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Abstract

Learning causal networks from large-scale genomic data remains challenging in absence of

time series or controlled perturbation experiments. We report an information- theoretic

method which learns a large class of causal or non-causal graphical models from purely

observational data, while including the effects of unobserved latent variables, commonly

found in many genomic datasets. Starting from a complete graph, the method iteratively

removes dispensable edges, by uncovering significant information contributions from indi-

rect paths, and assesses edge-specific confidences from randomization of available data.

The remaining edges are then oriented based on the signature of causality in observational

data. The approach and associated algorithm, miic, outperform earlier methods on a broad

range of benchmark networks. Causal network reconstructions are presented at different

biological size and time scales, from gene regulation in single cells to whole genome dupli-

cation in tumor development as well as long term evolution of vertebrates. Miic is publicly

available at https://github.com/miicTeam/MIIC.

Author summary

The reconstruction of causal networks from genomic data is an important but challenging

problem. Predicting key regulatory interactions or genomic alterations at the origin of

human diseases can guide experimental investigation and ultimately inspire innovative

therapy. However, causal relationships are difficult to establish without the possibility to

directly perturb the organisms’ genome for ethical or practical reasons. Besides, unmea-

sured (latent) variables may be hidden in many genomic datasets and lead to spurious

causal relationships between observed variables. We propose in this paper an efficient

computational approach, miic, that overcomes these limitations and learns causal net-

works from non-perturbative (observational) data in the presence of latent variables. In
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addition, we assess the confidence of each predicted interaction and demonstrate the

enhanced robustness and accuracy of miic compared to alternative existing methods.

This approach can be applied on a wide range of datasets and provide new biological

insights on regulatory networks from single cell expression data or genomic alterations

during tumor development. Miic is implemented in an R package freely available to the

scientific community under a General Public License.

Introduction

Network reconstruction methods have become ubiquitous to analyze large-scale information-

rich data from the latest genomic technologies. Recently, methodological advances in the field

have been seeking to learn causal relationships using time series or controlled perturbation

experiments [1, 2]. However, such strategies can be technically impracticable or costly, if not

unethical, in many biological contexts.

Alternatively, graphical models can be learned by simply observing enough random varia-

tions in unperturbed data, as for the reconstruction of gene regulatory networks from single-

cell gene expression data. However, most methods based on this principle, such as Bayesian

search-and-score [3], sparse inverse covariance estimation [4], maximum entropy [5] or diffu-

sion map [6] methods, assume as underlying models either causal networks with only directed

edges or non-causal networks with only undirected edges. Thus, they cannot uncover nor rule

out causality in observational data. By contrast, constraint-based methods [7–10], which iden-

tify structural constraints corresponding to all dispensable edges in a graph, can in principle

uncover causality from purely observational data. Advanced constraint-based methods [9, 10]

reconstruct Markov equivalent models of a broad class of “ancestral graphs” [11], that include

undirected (−), directed (!) and possibly bidirected ($) edges originating from latent com-

mon causes, L, unobserved in the available data (i.e.⇠ L⇢). However, constraint-based meth-

ods are often not robust on small datasets and have algorithmic complexity issues when

including unobserved latent variables [9–12]. Yet, latent variables are commonly found in

many real applications, as in the case of an unobserved transcription factor TF co-regulating

two co-expressed genes, i.e. G1 ⇠ TF⇢ G2 (see example of single cell transcriptomics in the

Results section). These unobserved variables should not be ignored in practice, as they actually

impact the causal relationships between observed variables, leading to spurious causal associa-

tion between co-regulated genes G1 and G2 in the previous example. While the algorithmic dif-

ficulties of constraint-based methods have so far limited their applicability in practice,

understanding cause-effect relationships [13] remains of primary interest to model complex

biological systems and anticipate their response to environmental changes or genetic

alterations.

We report here an information-theoretic method, that simultaneously circumvents the

complexity and robustness issues of constraint-based approaches, and demonstrate its applica-

bility to real biological data. The method builds on an earlier information- theoretic approach

[14], in order to i) include latent variables, a notorious conceptual and algorithmic difficulty in

causal network reconstruction [9–13], and ii) provide an edge specific confidence assessment

of retained edges, which lacks in traditional constraint-based methods. Both aspects are impor-

tant in practice to reconstruct robust networks from actual biological data. The approach is

applied to reconstruct causal networks from a variety of genomic datasets at different biologi-

cal size and time scales, from single cells to organisms and entire phyla.
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Results

Background: Signature of causality and unobserved latent variables in

observational data

Our information-theoretic method for network reconstruction is based on the analysis of mul-

tivariate information [14–19], I(X; Y; Z; � � �), which extends the concept of mutual information

[20] beyond two variables, I(X;Y) = ∑x,y p(x,y)log(p(x,y)/p(x)p(y)), where p(x), p(y) and p(x,y)

are the measured probability distributions of single or joint variables X and Y from the avail-

able data D (see Materials and methods). Most importantly, unlike two-point mutual informa-

tion, I(X;Y), which cannot distinguish causal from non-causal relations between variables X
and Y, multivariate information involving more than two points, I(X;Y;Z;� � �), may imply

cause-effect relationships between the underlying variables, S1 File.

In fact, the signature of causality in purely observational data is associated to a unique cor-

relation pattern involving at least three variables [13, 21]: it concerns two mutually (or condi-

tionally) independent variables, I(X;Y) = 0, which are therefore not connected to each other,

yet both connected to a third variable Z, Fig 1A. This situation entails the orientations of a ‘v-

structure’ or ‘unshielded’ collider, X! Z Y, because the edges XZ and YZ cannot be undi-

rected, nor Z be a cause of X or Y, as these alternative graphical models imply correlations that

would contradict independence between X and Y. V-structures are the hallmark of causality in

observational data: networks with v-structures are necessary causal, while causal models with-

out v-structures can be shown to be equivalent to their undirected counterparts from the view-

point of observational data.

Beyond v-structures, colliders may also be found in series along a collider path, as in X! Z
$ Y W, Fig 1B & 1C, where the bidirected edge, Z$ Y, indicates that Z is not a cause of Y
nor Y a cause of Z. It implies that the correlation between Z and Y is due to at least one latent

common cause, L, unobserved in the available dataset, Z⇠ L⇢ Y, as outlined above. Hence,

statistical dependencies and independencies in purely observational data can, in principle, pro-

vide structural constraints for network reconstruction as well as information on causal rela-

tionships across observed and possibly unobserved latent variables. These results underline the

wealth of information which cannot be captured from two-point correlations only.

An information-theoretic method to learn causal networks with latent

variables

The signature of causality and unobserved latent variables in multi-point correlation statistics

enables to rephrase constraint-based methods [7–10] within an information-theoretic frame-

work. Constraint-based approaches, sketched in Fig 1D, start from a fully connected network

and proceed by iteratively removing dispensable edges between variables X and Y for which a

conditional independence can be found, i.e. I(X; Y|{Ai}) = 0 (Fig 1D, step 1). This rationale of

constraint-based methods can be interpreted from an information perspective [22], using the

generic decomposition of mutual information, I(X; Y), relative to the set of variables {Ai},

IðX; YÞ ¼ IðX; Y; fAigÞ þ IðX; YjfAigÞ; ð1Þ

where I(X; Y; {Ai}) can be seen as the global indirect contribution of {Ai} to I(X; Y) and I(X; Y|

{Ai}) as the remaining (direct) contribution (see Eq 8 in Materials and methods). Conditional

independence, I(X; Y|{Ai}) = 0, then implies that {Ai} is a ‘separation set’ which intercepts all

indirect paths contributing to the total mutual information, i.e. I(X; Y) = I(X; Y; {Ai}). In prac-

tice, however, conditional mutual information cannot be exactly zero for finite datasets but the

probability that the XY edge should be removed can be estimated from the available data as,
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PXY * exp(−NI(X; Y|{Ai})), up to some normalization constant, where N is the number of

independent samples (S1 File). The undirected network ‘skeleton’, resulting from the removal

of all dispensable edges, is then partially directed by orienting all v-structures (Fig 1D, step 2),

based on the signature of causality, outlined above, and propagating these orientations on

