCEs, 

namely end-on mesogens [29], side-on mesogens [31,32], photosensitive side-groups [33] and  

main-chain polymers [34] have been produced. The benefit of this chemical route is that it is easy to 

perform and mesogenic compounds can be exchanged without making considerable changes in the 
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system. The problem with the method is that resulting networks are difficult to purify. Due to an 

incomplete reaction, low molar mass material (unreacted mesogens or crosslinker) can remain in the 

elastomer, which might migrate and phase separate. The only method for removing these impurities is 

to extract them with a suitable solvent from the elastomer, which is time consuming and is not always 

complete [9]. 

Figure 4. (a) Schematic representation of synthetic strategy proposed by Küpfer and 

Finkelmann, for the synthesis of monodomain nematic Liquid-Crystalline Elastomers 

(LCEs); (b) chemical structures of polymer chain, LC monomer and crosslinkers used for 

the synthesis monodomain nematic LCEs [29].  

 
 

The second synthesis strategy is also a two-step method where initially liquid-crystalline polymer is 

synthesized, which contains additional functional groups. These functional polymers are then mixed 

with a multifunctional crosslinking agent that reacts selectively with the functional groups, which 

results in network formation. This strategy has been widely used for the crosslinking of polyacrylate or 

methacrylates. The crosslinking can be done by coupling of isocyanates to alcohols [35], “click” 

reaction of azides and acetylenes [36] (see Figure 5), reaction of active ester and amines [37] and by 

hydrosilylation reaction [38]. The purification of the product is comparatively easier than the first 

synthesis route as LC polymers can be purified before the final crosslinking step. 
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Figure 5. Crosslinking of telechelic polymer by reacting triacetylene species with azide 

functionalized LC polymer by “click chemistry”. Reprinted with permission from [36]. 

Copyright 2008, American Chemical Society.  

 

In the above mentioned two synthetic concepts, to achieve monodomain LCE is challenging as it 

requires the use of solvent during the crosslinking step to ensure miscibility of the reactants. The use of 

solvent leads to a mixture which have some parts in an isotropic state and that makes the monodomain 

orientation of mesogens difficult [9]. In the third route, LC polymer contains crosslinkable groups that 

can be crosslinked photonically [39–42] (see Figure 6) or by thermal/UV initiation [43–45]. The 

disadvantage of this synthetic route is the difficulty in achieving high degrees of crosslinking as one 

uses LC prepolymer that contains crosslinkable groups and steric hindrance, which makes it difficult to 

achieve high degrees of crosslinking. By this approach high purity can be achieved (same as second 

synthetic route) as LC polymer can be purified before the crosslinking step. 

Figure 6. (a) Chemical structures of the molecules utilized for the synthesis of  

photo-crosslinked monodomain LCEs by Komp et al. [40]; (b) schematic representation of 

photoinduced crosslinking mechanism.  
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A fourth synthetic pathway uses a completely different approach. LCEs are prepared in one step by 

mixing LC monomer, radical initiator and multifunctional crosslinker together (see Figure 7). The 

polymerization reaction to yield LCE could be done thermally or with UV irradiation, depending on the 

type of initiator used. By using this approach, several types of LCE have been synthesized. For instance, 

acrylate functionalized monomer mixed together with radical initiator (thermal/UV), using diacrylate as 

crosslinker, is employed to yield LCE [46–49]. Main chain LCEs, which utilize this synthetic approach, 

have been synthesized by polymerizing LC monomer (with vinyl and mercapto group) and 

multifunctional crosslinker (with two vinyl and mercapto groups) using a radical photo-initiator [50–52]. 

Figure 7. Synthetic route for the synthesis of photosensitive LCEs [49]. The 

polymerizations were initiated thermally by mixing monomer and crosslinker together with 

the initiator.  

 

4. Azobenzene Chromophore 

Photo-responsive smart polymers can be synthesized by functionalizing the material with 

photosensitive molecules such as cinnamic acid (CA), cinnamylidene or azo compounds. Out of these 

azobenzene is the most widely used photosensitive molecule due to its fast response on exposure to 

appropriate wavelength of light [18]. Azobenzene is composed of two aromatic rings where an azo 

linkage (−N=N−) joins the two phenyl rings. Different type of azo compounds can be obtained by 

substituting an aromatic ring with various substituents to change geometry and electron 

donating/withdrawing mechanism. Members of this class of chromophores share numerous 

spectroscopic and photo-physical properties; however, it is useful to consider them generally based on 

their photochemistry and in particular, the -conjugated system which gives strong electronic 

absorption in the UV and/or visible portions of the spectrum depending on the ring-substitution pattern. 
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The azobenzene molecule is quite rigid and exhibits LC behavior, which makes them useful candidate 

for the synthesis of photo-responsive LC materials. One of the interesting properties of azobenzene and 

its derivatives is its fast and reversible photoisomerization, which takes place upon irradiation with 

suitable wavelength of light (Figure 8). Azobenzenes possess two isomeric configration: a thermally 

stable trans state and a meta-stable cis form. Under UV irradiation, the trans azobenzenes will be 

efficiently converted to the cis form, which will reduce the molecular size (the distance between 4 and 

4’ carbons decreases from 9 Å to 5.5 Å) [53]. This cis form will thermally revert to the more stable 

trans form (rate is determined by the molecule’s particular substitution pattern) as the light source is 

switched off or switching back by illumination with visible light. This extremely clean photochemistry 

gives rise to the numerous remarkable photo-switching and photo-responsive behaviors observed in 

these systems [4,54–57]. 

Figure 8. Trans-cis isomerization of azobenzene. 

 

5. Preparation of Oriented Liquid-Crystalline Network (LCN) Films 

Oriented LCN films are generally prepared either (i) by a mechanical stretching of a weakly 

crosslinked network which unfolds the chains and final crosslinking step (under load) would fix them 

in a LC state or (ii) by performing a polymerization reaction between alignment layer that provides an 

anchoring action for LC molecules.  

One of the requirements for the mechanical stretching route is that the material should be able to 

withstand the mechanical force applied during stretching operation. The preferred method for 

obtaining oriented LCN films is to achieve orientation by performing polymerization reaction between 

rubbed polyimide alignment layers. Polyimides are generally preferred as an alignment layer because 

of their excellent properties with respect to chemical resistance: thermal stability, adhesion to 

substrates, transparency and high resistivity [58,59]. Polyimide films are rubbed mechanically by using 

a mechanical roller, which is coated with nylon or rayon, shown schematically in Figure 9. The 

polymerization reaction is carried out between the rubbed polyimide layers, which results in oriented 

LC films. The drawback of this method is that orientation of molecules only takes place near the 

surface, which means that it is difficult to obtain orientation in thicker films. 
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Figure 9. Schematic representation of experimental setup for fabrication alignment layers [60].  

 
 

Recently Yu and coworkers have reported a method to prepare highly oriented photo-deformable 

crosslinked liquid-crystalline polymer/carbon nanotube (CLCP/CNT) nano composite films [61]. The 

composite films were prepared by performing a polymerization reaction between glass cell that is 

covered with CNT sheet and also the CNT sheet in-between. They found that aligned nanostructure of 

CNT effectively orients the azobenzene containing CLCP along the length of CNTs through a facile 

melting process without employing any other aligning layer. The resulting oriented nanocomposite 

films exhibit bending and unbending behavior on irradiation with UV and visible light. Additionally, 

the incorporation of CNT sheets remarkably increases the mechanical strength and electrical 

conductivity of photo-responsive CLCP films. 