Fig 1. Learning causal networks with latent variables. (A) A v-structure. (B) Bidirected edges in collider paths indicate the presence of

latent common cause(s), L, unobserved in the dataset. (C) Conditional independence in the presence of latent variables requires to be

conditioned on non-adjacent variables, in general [9, 10], such as for the pair {Z,T} which needs to be conditioned on X, Y and non-adjacent

W, I(Z; T|X,Y,W) = 0, as one cannot condition on the unobserved latent variables, L or L0, e.g. I(Z; T|X,L) = 0 or I(Z; T|Y,L0) = 0. (D) Outline of

the successive steps of constraint-based approaches (see also Algorithm steps in Materials and methods). (E) F-score (harmonic mean of

Precision and Recall, S1, S2 and S3 Figs) of miic algorithm (warm colors) for 0%, 5%, 10% and 20% of latent variables (top to bottom

curves), compared to the RFCI algorithm [10] (cold colors) on benchmark networks of increasing complexity disregarding (dashed lines) or

including (solid lines) edge orientations: Alarm [37 nodes, avg. deg. 2.5, 509 parameters], Insurance [27 nodes, avg. deg. 3.9, 984

parameters] and Barley [48 nodes, avg. deg. 3.5, 114,005 parameters]. (F) Computation times of miic (warm colors) compared to RFCI
(cold colors). Inserts: computation times in log scale showing a linear scaling (solid bar) in the limit of large datasets, τcpu * N1±0.1, with

miic, and a close to quadratic scaling (dashed bar), τcpu * N1.8±0.3, with RFCI.

https://doi.org/10.1371/journal.pcbi.1005662.g001
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downstream edges (Fig 1D, step 3), based on specific propagation rules consistent with ances-

tral graphs [23].

The main computational complexity of constraint-based methods is to uncover a valid

combination of contributing nodes {Ai} for each dispensable edge XY. In absence of latent var-

iables, the combinatorial search can be restricted to the sole neighbors of X or Y, which are suf-

ficient to intercept all information contributions from indirect paths [7, 8]. However, this

efficient algorithm cannot be used in the presence of latent variables, as collider paths may

require to extend the combinatorial search for conditioning set {Ai} to non-adjacent variables

of X and Y [9], as illustrated in Fig 1C. In practice, this intrinsic difficulty stemming from

latent variables has been addressed through more complex algorithmic approaches, such as the

FCI algorithm [9] and its more recent approximate variant, RFCI [10]. Beyond algorithmic

complexity issues, traditional constraint-based methods are also known to be highly sensitive

to sampling noise inherent to finite datasets and are not robust on typical datasets of interest

(e.g. expression data of 30 to 40 genes measured in a few hundreds to thousands of single cells

[24], see application and Fig 2 below).

The present algorithmic approach, miic (multivariate information-based inductive causa-

tion), circumvents the complexity and robustness issues of standard constraint-based methods

by avoiding to directly tackle the combinatorial search of complete separation sets. Instead, it

progressively collects, one-by-one, their most likely contributors, {Ai}n = {A1, A2, � � �, An},

based on a quantitative score for each pair of variables XY (S1 File). The global indirect contri-

bution is then obtained iteratively as,

IðX; Y; fAignÞ ¼ IðX; Y; fAign� 1Þ þ IðX; Y; AnjfAign� 1Þ; ð2Þ

Fig 2. Network reconstruction at cellular level. (A) Hematopoietic / endothelial differentiation in single cells from mouse embryos [24]. (B)

Principal component analysis and (C) K-means clustering of gene expression data [24] with histograms showing the relative proportions of

cell populations at each data point (E7.0 to E8.25). (D) Hematopoietic / endothelial differentiation regulatory network between hematopoietic

specific (red), endothelial (violet), common (blue) and unclassified (gray) TFs. Graph predicted with miicR-package and visualized using

cytoscape (blue edges correspond to repressions).

https://doi.org/10.1371/journal.pcbi.1005662.g002

Learning causal networks with latent variables

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005662 October 2, 2017 5 / 25

https://doi.org/10.1371/journal.pcbi.1005662.g002
https://doi.org/10.1371/journal.pcbi.1005662


where I(X; Y; An|{Ai}n−1)> 0, corresponds to the contribution of the most likely nth variable

An after collecting the first n−1 most likely contributors, {Ai}n−1 (see Eq 10 in Materials and

methods). We demonstrate in the current study that this iterative framework, which proved to

be robust to sampling noise in absence of latent variables [19], can in fact be extended to

include latent variables by collecting the contributors {Ai} within the whole set of observed var-

iables, instead of amongst the sole neighbors of X and Y in absence of latent variables [14].

This simple approach to include latent variables circumvents the algorithmic complexity of

standard constraint-based methods [9, 10], while improving ten to hundred folds their perfor-

mance in both prediction accuracy and running time, as discussed in the next section.

Algorithmic performance on causal and non-causal benchmark datasets

We have assessed the performance of miic on a broad range of causal and non-causal bench-

mark networks from real-life as well as simulated datasets from P’ 30 up to 500 variables and

N = 10 up to 50,000 independent samples (Materials and methods). The causal benchmark

networks, which include an increasing fraction (0% to 20%) of hidden latent variables, are

derived using partially observed Bayesian networks, that is, considering some variables as hid-

den. These unobserved variables are usually present in many real applications and cannot be

ignored in practice, as they actually impact the causal relationships between observed variables,

as illustrated in Fig 1B–1D. The non-causal benchmark datasets have been obtained from

Monte Carlo sampling of Ising-like interacting networks sharing approximately the same two-

point direct correlations with real-life benchmark causal networks but lacking causality.

Monte Carlo sampling leads, however, to significant correlations between successive samples,

which needs to be taken into account through an effective number of independent samples

(Materials and methods).

Reconstructed causal networks have been compared to partial ancestral graphs (PAGs) [23],

which are the representatives of the Markov equivalent class of all ancestral graphs consistent

with the conditional independences in the available data. In practice, benchmark PAGs have

been derived by hiding some variables in benchmark directed acyclic graphs (DAG) using the

dag2pag function of the pcalg package with slight modifications [25, 26]. The alternative

inference methods used for comparison with miic are the FCI algorithm [9] and its recent

approximate variant RFCI [10] implemented in the pcalg package [25, 26]. The results

obtained with FCI and RFCI are in fact very similar and we only present here comparisons

with the more recent RFCI algorithm [10]. RFCI’s results are shown for an adjustable signifi-

cance level α = 0.01 and using the stable implementation of the skeleton learning algorithm, as

well as the majority rule for the orientation and propagation steps [27], which give overall the

best results. The results have been evaluated in terms of running time, as well as, Precision (or

positive predictive value), Recall or Sensitivity (true positive rate), and F-score, which is the

harmonic mean of Precision and Recall (Materials and methods). Precision, Recall and F-

score have been derived for the undirected skeleton of the networks (dashed lines in Fig 1E) or

taking into account edge orientations (solid lines in Fig 1E).