6. Light Responsive LCNs 

6.1. Photosensitive Shape-Changing LCEs & LCNs 

Photo-responsive shape-changing LCNs have attracted researchers’ interest due to their capability 

to selectively alter their shape in response to changes in the stimulus. The advantage photosensitive 

LCNs offer over amorphous smart polymers is anisotropy. The amorphous photosensitive smart 

polymers do not exhibit microscopic or macroscopic order, which results in the photomechanical 

deformations in an isotropic and uniform way i.e., with no preferential direction for deformation. The 

first example of amorphous photosensitive polymer was synthesized by Eisenbach [62] (see  

Figure 10). They demonstrated approx. 0.2% contraction of the film on UV irradiation and expansion 

back to original position over irradiation with visible light. This contraction is a result of trans-cis 

isomerization of azobenzene chromophores, which were reversed due to cis-trans transformation by 

the visible light. Unlike amorphous photosensitive polymers, light responsive LCNs offers fast and 

large deformation in preferential direction i.e., in the alignment direction of chains. For this reason, 

LCNs functionalized with photosensitive molecules are being produced, which have properties of both 

LCs and elastomers. This was demonstrated initially by Finkelmann and coworkers [33], where they 

succeeded in inducing a contraction by 20% in an azobenzene containing monodomain LCE upon 
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exposure to UV light to cause the trans-cis isomerization of the azobenzene moiety. Trans-cis 

isomerization of azobenzene moieties resulted in the lowering of nematic order, which causes a 

significant uniaxial deformation of the LCs along with the director axis. Although the uniaxial 

deformation demonstrated by Finkelmann and coworkers was significant, the rather slow response 

(from minutes to several hours) over irradiation with light was a major obstacle in finding some 

interesting applications. This slow system response was later on rectified by Li et al. [63]. By 

synthesizing side-on nematic photosensitive LCEs, they were able to reach 12–18% contraction of the 

film in approx. 1 min over irradiation with UV light. 

Figure 10. Side-on photo-responsive Liquid-Crystalline Network (LCN) film, (a) before 

UV irradiation; (b) film contraction under UV irradiation; (c) chemical structures of side-

on LC monomers used for the synthesis of LCE. Reprinted with permission [63]. 

Copyright Wiley-VCH 2003.  

 
 

Terentjev and co-workers [64,65] studied the effect of different compositions and crosslinking 

configuration on the uniaxial contraction behavior of these side-on LCNs. They found that  

the magnitude of photomechanical deformation is governed by proportion and position of  

azobenzene moieties. 

6.2. Photoinduced 3-D Movements of LCNs 

The motivation for the development of multi-dimensional photo-responsive LCNs stems from the 

need to broaden the potential application areas especially as robotic arms or motors. Ikeda et al. were 

first to demonstrate the photoinduced bending in azobenzene containing LC gels [47] and LCEs 

[47,53,66]. They prepared crosslinked films by in-situ photoinduced polymerization of azobenzene 

based LC monomer and diacrylate as a crosslinker between glass slabs, coated with rubbed polyimide 

films to yield oriented films, shown schematically in Figure 11. These films showed anisotropic 

swelling in good solvents such as toluene or chloroform, but no or very little swelling in poor solvents 

such as ethanol. Upon exposure of these films in toluene to UV light (360 nm), the film bends towards 

the irradiation direction due to trans-cis isomerization of azobenzene moieties. Complete bending was 

(c)
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achieved approximately in 20 s, while exposure to visible light (450 nm), causes the unbending of the 

film, which was a caused by cis-trans back isomerization of azobenzene molecules. 

Figure 11. Schematic representing the fabrication procedure for synthesis of oriented LCE 

films. Initially the glass slabs are spin coated with polyimide and baked, followed by 

rubbing of these films to yield alignment layers. Then monomer, crosslinker and initiator is 

sandwiched between the coated glass plates and polymerized using heat/UV. The resulting 

film is then removed from the plates.  

 
 

The same bending and unbending of these films were observed in air, when the films were first 

heated over its glass transition temperature (Tg) and then irradiated with UV/visible light to cause 

bending/unbending of LCE films. When the film was rotated by 90°, the bending was still observed in 

the rubbing direction, which expresses that bending is anisotropic. Schematic representation of 

anisotropic bending/unbending mechanism of oriented azobenzene based LCNs is demonstrated in 