The results on benchmark networks are presented in Fig 1E and 1F, as well as S1, S2, S3, S4,

S5, S6 and S7 Figs. Miic outperforms classical constraint-based approaches, including its

advanced approximate variant RFCI, Fig 1E, especially on networks with many underlying

parameters. It achieves significantly better or comparable results with much fewer samples

(Fig 1E, S1, S2 and S3 Figs), and is typically ten to hundred times faster (Fig 1F). In addition,

miic’s ability to learn complex ancestral networks, which require conditioning on non-adja-

cent variables, can be directly demonstrated on the example of Fig 1C network, S4 Fig. The

complexity of miic algorithm, while difficult to evaluate exactly, proves to be linear in terms
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of sample size (Fig 1F) and quadratic in terms of network size for sparse graphs irrespective of

the inclusion of latent variables (S5 Fig). By contrast, traditional constraint-based methods

exhibit roughly quadratic complexity in terms of sample size (Fig 1F) and much steeper com-

plexity scaling in terms of network size, especially when latent variables are included [12]. Fur-

thermore, no causality is predicted by miic for non causal datasets, even from small effective

numbers of independent samples (Materials and methods and S6 and S7 Figs). This underlines

miic accuracy to uncover true causality.

Edge confidence assessments

This information-theoretic method and its algorithmic implementation (S1 Software) are very

general and can be applied to a wide range of datasets, provided a sufficient number of inde-

pendent samples is available. We report here the results obtained with genomic datasets span-

ning a broad range of biological size and time scales from single cells and tissues to organisms

and entire phyla. In addition to including latent causal variables, we have also assessed the con-

fidence of predicted edges with an edge specific confidence ratio CXY ¼ PXY=hP rand
XY i, where

PXY is the probability to remove the XY edge, introduced above, and hP rand
XY i the average of the

same probability after randomizing the datasets for each variable (see Materials and methods,

and S1 File section 2.2 for details). Hence, the lower CXY, the higher the confidence on the XY
edge, which can be used to retain only high confidence edges in the predicted networks.

Interestingly, the effect of confidence filtering on the reconstruction of benchmark net-

works (S8 & S9 Figs) demonstrates that the filtering of individual edges improves the Precision

of the reconstruction (at the expense of its Sensitivity or Recall) not only for the network skele-

ton, as expected, but also for the network orientations, while retaining overall similar F-scores.

This demonstrates the interest and consistency of using such confidence filtering to obtain an

enhanced and tunable precision of the reconstructed networks for real biological applications.

Indeed, an enhanced precision might be desirable in many practical applications for which the

correctness of predicted edges is more important than the occasional dismissal of less certain

edges. All network reconstructions presented in Figs 2, 3 & 4 have been obtained with an edge

specific confidence CXY < 10−3, while network skeletons obtained before edge filtering are dis-

played in S11, S14 and S15 Figs.

The general three-step reconstruction scheme of miic (i.e. Step 1- graph skeleton, Step 2-

edge filtering, Step 3- edge orientation) is also sensitive to the fine tuning of other algorithmic

parameters such as the complexity criterion introduced to estimate finite size effects. All results

presented in this paper have been obtained with the decomposable Normalized Maximum

Likelihood (NML) criterion introduced in [28, 29], which was shown to yield significantly bet-

ter results than more traditional BIC/MDL criterion on benchmark networks, especially on

small datasets, leading to simultaneous improvements in both recall and precision [19].

Choosing the BIC/MDL instead of NML criterion in the three genetic network applications,

Figs 2, 3 & 4, leads to somewhat sparser reconstituted networks including 82% to 100% of ini-

tial edges, yet no additional edges (i.e. consistent with a lower recall), and 66% to 75% con-

served edge orientations (i.e. identical, —!, and$ edges), see S1 Table.

Analysis of expression data in single cells

At cellular level, we reconstructed regulatory networks from single cell expression data at the

time of endothelial and hematopoietic differentiations from the primitive streak cells of the

mouse early embryo, Fig 2A. This concerns the formation of primitive erythroid cells, a dis-

tinct and transient red blood cell lineage arising directly from mesodermal progenitors with
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restricted hematopoietic potential [32], by contrast to the highly studied definitive erythroid

cells which arise from multipotent hematopoietic stem cells.

The dataset for this application is from Moignard et al [24] and includes the expression of

33 transcription factors (TFs) along with 13 non-TF genes (markers) in 3,934 single cells

extracted at 4 different times of the mouse embryo development (days E7.0, E7.5, E7.75 and

E8.25), Fig 2A–2C and S10 Fig. The cells extracted from E8.25 were also divided by the authors

in two different pools: potential endothelial precursors and potential hematopoietic precursors

based on the expression of the Runx1 hematopoietic marker. Gene expression was collected

using single cell qRT-PCR and binarized by the authors, leading to two-state (on / off) expres-

sion levels in the available dataset. Pooling all cells together regardless of their developmental

timing (from day E7.0 to E8.25), we first analyzed their population heterogeneity using

Fig 3. Network reconstruction at tissue level. (A) Tumor development and drug resistance in the presence of tetraploid tumor cells

following whole genome duplication (WGD). (B) Ploidy distribution in the 807 tumor samples and (C) genomic alterations: ploidy, mutations,

normalized under-expression and over-expression changes from COSMIC database [34]. (D) Genomic alteration network obtained between

average ploidy (violet), gene mutations (yellow, lower case) and under- or over-expressions (green, upper case). Graph predicted with miic
R-package and visualized using cytoscape (blue edges correspond to repressions).

https://doi.org/10.1371/journal.pcbi.1005662.g003
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principal component analysis (PCA), Fig 2B, and K-means clustering, Fig 2C. Three main cell

populations are identified and can be interpreted, based on gene functional classification

(Materials and methods), as progenitor, endothelial precursor and hematopoietic precursor

populations, whose relative proportions vary from E7.0 to E8.25, Fig 2C.

The network predicted by miic, Fig 2D, includes 75 edges with CXY < 10−3 out of 82 edges

in the unfiltered skeleton, S11 Fig. The differentiation bifurcation between endothelial and

hematopoietic precursors, seen through principal component (Fig 2B) and clustering (Fig 2C)

analyses, also clearly appears in the reconstructed regulatory network, Fig 2D, after labelling

hematopoietic specific TFs (in red), endothelial TFs (in purple) and common TFs expressed in

both precursor lineages (in blue), Materials and Methods. In fact, most predicted regulatory

interactions across lineage specific TFs correspond to regulatory inhibitions (in blue), which

might originate either from direct regulatory repressions or possibly through indirect

Fig 4. Network reconstruction at organismal and phylogenetic levels. (A) Two rounds of whole genome duplication (WGD) have led to

the evolutionary radiation of vertebrates (and similarly with a third 300-MY-old WGD in teleost fish). (B) Biased distributions of genomic

properties within ‘non-ohnolog’ and ‘ohnolog’ genes retained from WGDs in early vertebrates [45]. Numbers in brackets indicate the

numbers of genes for which each property is identified, Materials and Methods and S1 Data. (C) Genomic property network of human genes,

see main text. Graph predicted with miicR-package and visualized using cytoscape (blue edges correspond to repressions).

https://doi.org/10.1371/journal.pcbi.1005662.g004
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‘ancestor’ regulations involving unobserved intermediary TFs. In addition, a number of

known regulatory interactions are correctly predicted in the inferred network, Fig 2D, such as

Ikaros! Gfi1b and Ikaros! Lyl1 [31], Tal1! Fli1 and Tal1! Lmo2 [32] as well as HoxB4
! Erg (with opposite orientation) and Sox7! Erg [24]. Yet, there are also many predicted reg-

ulations in miic network that have not been reported so far as well as a number of regulations

documented in definitive erythroid cells [32] that appear to be missing in primitive erythroid

cells (e.g. Est1! Tal1, Sfpi1! Tal1 and Sfpi1!Myb). These results suggest a number of test-

able predictions, including five bidirected edges consistent with the absence of direct regula-

tions reported between these genes. Indeed, bidirected edges imply the necessity to invoke

unobserved latent co-regulators between such genes. In particular, the unmeasured Gata2
expression is possibly implicated in the co-regulation of Erg$ Lyl1, based on an earlier study

[33]. Hence, beyond the consistency with earlier reports as well as testable predictions, miic
results may also help pinpoint possible latent regulators unobserved in Moignard et al’s study

[24], such as regulators specific to the initial progenitor cells, not yet committed to either

hematopoietic or endothelial lineages and accounting for about 70% of analyzed cells at day

E7.0, Fig 2C.