Figure 2. Initially, the film is heated above its Tg to give freedom to polymer segments so that chains 

have enough flexibility to move. On irradiation of the crosslinked film with UV light, 99% of incident 

photons are absorbed by azobenzene molecules at the surface (<1 µm) due to the high absorption 

coefficient of azobenzene molecules. This results in trans-cis isomerization of azobenzene moieties at 

the surface while the rest of azo molecules in the bulk remain unchanged. That leads to a volume 

contraction taking place only at the surface of LCE film. Therefore, bending is induced towards the 

irradiation direction. Moreover, since azobenzene chromophores are aligned only in one direction (i.e., 

along the rubbing direction) the films could only change their shape in one direction on trans-cis 

photo-isomerization [47]. Ikeda and coworkers also analyzed the effect of crosslinking density on the 

bending behavior of monodomain crosslinked LC films [66] (see Figure 12). They reported that the 

films with higher crosslinking densities showed higher bending extents. Higher amount of crosslinker 

results in greater alignment of azobenzene moieties along the rubbing direction. Therefore, exposure to 

UV light results in the volume contraction along the rubbing direction and hence, overall bending 

extent of photosensitive LCE film is boosted.  

By synthesizing polydomain azobenzene based LCEs and using selective absorption of linearly 

polarized UV light, it was demonstrated [53] (see Figure 13) that one could selectively alter the 

bending direction of the film by changing the polarization direction of incident light. The films bend 

significantly, in parallel to the irradiation direction of light. 
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Figure 12. Photoinduced bending and unbending behavior of photo-responsive LCEs with 

different crosslinking densities. (A) LCE with 5% crosslinker; (B) 10% crosslinker;  

(C) 50% crosslinker. Adopted from [66]. Copyright (2004) American Chemical Society.  

 

Figure 13. (a) Chemical structure of monomer and crosslinker used in the synthesis of LCN 

films. (b) Photographs of direction controlled bending of polydomain LCN film by 

irradiation with linearly polarized UV light (366 nm) at different angles of polarization. The 

bent films reverted back to initial flat state by irradiation with visible light (540 nm). 

Reprinted with permission from Macmillan Publishers Ltd. [Nature] [53], copyright (2003).  
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Shortly after, Muhoray and co-workers [67] demonstrated that by dissolving azobenzene dyes into 

an LCE system, the mechanical deformation can be greatly enhanced (more than 60° bending) on  

non-uniform illumination with visible light. When this dye-doped sample was placed over a water 

surface and irradiated, LCE swims away from light, the action resembles that of flatfish (Figure 14). 

Figure 14. (a) Photo-mechanical response of the dye-doped LCE film, (i) before 

irradiation with 514 nm green laser, (ii) after illumination the sample bends about 45°.  

(b) The shape deformation of the dye-doped LCE sample on irradiation with 514 nm light. 

(c) Schematic representation of the mechanism underlying the locomotion of the LCE 

sample. (d) Chemical structures molecules employed in synthesis of dye doped nematic 

LCE. Reprinted with permission from Macmillan Publishers Ltd [Nature Materials] [67], 

copyright (2004). 

 
 

White and coworkers explored the photoinduced bending behavior of LCE film on exposure to 

single laser beam at room temperature [68]. The response to laser light was extremely fast (approx. 

170°/s) and bi-directional bending was achieved by simply changing the polarization of the beam in 

orthogonal directions. The similar room temperature bending and twisting of LCN films was achieved 

by synthesizing densely crosslinked polymer networks that contains azobenzene moieties in twisting 

configuration [69]. The chirality of the twisted configuration has been exploited to produce a coiling 

motion of the film over irradiation with UV light.  

The effect of initial alignment of mesogens on photoinduced bending behavior of LCE films was 

studied [70]. When exposed to UV light, it was also found that LC mesogens aligned homotropically 

in LCE and resulted in bending away from the direction of light source. Azobenzene mesogens are 

aligned perpendicularly to the film surface in homeotropic film, thus exposure to UV light induces 

isotropic expansion, which leads to bending of the film away from the light source. The effect of 
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degree of order of mesogens was studied with the use of ferroelectric LCEs, where the degree of 

alignment could be triggered with an electric field [71]. The photoinduced mechanical stress generated 

by this system was about 220 KPa, which is quite similar to the contraction stress of human muscles 

(~300 KPa). 