Analysis of genomic and ploidy alterations in breast tumors

At tissue and organismal levels, we analyzed genomic alterations on breast tumors from the

online Catalog of Somatic Mutations in Cancer (COSMIC) datase [34], Fig 3A–3C.

The dataset, which contains 807 samples without predisposing BRCA1/2 germline muta-

tions, includes somatic mutations (from whole exome sequencing) and expression level infor-

mation for 91 genes. These 91 genes have been selected based on earlier studies on mutation

and/or expression alterations in breast cancer, Materials and Methods. Gene non-synonymous

mutation status is binarized (yes / no) and gene expression status is categorized as under-, nor-

mal- or over-expressed by the COSMIC database. S12 Fig provides the distribution of altered

expressions and S13 Fig the distribution of mutations for the 91 genes of interest. In addition

to gene mutations and altered expression levels, we also integrated information on sample

average ploidy, provided by the COSMIC database (release v76) and discretized the clearly

bimodal ploidy distribution (Fig 3B) with ploidy < 2.7 considered as diploid cells and� 2.7

taken as tetraploid cells, in agreement with COSMIC convention [34]. Among the 807 samples,

401 correspond to diploid tumoral cells and 398 to tetraploid tumoral cells (8 samples have no

ploidy information). As expected, TP53, RB1 and PTEN tumor suppressors tend to be mutated,

downregulated or lost, especially in tetraploid tumors, Fig 3B & 3C, which also exhibit signifi-

cant normalized expression alterations, Fig 3C.

The network predicted by miic is shown Fig 3D. We first note that, due to the limited

numbers of samples (N = 807) and recurrent gene mutants (Fig 3C and S13 Fig), most gene

mutations are not confidently linked to any altered expression levels (compare Fig 3D with

edge confidence CXY < 10−3 to the unfiltered skeleton, S14 Fig), with the notable exceptions of

TP53 and RB1 mutations, which have a significant impact on gene expressions, Fig 3D. Inter-

estingly, the overall effect of tetraploidization on normalized gene expression, Fig 3C, is pre-

dicted to be largely indirect and mediated by TP53 mutations which lead to dysregulation of

mitosis controling genes, such as the under-expression of PPP2R2A [35] and over-expression

of AURKA and CENPA genes. In addition, tetraploidy and TP53 mutations tend also to be con-

comitant with over-expression of metabolic (GMPS) and cell-growth modulating genes

(TSPYL5, NDRG1 and FOXM1) [36], favoring tumor progression and metastasis, as well as

higher expression of APOBEC3B, which promotes mutational heterogeneity within tumors

and, thereby, their drug resistance through subclonal selection [37]. Hence, miic results
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provide a direct link between the long-known incidence of TP53 mutations in (breast) cancer

and the tetraploidization of tumor cells. These results, supported by a number of recent reports

[35, 37–40], shed light on the poor prognosis associated with tetraploid tumors and their resis-

tance to chemotherapy [40]. This presumably occurs as tetraploid cells can exploit their

genome redundancy and heterogeneity to evolve resistance strategies under drug treatments,

Fig 3A.

Interestingly, this dynamics of tetraploid tumors in the course of cancer progression and

treatment echoes the success of tetraploid species in the course of eukaryote evolution. Indeed,

genome doubling events, possibly associated to environmental changes, have repeatedly led to

successful evolutionary radiations of biodiverse subphyla, such as the vertebrates and the flow-

ering plants [41], although the underlying selection mechanism has remained a matter of

debate [41–44].

Analysis of two rounds of tetraploidization in vertebrate evolution

We have investigated with miic this long term evolution following the two rounds of tetra-

ploidization that occurred in early vertebrates some 500 million years ago, Fig 4A. While long

lost species and subphyla cannot be directly studied, the genetic make up of extant vertebrates

provides an information-rich data on the selection processes at work since these ancient

genome duplications. In particular, we aimed at identifying the genomic properties potentially

responsible for the biaised retention of ‘ohnolog’ gene duplicates [45] retained from these

genome duplications in early vertebrates.

We obtained 20,415 protein-coding genes in the human genome from Ensembl (v70) and

collected information on the retention of duplicates originating either from the two whole

genome duplications at the onset of vertebrates (‘ohnolog’) or from subsequent small scale

duplications (‘SSD’) as well as copy number variants (‘CNV’), Fig 4B and S1 Data [45]. 5,504

ohnolog genes retained from the two rounds of whole genome duplications (WGDs) in the

common vertebrate ancestor were obtained from the ‘Ohnologs’ server based on multi-species

comparison of synteny [45]. All the small scale duplicates (SSDs) in the human genome were

obtained from Ensembl Compara using BioMart [46], and were restricted to the 4,506 genes

duplicated after the WGDs. Genes with copy number variants (CNVs) were obtained from the

Database of Genomic Variants [47]. A total of 5,185 genes were identified to be CNV genes as

their entire coding sequence fell within one of the CNV regions in this database.

We then collected information on the genomic properties of these 20,415 human genes,

including their sequence conservation (‘Ka/Ks ratio’), protein autoinhibitory folds and partici-

pation to protein complexes, their expression levels across tissues, association with dominant

or recessive diseases and susceptibility to cancer mutations as well as their essentiality for

development and reproduction, see Materials and methods.

The resulting causal network, predicted by miic, relates the origin of duplicated genes in

the human genome (i.e. ‘ohnolog’, SSD or CNV gene duplicates) to their genomic properties

and association to diseases, Fig 4C. The reconstructed network implies that the retention of

ohnolog duplicates is more directly linked to their susceptibility to dominant mutations and

protein autoinhibitory folds than other genomic properties such as dosage balance constraints

in protein complexes [42], gene essentiality or expression levels, which do not exhibit direct

links to ohnolog retention, Fig 4C, even on the network skeleton obtained before edge confi-

dence filtering, S15 Fig. Hence, miic analysis based on observational data provides an inde-

pendent confirmation as well as significant extension of earlier reports based on correlations

between two or three genomic properties [43] and on simple population genetic models [48].

All together, these results support an evolutionary retention of ohnologs by purifying selection
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through dominant diseases in tetraploid species (consistent with the retention of ohnologs

with low Ka/Ks ratio, Fig 4C, indicating sequence conservation) while small scale duplicated

genes have been retained through positive selection (consistent with their higher Ka/Ks ratio,

Fig 4C, indicative of underlying adaptation).

Discussion

We report in this paper a novel information-theoretic method that learns a broad class of net-

work models including latent causal effects from purely observational data, that is, in absence

of time series or controlled intervention experiments, which can be technically impractical,

costly or unethical to obtain in many biological contexts.

The methodology of our approach is quite general and follows a three-step scheme:

• Step 1- Find a graph skeleton taking into account latent variables.

• Step 2- Remove weakly supported edges based on a confidence criterion.

• Step 3- Determine edge orientations based on the signature of causality.

While resembling traditional constraint-based methods such as FCI, miic is in fact

designed to be much faster and more robust to finite sample size through greedy algorithmic

strategies based on quantitative information-theoretic scores at each algorithmic step, i.e. Step

1: iterative collection of most likely contributors based on an contributor ranking scheme, Step

2: filtering of weakly supported edges through an edge-specific confidence assessment, and

Step 3: successive orientation of the remaining edges based on decreasing orientation

probabilities.

Unlike earlier robust methods for network reconstruction [3–6], this general scheme cir-

cumvents the need to choose between causal and non-causal graphical models a priori, as the

most appropriate class of models is directly learned from the available data. In addition, the

approach can uncover the effect of unobserved latent variables, a notorious conceptual and

algorithmic difficulty in causal network reconstruction [13]. Yet, latent variables are usually

present in many real applications and cannot be ignored in practice, as they actually impact

the causal relationships between observed variables.

More specifically, miic relies on the analysis of multivariate information [14–19], which

extends the concept of mutual information to more than two variables. In practice, miic inte-

gration of constraint-based methods within an information-theoretic framework leads to

greatly improved performances in both prediction accuracy (Fig 1E) and running time (Fig

1F) as well as favorable scalings in terms of sample size (Fig 1F) and network size (S5 Fig). The

likelihood ratio formalism also enables to derive an edge specific confidence index, CXY, which

allows to filter predicted edges to obtain an enhanced and tunable precision of the recon-

structed networks. This might be desirable in many applications for which the correctness of

predicted edges is more important than the occasional dismissal of less certain edges.

We have used miic to reconstruct causal networks from a variety of genomic datasets at

different biological size and time scales, from gene regulation in single cells (Fig 2) to whole

genome duplication in tumor development (Fig 3) as well as long term evolution of vertebrates

(Fig 4). In all these applications, miic provides testable predictions and new biological

insights summarized below:

1. on the hematopoietic / endothelial differentiation network (Fig 2), miic results shed lights

on the regulatory interactions in primitive erythropoietic differentiation for which much

less is known compared with definitive erythropoiesis [30]. We predict, in particular, the

central role of regulators such as Ikaros in the hematopoietic precursor population, and
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Sox7 and Erg in the endothelial precursor population, as well as the causal effects of unob-

served latent variables such as the transcription factor Gata2;

2. on the development of breast cancer, miic network reconstruction (Fig 3) highlights the

direct association between tetraploidization and TP53 mutations, by contrast with earlier

studies on non-cancerous cell lines [40, 49] but in agreement with findings on actual

tumors and their resistance to treatments [38, 40]. These results are also consistent with the

high incidence of tetraploid tumors in patients with BRCA1/2 germline mutations [50];

3. finally, concerning the impact of whole genome duplications in vertebrate evolution, miic
results (Fig 4) refute the general view in the field on the retention of ohnologs through dos-

age balance constraints [42]. Instead, miicmultivariate analysis demonstrates the role of

dominant deleterious effects on the retention of ohnologs, which significantly extends and

confirms earlier reports based on correlations between two or three genomic properties

[43, 44] and independent population genetic results based on first-principles evolutionary

models [48].

Beyond the three genomic network reconstructions presented in this paper (Figs 2, 3 and

4), we anticipate that this information-theoretic approach may help uncover cause-effect rela-

tionships in other information-rich datasets from different fields of biological interest, such as

developmental biology, neuroscience, clinical data analysis and epidemiology. The causal net-

work learning tool, miic, is implemented in an R-package software with open source code

and freely available under a General Public License (S1 Software).

Materials and methods

Application

Gene functional classification in hematopoiesis/epithelial differentiation. The early

hematopoiesis single cell transcription data come from Moignard et al., 2015 [24]. The expres-

sion of 33 TFs and 13 non-TF genes (markers) have been obtained by single cell qRT-PCR and

binarized (on/off) by the authors. The 33 TFs can be classified into 3 categories related to their

function, using the Mouse Genome Database [34] as well as the TF expressions at the different

time points in the original experiment [24]:

• “Hematopoietic”: This group gathers the TFs for which we found a function in hematopoi-

etic differentiation, without finding any evidence of a role in endothelium formation in the

litterature. The corresponding genes linked to hematopoietic function are: Eto2, Sfpi1/PU.1,
Runx1, Nfe2, Myb, Mitf, Ikaros, Gfi1b, Gfi1, Gata1.

• “Endothelial”: For these genes, the main function found in the litterature is in endothelial

development. The corresponding genes linked to endothelial function are: Ets2, Erg, Tbx3,
Tbx20, Sox7, Sox17, Notch1, HoxB4.

• “Common”: These TFs have been shown to be involved in both hematopoietic and endothe-

lial differentiation. The corresponding genes linked to both hematopoietic and endothelial

functions are: Fli1, Etv6, Etv2, Ets1, Tal1, Meis1, Mecom, Lyl1, Lmo2, Ldb1, Hhex.

Signature gene set in breast cancer progression. The choice of specific genes for moni-

toring genomic alterations has been guided by earlier studies and breast cancer-specific molec-

ular tests [51], which demonstrate that altered expression profiles can reveal patient overall

outcome [52]. In particular, the MammaPrint genomic assay relies on a 70-gene expression

profile to assess patient breast cancer recurrence risk [52]. This signature classifies patient
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either as high-risk or low-risk for long-term development of distant metastasis. The relevance

of the MammaPrint 70-gene profile has already been assessed by multiple studies, e.g. [52, 53].

Interestingly, although the MammaPrint biomarker genes were selected from a completely

data-driven approach, they are enriched with specific cancer hallmarks [54] acquired in the

course of tumorigenesis and metastasis progression [55].

In this study, we investigated the interrelations between ploidy, mutation and expression

level alterations for 91 genes in breast tumors. Specifically, we first considered the mutation

status and expression levels of 50 genes out of the 70 Mammaprint biomarkers for which a

hallmark of cancer has been identified [55]. We also considered 18 commonly altered genes in

breast cancer (ERBB2, ESR1, TP53, RB1, MYC, JUN, CDKN2A, BCL2, APOBEC3B, PTEN,
MDM2, USP7, UBE3A, SPDYE7P, PLK1, BAX, MET, FOXM1) [56]. In addition, 23 genes

related to ploidy alteration were also included (TP73, LATS2, MAPK14, CDKN1A, CHEK1,
AURKB, AURKA, BRCA1, BRCA2, DUSP5, MST1, PPP1R13L, BIRC3, TGFA, ETS1, ETS2,
HIF1A, LDHA, FOXO1, NDRG1, PPP2R1A, PPP2R2A, CCNE1) [38, 40].

Genomic properties of ohnolog genes in vertebrates. The genomic properties suscepti-

ble to be associated with the retention of ‘ohnolog’ gene duplicates (as well as SSD and CNV

duplicates) in the human genome have been obtained from various resources:

• Cancer mutations. Cancer mutation profiles for all the protein coding genes were obtained

from the COSMIC database [34]. We counted all the non-synonymous mutations per unit

length in all the available samples, and partitioned the 18,538 genes with available mutation

information into three equal frequency bins (S1 Data).

• Disease genes. Human disease genes were collected from OMIM, GeneCards [57], and from

published curated lists [44, 58] and combined to give a total of 7,171 disease genes.

• Recessive vs dominant genes. Based on the inheritance information from Online Mendelian

Inheritance in Man (OMIM) database, we could obtain 981 and 952 genes that were

described as autosomal dominant and autosomal recessive genes respectively.

• Autoinhibition. Genes with autoinhibitory protein folds were obtained from search and

manual curation in PubMed and in various databases (OMIM, SwissProt, NCBI Gene and

GeneCards). Additional autoinhibitory candidates with the domains known to be frequently

implicated in autoinhibition (e.g. SH3, DH, PH, CH, Drf and Eth domains) were obtained

based on the domains identified using HMMER search [59] against Pfam database [60]. This

led to a total of 881 genes with autoinhibitory protein folds (S1 Data).

• Essentiality. A total of 6,436 1-to-1 mouse orthologs obtained using BioMart and tested for

lethality or infertility phenotypes on loss-of-function or knockout mutations in mouse were

obtained from the Mouse Genome Informatics database [32]. 2,729 [resp. 3,227] of these

6,436 genes were found to be essential [resp. non-essential] genes in mouse.

• Protein complex. A total of 6,119 genes involved in protein complex formation were

obtained by combining the protein complexes from Human Protein Reference Database

[61], CORUM database [62], the human soluble protein complex census [63], and the

human genes belonging to the Gene Ontology term “protein complex” under Cellular

Component.