A high frequency photo-driven deformation in azobenzene based monodomain or polydomain 

LCNs, due to trans-cis-trans back isomerization, was demonstrated by Bunning et al. [72–76]. 

Subjecting monodomain azobenzene LCNs to higher wavelength argon-ion laser light of 457–514 nm 

causes bending of the cantilever towards the laser source and blockage of laser beam results in 

recovery of the cantilever to its original position, due to elastic recovery of unexposed regions and 

entropic restoring forces governed by the network within the exposed region, rapidly reorienting the 

photo-driven mesogens to realign back to monodomain configuration [75]. They also synthesized UV 

pretreated azobenzene based LCN of polydomain orientation to have two 1 µm thick cis isomer rich 

layers. On exposure of Ar+ laser from one side, the film bends away from the laser due to cis-trans 

isomerization. The cis-trans isomerization at the exposed surface restores the LC order at the surface, 

which removes the contractile strain on the front surface relative to the bulk [72]. Later on, as the 

concentration of trans isomers increases, the trans-cis isomerization occurs, which results in bending 

toward the light source. They also have demonstrated the photomechanical response of glassy 

azobenzene polyimide networks on exposure to linearly polarized 442 nm light. It was shown that 

increasing the crosslinker concentration results in enhancement of bending extent of cantilever from 5° 

to 20° [77]. 

Recently, high frequency and large amplitude flexural torsional oscillations have been demonstrated 

in monodomain azobenzene based LCN cantilevers having comparatively lower concentrations of 

azobenzene chromophores [78] (see Figure 15). Flexural torsional oscillations in these monodomain 

azo LCN were realized by aligning the nematic director at intermediate angles to the long axis of the 

cantilever. On exposing LCNs to light from a 442 nm coherent wave laser resulted in non-uniform 

strain through the sample thickness resulting in bending, while adjustment in the orientation of the 

nematic director creates a shear gradient that causes twisting of the cantilever. These flexural torsional 

oscillations imitate the flapping motions of insects that undergo 3-D movements (bend, twist and 

sweep) to fly [79].  

Yu et al. successfully demonstrated that photoinduced bending and unbending in crosslinked LC 

films could be achieved over irradiation with visible light by incorporating azotolane chromophores in 

the side chain [80] (see Figure 16). This is due to longer conjugated structure of azotolane groups in 

the side chain, which results in the maximum absorption occurring at higher wavelength (i.e., 384 nm). 

On irradiation of crosslinked azotolane LC films with visible light at 436 nm results in bending 

towards the acitinic light due to trans-cis isomerization of azotolane groups. Moreover, irradiation with 

visible light at 577 nm results in unbending of the films due to cis-trans back isomerization.  
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Figure 15. (a) Polarization optical micrograph of azobenzene containing LCN and 

photomechanical response of LCN films with nematic director cut at (i) 0°, (ii) 15°,  

(iii) 45°, (iv) 90° to the long axis of the LCN film. (b) Chemical structure of molecules 

used for the synthesis of photo-responsive LCN cantilevers. Reprinted with permission 

[78]. Copyright Wiley-VCH 2011. 

 

Figure 16. (a) Chemical structure of LC monomer and crosslinker used to synthesize an 

azotolane LCN film, (b) photo-induced bending and unbending behavior of the CLCP 

films on exposure to sunlight through a lens and glass filters to let desired wavelength of 

light pass through. Over irradiation with >430 nm sunlight the film bends towards the light 

and on exposing the CLCP films to >570 nm light results in unbending of the films to 

initial flat position. Reproduced from [80] with permission of The Royal Society  

of Chemistry. 

 

(ii)
iii

(a) (b)
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Kondo et al. have reported that the photo-mobil properties of photo-active LCE films can be altered 

by the concentration and location of azobenzene molecules [81]. They found that higher bending in 

photosensitive films could be achieved by decreasing the feed ratio of azobenzene moieties in LCE 

film. As the feed ratio of azobenzene molecules decreases, penetration depth and degree of 

isomerization is enhanced, this results in enhanced photoinduced movements.  Moreover, it was found 

that azobenzene chromophores at the crosslink are more effective in photoinduced bending process 

than those in the side chains.  