• Ka/Ks ratio. We obtained Ka/Ks (or dN/dS) ratios between human and amphioxus (Bran-
chiostoma floridae) orthologs using the KaKs_Calculator 2.0 [64]. Ka/Ks ratios were retrieved

for a total of 15,508 genes and partitioned into 75% lower ratio < 0.2 (i.e. more conserved

sequences) and 25% higher ratio� 0.2 (i.e. rapidly evolving sequences)
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• Expression levels. Gene expression levels for 78 healthy human tissues and cell types [65]

were downloaded from BioGPS [66]. Affimetrix tags were mapped to Ensembl gene IDs

using BioMart and annotation provided by BioGPS. Expression levels from different tags for

the same gene were averaged after removing the tags that bind to multiple genes. A total of

13,425 genes with an expression level were partitioned into three equal frequency bins based

on the their median expression across 78 tissues/cell types.

These genomic properties susceptible to be associated with the retention of ‘ohnolog’, SSD

and CNV gene duplicates are provided as S1 Data.

For each genomic property or combination of properties for which a number of samples

presents missing data, multivariate information, such as I(X; Y|{Ai}), are computed on the

number of available samples Na without missing data for X, Y and {Ai} variables (Na < N).

Finite size corrections are then estimated based on Na instead of N samples (S1 File). This

assumes that the missing data is missing completely at random.

Methodology

Ancestral graphs. The miic software reconstructs Markov equivalent models of the

broad class of ‘ancestral graphs’ [11] which can contain three types of edges, undirected (−),

directed (!) and bidirected ($) edges, but:

1. no directed cycles (i.e. X!! � � � !! Y with X Y)

2. no almost directed cycles (i.e. X!! � � � !! Y with X$ Y)

3. no arrowheads pointing to an undirected edge (i.e.! − or$ −)

Multivariate information and most likely information contributors. The miic algo-

rithm is an information-theoretic method that learns graphical models by progressively uncov-

ering the information contributions of indirect paths in terms of multivariate information.

The multivariate information between p variables, I(X1; � � �; Xp), is defined through alter-

nating (inclusion-exclusion) sums of multivariate entropies H({Xi}) = −∑{xi}
p({xi})log p({xi})

over all subsets of variables {Xi}� {X1,� � �,Xp} as [15–17],

IðX1; � � � ; XpÞ ¼
X

i

HðXiÞ �
X

i<j

HðXi;XjÞ þ
X

i<j<k

HðXi;Xj;XkÞ � � � �

ð� 1Þ
k� 1
X

i1<���<ik

HðXi1
; � � � ;Xik

Þ þ � � � ð� 1Þ
p� 1HðX1; � � � ;XpÞ

ð3Þ

In particular, for p = 2 and 3 variables, it yields,

IðX; YÞ ¼ HðXÞ þHðYÞ � HðX;YÞ ð4Þ

IðX; Y; AÞ ¼ HðXÞ þHðYÞ þ HðAÞ � HðX;YÞ � HðX;AÞ � HðY ;AÞ þ HðX;Y;AÞ ð5Þ

where the 3-point information, I(X; Y; A), can be positive or negative unlike the 2-point

(mutual) information, I(X; Y), which is always positive [20]. Conditional multivariate informa-

tion, I(X1; � � �; Xp|A), are defined similarly as multivariate information, I(X1; � � �; Xp), but in

terms of conditional multivariate entropies [18], H({Xi}|A). In particular, conditional mutual
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information is defined as,

IðX; YjAÞ ¼ HðXjAÞ þHðYjAÞ � HðX;YjAÞ

¼ � HðAÞ þ HðX;AÞ þHðY;AÞ � HðX;Y;AÞ
ð6Þ

using the definition of conditional entropy [20], H(X|A) = H(X,A) − H(A). Then combining

the expressions of I(X; Y|A) and I(X; Y; A) yields a generic decomposition rule relative to a var-

iable A or a set of variables {Ai}m = {A1,A2,� � �,Am} as,

IðX; YÞ ¼ IðX; YjAÞ þ IðX; Y; AÞ ð7Þ

IðX; YÞ ¼ IðX; YjfAigmÞ þ IðX; Y; fAigmÞ ð8Þ

and conditioning Eq 7 on {Ai}n−1 and setting A� An yields,

IðX; YjfAign� 1
Þ ¼ IðX; YjfAignÞ þ IðX; Y; AnjfAign� 1

Þ ð9Þ

which can be combined with Eq 8, setting {Ai}m = {Ai}n−1 or {Ai}n, to yield the following itera-

tive scheme on the contribution increment of the collected set {Ai}n (see Results),

IðX; Y; fAignÞ ¼ IðX; Y; fAign� 1
Þ þ IðX; Y; AnjfAign� 1

Þ ð10Þ

As explained in S1 File, only positive information terms, I(X; Y; An|{Ai}n−1)>0, contribute to

the global mutual information between X and Y through the iterative decomposition of Eq 9,

IðX; YÞ ¼ IðX; Y; A1Þ þ IðX; Y; A2jA1Þ þ � � � þ IðX; Y; AnjfAign� 1Þ þ IðX; YjfAignÞ ð11Þ

where the most likely contributors An after collecting the first n−1 contributors {Ai}n−1 is cho-

sen by maximizing I(X; Y; An|{Ai}n−1)> 0, while taking into account the finite size N of the

dataset (S1 File). The approach provides also a natural ranking of the edges XY of the graph, R
(XY;An|{Ai}n−1), based on the likelihood of their best next contributor An (Eq. S20 in S1 File).

By contrast, negative information, I(X; Y; An|{Ai}n−1)< 0, do not contribute to I(X; Y) but

are the signature of causality in observational data and are used to orient v-structures, such as

X! An Y (S1 File).

Description of miic algorithmic pipeline. The implementation of the information-the-

oretical approach miic proceeds in three steps corresponding to the following algorithmic

pipeline, Fig 1D (S1 File):

• Step 1: Learning skeleton taking into account latent variables
Starting from a fully connected undirected graph, miic iteratively removes all dispensable

edges after collecting one-by-one their most likely contributors {Ai} based on the edge rank-

ing order, R(XY; An|{Ai}n−1) (Eq. S20 in S1 File), and using the following pseudocode,

Repeat: take the top edge XY with highest rank R(XY; An|{Ai}n−1):

– Update its contributor list: {Ai}n {Ai}n−1 + An

– If I(X; Y|{Ai}n) is not significant (given the finite number N of samples): remove edge XY

– Else: Search for the next best contributor An+1 of edge XY (if one exists with I(X; Y; An+1|

{Ai}n)> 0) and update the ranking order R(XY; An+1|{Ai}n)

Until: no more edges can be removed

• Step 2: Confidence estimate and sign of retained edges
Once a first skeleton has been obtained using Step 1, the confidence on each retained edge

can be estimated through an edge specific confidence ratio CXY based on the probability PXY
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* exp(−NI(X; Y|{Ai})) to remove a directed edge X! Y from the graph G (S1 File),

CXY ¼
PXY

hP rand
XY i

ð12Þ

where hP rand
XY i is the average of the probability to remove the XY edge after randomly per-

mutating the dataset for each variable. Hence, the lower CXY, the higher the confidence on

the XY edge. We favor the confidence estimate CXY based on likelihood ratios (Eq. S21 in

S1 File) to the alternative confidence estimate based on p-value, which corresponds to the

probability that P rand
XY � PXY over random permutations. Indeed, p-value estimates require

much more random permutations than CXY estimates for strong edges with NI(X; Y|{Ai})

� 1, as virtually all random permutations correspond to P rand
XY > PXY in that case, leading

to under-estimated p-values ’ 0.

In addition, the sign of each retained edge, X − Y, is defined by the sign of the partial correla-

tion coefficient, ρXY�A, between X and Y conditioned on its derived contributors A = {Ai} in

Step 1, with positive edges corresponding to positive partial correlations and negative edges

corresponding to negative partial correlations, i.e. partial anti-correlations (S1 File).

• Step 3: Probabilistic orientation and propagation of remaining edges
Given the skeleton obtained from Step 1, possibly filtered through Step 2, initially unspeci-

fied endpoint marks (�) can be established, as arrow tail (−) or head (>), following probabi-

listic orientation and propagation rules of unshielded triples hX, Y, Z iX⌿Y, S1 File (where �

below stands for any endpoint mark),

Repeat: take the top hX, Y, Z iX⌿Y with highest endmark orientation / propagation probability

– If I(X; Y; Z|{Ai}n)< 0 and X� − �Z� −�Y or X�! Z� − �Y, orient edge(s) to form a v-

structure X�! Z �Y

– Else If I(X; Y; Z|{Ai}n)> 0 and X�! Z� − �Y or X�! Z�!Y, Propagate second edge

direction to form a non-v-structure X�! Z! Y
Until: no additional endmark orientation / propagation probability >1/2

Algorithmic performance on benchmark networks with latent variables. The perfor-

mance of the information-theoretic method miicwas tested on benchmark ancestral graphs

with latent variables using partially observed real-life networks (i.e. considering some variables

as hidden) as well as random networks generated with the causal modeling tool Tetrad V

(http://www.phil.cmu.edu/tetrad). Reconstructed networks are compared to partial ancestral
graphs (PAGs) [23], which are the representatives of the Markov equivalent class of all ances-

tral graphs consistent with the conditional independences in the available data. In practice,

benchmark PAGs have been derived by hiding some variables in benchmark directed acyclic

graphs (DAG) using the dag2pag function of the pcalg package with slight modifications

[25, 26]. PAGs have been generated for an increasing fraction (0% to 20%) of randomly picked

latent variables having a significant topological effect on the underlying network (i.e. excluding

parentless vertices with a single child or vertices without child).

The results are evaluated in terms of skeleton Precision (or positive predictive value),

Prec = TP/(TP + FP), Recall or Sensitivity (true positive rate), Rec = TP/(TP + FN), as well as F-

score = 2 × Prec × Rec/(Prec + Rec) for increasing sample size from N = 10 to 50,000 data

points. We also define additional Precision, Recall and F-scores taking into account the edge

endpoint marks of the predicted networks against the corresponding benchmark PAGs. This

amounts to label as false positives, all true positive edges of the skeleton with different
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arrowhead endpoint marks (i.e. arrowhead (>) versus tail or undefined (−/�) endpoint marks)

as the PAG reference, TPmisorient, leading to the orientation-dependent definitions TP0 = TP −
TPmisorient and FP0 = FP + TPmisorient with the corresponding PAG Precision, Recall and F-

scores taking into account arrowhead endpoint marks.

The alternative inference methods used for comparison with miic are the FCI algorithm

[9] and its recent approximate variant RFCI [10] implemented in the pcalg package [25, 26].

The results obtained with FCI and RFCI are in fact very similar and we only present here

comparisons with the more recent RFCI algorithm [10]. RFCI’s results are shown for an

adjustable significance level α = 0.01 and using the stable implementation of the skeleton learn-

ing algorithm, as well as the majority rule for the orientation and propagation steps [27], which

give overall the best results.

For each sample size (N = 10 to 50,000) and fraction of hidden variables (0% to 20%), miic
and RFCI inference methods have been tested on 20 combinations of hidden variables and 50

dataset replicates each. S1, S2 and S3 Figs give the average results over these multiple combina-

tions of latent variables and dataset replicates and compare the reconstructed networks includ-

ing orientations (solid lines) or without orientation (i.e. skeleton, dashed lines) to the

theoretical PAG (or its skeleton) of the benchmark network.

Algorithmic performance on undirected benchmark networks. The performance of

miicwas also tested on non-causal benchmark networks reconstructed from Monte Carlo

sampling of Ising-like interacting systems.

To this end, real-life causal networks, such as Alarm and Insurance, have been transformed

into non-causal Ising-like networks (with binary spin variables xi = ±1) by setting pairwise

interacting parameters kij between connected variables Xi and Xj, so as to approximately repro-

duce the pairwise conditional mutual information I(Xi; Xj|AXi Xj) of the original real-life causal

network. This yields benchmark networks sharing approximately the same two-point direct

correlations with the original causal networks but lacking causality, as the couplings kij

between spins are all symmetric by construction.

One million configurations of these Ising-like interacting systems have been generated

using Monte Carlo sampling approach. It consists in flipping a fraction of the spins randomly

and accepting each newly generated configuration with probability, min (1, exp(−ΔEk)), where

ΔEk = Ek+1 − Ek, is the interacting energy difference between successive configurations,

Ek ¼ �
Pedges

i<j kijxixj. The fraction of spins randomly flipped (*10%) has been ajusted to

ensure that about half of the newly generated configurations are accepted at each Monte Carlo

iteration, in order to efficiently sample configuration space. This leads, however, to significant

correlations between successive accepted configurations with a roughly exponential decay

between n distant samples, C(n)’ C(0)exp(−n/R) = C(0)αn, where CðnÞ ¼ Cðk � ‘Þ ¼
h
P

idxð‘Þi dxðkÞi i is the average autocorrelation with lag between the kth and ℓth samples (with n
= k−ℓ), where dxðkÞi ¼ xðkÞi � �xi .

The effective number of independent samples N�eff can then be estimated through the appar-

ent increase of variance between the N partially correlated samples as [67],

VN ¼
1

N2

X

k

X

‘

h
X

i

dxðkÞi dxð‘Þi i

¼
1

N2

X

k

X

‘

Cðk � ‘Þ

¼
1

N
Cð0Þ þ 2 1 �

1

N

� �

Cð1Þ þ 2 1 �
2

N

� �

Cð2Þ þ � � � þ
2

N
CðN � 1Þ

� �

ð13Þ

Learning causal networks with latent variables

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005662 October 2, 2017 18 / 25

https://doi.org/10.1371/journal.pcbi.1005662


which leads for a first order Markov process with C(n) = C(0)αn to,

VN ¼
Cð0Þ

N
1þ 2 1 �

1

N

� �

aþ 2 1 �
2

N

� �

a2 þ � � � þ
2

N
aN� 1

� �

’
Cð0Þ

N
1þ a

1 � a
¼

Cð0Þ
N�eff

ð14Þ

yielding a smaller effective number of samples N�eff < N for correlated datasets (α> 0) as,

N�eff ¼ N
1 � a

1þ a
ð15Þ

This estimate suggests to use N�eff , instead of N, to compute the finite size corrections of the

miic approach, in order to correct for the correlations between successive samples generated

through Monte Carlo sampling. Yet, as the presence of correlations between successive sam-

ples is a priori incompatible with the requirement of independent samples in the maximum

likelihood framework, we have first assessed miic performance over the full range of possible

effective sample size, i.e. 0< Neff/N� 1, for N = 1,000 to 300,000 successive samples from the

one-million-long sample series.

The results are shown in S6 Fig and S6 Fig in terms of Precision, Recall, F-score and Frac-

tion of (wrongly) directed edges for the Alarm-like and Insurance-like undirected networks.

The nearly exponential decay of the autocorrelation function for Alarm-like (S6 Fig,

R = 7.758, α = 0.872) and Insurance-like (S6 Fig, R = 7.676, α = 0.87) undirected networks

leads to very close values for the predicted effective number of samples for these graphs

according to Eq 15, N�eff=N ’ 0:068 � 0:069.

Interestingly, we found that the F-score, which is a trade-off between optimizing Precision

and Recall, reaches a maximum for all sample sizes (N = 1,000 to 300,000) around the pre-

dicted effective number of samples, that is when Neff=N ¼ N�eff=N ’ 0:069, see vertical dashed

lines in F-score in S6 Fig and S6 Fig. We found also that the fraction of (wrongly) directed

edges is close to zero at the predicted effective number of samples, N�eff , providing that it is not

too small, i.e. N�eff > 300.