More recently, precisely controlled three dimensional photo-mobility of crosslinked azobenzene 

LCP have been reported by Ikeda and coworkers [82]. The principle of photoinduced bending and 

unbending of these crosslinked fibers were same as reported for azobenzene containing LCEs [47], 

where bending was achieved by irradiation with 366 nm actinic light and reversal to original shape by 

exposing to visible light having wavelength of >540 nm. 

7. Light Activated Shape-Memory LCNs 

Light is a very useful trigger to alter the shape of polymers but there are very few publications that 

address light activated shape-memory polymers [13,83–85]. The pioneering work in this area was 

demonstrated by Lendlein et al. [13] (shown in Figure 17), where they used polymers, functionalized 

with cinnamic groups to exhibit photoinduced shape-memory effect. Initially, the photo-responsive 

polymer film was stretched by applying mechanical force and then exposed to UV light at wavelength 

higher than 260 nm to fix the elongated shape due to photo-induced [2+2] cycloaddition reaction. The 

original shape was recovered by exposing the films to wavelength of light shorter than 260 nm at room 

temperature, which causes the decrosslinking of photosensitive netpoints. In addition, when only the 

top side of the mechanically stretched film was irradiated with UV light (>260 nm), a cork screw spiral 

shape was obtained as the stress was released. The spiral shape was obtained due to the formation of 

two layers, i.e., the top layer is well fixed due to formation of net points and the bottom layer keeps its 

elasticity. The work of Havens et al. [83] also uses the similar photo crosslinking strategy to photo fix 

the shape and decrosslinking by irradiation with different wavelength of light. 

Recently, White and coworkers have showed that one can use azobenzene based LCP networks to 

synthesize light activated shape-memory LCN [86] (see Figure 18). Azobenzene based LCN networks 

were synthesized by photoinduced polymerization of acrylate based monomer and azobenzene 

containing crosslinker. Monodomain LCN networks were synthesized by performing polymerization at 

75 °C, while polymerization at 125 °C results in polydomain samples. Initially, the films (both 

monodomain and polydomain) were deformed at 100 °C (well above their Tg) and then quenched to 

room temperature to thermally fix the hook-like temporary shapes. Later on, the films were exposed to 

linearly polarized 442 nm laser light which causes the bending of the film. On removal of 442 nm light 

the film retains its bent shape. This photo-fixed shape is due to light directed rearrangements to the 

polymer chains in the glassy matrix (analogous to thermal fixing of glassy shape-memory polymer) 

[86]. By exposing the films to 442 nm circularly polarized light undoes the photo-fixing, restoring the 

mechanically deformed hook-like shape. The permanent shape of the LCN was achieved by heating 

the films over their Tg, which causes the relaxation of the stretched polymer network chains to the 

thermodynamically more stable configuration. Lee et al. demonstrated that the photomechanical 
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response of glassy, azobenzene-functionalized polyimides can be tailored by manipulating the energy 

state of the glass via physical aging [85]. They reported that physical aging of azobenzene 

functionalized polyimides increases the density of glass, reduces the local free volume and thus 

reduces the minima in local conformation space. These factors influence the magnitude of macroscopic 

strain and the ability of material to shift from shape fixing to shape recovery, respectively.  

Figure 17. (i) Shape-memory effect of photo-responsive polymer demonstrated by 

Lendlein et al. [13]. (A) grafted polymer film, (a) Permanent non-elongated shape,  

(b) temporary shape after mechanical elongation and irradiation with light >260 nm, the 

film stayed in the elongated state after removal of stress, (c) recovered shape, after 

irradiation with light <260 nm. (B) An interpenetrating polymer network film, (a) 

permanent shape, (b) temporary cork spiral shape, which results after irradiation from one 

side, (c) recovered shape after irradiation with UV light of wavelength <260 nm. Reprinted 

with permission from Macmillan Publishers Ltd [Nature] [13], copyright (2005). 
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Figure 18. (a) Chemical structure of molecules used in synthesizing light-activated  

shape-memory LCNs. (b) Light activated shape-memory of free standing LCN films,  

(i) permanent shape, (ii) initial temporary shape by mechanical deformation,  

(iii) photo-fixing of the temporary shape by exposing to 442 nm light, (iv) shape retention 

after turning off the light, (v) shape recovery by exposing the LCN films to right-handed 

circularly polarized light, (vi) complete recovery of free standing film to permanent 

position. (c) Behavior of freestanding films without photo-fixing, (i) permanent shape,  

(ii) temporary shape by mechanical deformation, (iii) without photo-fixing the 

mechanically deformed shape restores to initial flat shape on removal of mechanical force. 

Reproduced from  ref  [86] with permission of The Royal Society of Chemistry. 

 

8. Some Applications of Photo-Responsive LCNs 

For almost a decade, material scientists have tried to develop artificial actuators by synthesizing 

photo-responsive LCN. As mentioned in the previous sections, light is an interesting stimulus to 

precisely trigger the motion of smart materials as it allows remote actuation without employing any 

mechanical or electrical forces. This makes photoactive LCN a potential candidate for various novel 

applications in engineering and medicine. Ikeda and coworkers have demonstrated that plastic motor 

can be driven by the sophisticated motion of photo-responsive LCE films laminated on polyethylene 

(PE) sheet over irradiation with light [87]. They prepared a plastic belt by connecting the two ends of 

laminated LCE/PE film and then placed on a pulley system as illustrated in Figure 19. Exposing the 

belt to UV light from the top and visible light from the bottom simultaneously, induces the rotation of 

(a)

(b)

(c)
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the belt which finally drives the pulleys. By using the same material system i.e., laminated LCE/PE 

film, they showed 3-D movements such as an inchworm walk and flexible robotic arm motion [88]. 

Figure 19. A photo-driven plastic motor with the laminated LCN film. (a) Schematic 

representation of the photo-driven plastic motor setup, (b) photographs of motor operation, 

upon irradiation with UV light on one side, the film contracts and irradiation with visible 

light from the other results in expansion, which results in the rotation of motor. Reprinted 

with permission [87]. Copyright Wiley-VCH (2008). 

 
 

Broer and coworkers synthesized photo sensitive micro-actuators from LCN by inkjet printing in 

combination with the self-organizing LC mesogens, shown in Figure 20. These micro-actuators mimic 

the motion of artificial cilia. They found that upon irradiating the sample with light the sample bends 

away from the light source. They were able to control the bending modes by exposing the LCN to an 

appropriate wavelength of light [48]. 
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Figure 20. (a) Schematic representation of photo-driven artificial cilia by exposing to 

controlled wavelength of light. (b) Response of LCN actuator to two different wavelengths 

of light. Reprinted with permission from Macmillan Publishers Ltd. [Nature Materials], 

copyright (2009) [48].  

 
 

Recently Yu and coworkers have demonstrated the use of photo-sensitive LCN films to activate 

membrane pumps [89] and as a valve membrane [90]. In addition, they also developed a micro-robot 

made out of a laminate of photo responsive LCN film and stretched PE sheet, which could move a 

weight up to 10 mg [91]. 

9. Conclusions 

Photo-responsive LCNs have been explored extensively in past decades as they can remotely and 

precisely trigger the shape that makes them a potential candidate in various applications such as soft 

actuators and photo-driven sensors. Photo-responsive shape-changing LCNs have been utilized by 

material scientists to mimic various 2-D and 3-D movements, while on the other hand there is 

substantial potential in the area of photo induced shape-memory LCN, as there were only few  

works reported. 

In this review, we provided a summary of recent developments in the area of photo-responsive 

shape-memory and shape-changing liquid-crystalline polymer networks. As research in this area is 

quite scarce, still many challenges and opportunities lie ahead of us. For instance, the mechanical 

forces generated by these photo-responsive LCNs are quite low and the efficiency of photo energy 

conversion is also not optimal.  Looking into future, we anticipate major advances in the area of  

photo-responsive SMPs and also some “real life” applications for photo-responsive LCNs as actuators, 

muscles and sensors. 
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