These results demonstrate that the theoretical estimate of N�eff , Eq 15, yields the best com-

promise between over-fitting and under-fitting graphical models given the finite and partially

correlated available datasets. They underline also miic accuracy to discard spurious causality

in observational data, even from relatively small effective numbers of independent samples, i.e.
N�eff > 300 in S6 Fig and S6 Fig.

Supporting information

S1 File. Supplementary text. Contents: 1. Information-theoretic approach to network recon-

struction; 1.1. Signature of causality versus indirect contributions to information in graphs; 1.2.

Finite size effect and most likely contributor score. 2. Algorithmic pipeline of the information-the-

oretic approach miic; 2.1. Algorithm 1: Learning skeleton taking into account latent variables;

2.2. Algorithm 2: Confidence estimation and sign of retained edges; 2.3. Algorithm 3: Probabilis-

tic orientation and propagation of remaining edges. 3. Algorithmic implementation and tools;

3.1. miicR-package; 3.2. miic and FCI executables. 4. References for Supplementary Text.

(PDF)

S1 Fig. Real-life Alarm network with hidden latent variables. [37 nodes, 46 links, 509

parameters, Average degree 2.49, Maximum in-degree 4]. Precision, Recall, F-score and com-

puting time for PAG skeletons (dashed lines) and PAGs including orientations (solid lines).
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The results are given for the miic algorithm (warm colors) compared to the RFCI algorithm

[10] (cold colors) for 0, 2, 4 and 6 latent variables out of the 37 nodes. Computation times in

log scale show a linear scaling in the limit of large datasets, τcpu * N0.9, for the miic algo-

rithm, and a stronger nonlinear increase, τcpu * N1.5, with the RFCI algorithm.

(TIFF)

S2 Fig. Real-life Insurance network with hidden latent variables. [27 nodes, 52 links, 984

parameters, Average degree 3.85, Maximum in-degree 3]. Precision, Recall, F-score and com-

puting time for PAG skeletons (dashed lines) and PAGs including orientations (solid lines).

The results are given for the miic algorithm (warm colors) compared to the RFCI algorithm

[10] (cold colors) for 0, 1, 2, and 4 latent variables out of the 27 nodes. Computation times in

log scale show a linear scaling in the limit of large datasets, τcpu * N1.0, for the miic algo-

rithm, and a stronger nonlinear increase, τcpu * N1.7, with the RFCI algorithm.

(TIFF)

S3 Fig. Real-life Barley network with hidden latent variables. [48 nodes, 84 links, 114,005

parameters, Average degree 3.5, Maximum in-degree 4]. Precision, Recall, F-score and com-

puting time for PAG skeletons (dashed lines) and PAGs including orientations (solid lines).

The results are given for the miic algorithm (warm colors) compared to the RFCI algorithm

[10] (cold colors) for 0, 2, 4 and 7 latent variables out of the 48 nodes. Computation times in

log scale show a nearly linear scaling in the limit of large datasets, τcpu * N1.1, for the miic
algorithm, and a stronger nonlinear increase, τcpu * N2.3, with the RFCI algorithm.

(TIFF)

S4 Fig. Reconstruction of Fig 1C network from simulated data. miic and RFCI [9, 10]ver-
sus 3off2 [19] and PC [7, 8, 25] reconstructions of Fig 1C network are performed from simu-

lated data generated with Tetrad V, N = 10–50,000 samples. Precision, Recall and Fscore are

given for skeleton (dashed lines) and PAG including orientations (solid lines).

(TIFF)

S5 Fig. Random benchmark networks of increasing size. miic reconstruction of random

networks of increasing size (P = 10–500 nodes) and fixed average degree 3 from N = 1,000

samples generated with Tetrad V. The average CPU time exhibits an optimal quadratic com-

plexity in terms of network size, τcpu * P2 (solid bar), with only a small time increase when

considering latent variables (orange) as compared to excluding them (red).

(TIFF)

S6 Fig. Alarm-like undirected network. Precision, Recall, F-score, percentage of (wrongly)

directed edges and decay of the autocorrelation function with lag between successive samples

for N = 1,000 to 300,000 consecutive partially correlated samples (with predicted effective

number of independent samples in brackets). Vertical dashed lines correspond to the pre-

dicted effective number of independent samples N�eff=N ’ 0:068, see Materials and methods.

(TIFF)

S7 Fig. Insurance-like undirected network. Precision, Recall, F-score, percentage of

(wrongly) directed edges and decay of the autocorrelation function with lag between successive

samples for N = 1,000 to 300,000 consecutive partially correlated samples (with predicted effec-

tive number of independent samples in brackets). Vertical dashed lines correspond to the pre-

dicted effective number of independent samples N�eff=N ’ 0:069, see Materials and methods.

(TIFF)

S8 Fig. Edge confidence filtering on real-life Alarm network. [37 nodes, 46 links, 509 param-

eters, Average degree 2.49, Maximum in-degree 4]. Precision, Recall, F-score and computing
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time for network skeleton (dashed lines) and oriented network CPDAG (solid lines) for a

decreasing edge-specific confidence filtering, CXY = 1 (no filtering) 0.01, 0.001 and 0.0001. For

sample size >100, confidence filtering of individual edges improves the precision (at the

expense of recall) not only for the skeleton (dashed lines), as expected, but also for the oriented

networks (solid lines). In addition, limited filtering, i.e. keeping edges with CXY < 10−3−10−2,

tends to yield equivalent F-scores as unfiltered benchmark reconstructions.

(TIFF)

S9 Fig. Edge confidence filtering on real-life Insurance network. [27 nodes, 52 links, 984

parameters, Average degree 3.85, Maximum in-degree 3]. Precision, Recall, F-score and com-

puting time for network skeleton (dashed lines) and oriented network CPDAG (solid lines) for

a decreasing edge-specific confidence filtering, CXY = 1 (no filtering) 0.01, 0.001 and 0.0001.

For sample size >100, confidence filtering of individual edges improves the precision (at the

expense of recall) not only for the skeleton (dashed lines), as expected, but also for the oriented

networks (solid lines). In addition, limited filtering, i.e. keeping edges with CXY < 10−3−10−2,

tends to yield equivalent F-scores as unfiltered benchmark reconstructions.

(TIFF)

S10 Fig. Gene expression distribution in 3,934 single cells from mouse embryos. Expression

data on the 33 TFs are obtained from [24]. Percentage of samples with expressed genes (red)

and non-expressed genes (gray).

(TIFF)

S11 Fig. Unfiltered network skeleton for hematopoiesis differentiation data. Hematopoietic

/ endothelial gene expression data in 3,934 single cells from mouse embryos [24]. 7 out of 82

edges (8.5%) with CXY > 10−3 have been filtered in Fig 2D (blue edges correspond to anti-cor-

relations).

(TIFF)

S12 Fig. Expression alterations in 807 samples of breast tumor data from COSMIC data-

base [34]. Percentage of samples with normalized over-expression (red), normalized under-

expression (blue) and unchanged normalized expression (gray) for each gene based on COSMIC.

(TIFF)

S13 Fig. Mutations in 807 samples of breast tumor data from COSMIC database [34]. Per-

centage of mutated samples (red) for each gene.

(TIFF)

S14 Fig. Unfiltered network skeleton for breast tumor ploidy-mutation- expression data

from COSMIC database [34]. Due to the limited numbers of samples (N = 807) and recurrent

gene mutants (Figure -figure supplement 2), most gene mutations (yellow) are not confidently

linked to any altered expression levels (green) and have been filtered in the high confidence

network Fig 3D (CXY < 10−3), with the notable exceptions of TP53 and RB1 mutations, which

have a significant impact on gene expressions, Fig 3D, see main text (blue edges correspond to

anti-correlations).

(TIFF)

S15 Fig. Unfiltered network skeleton for ohnolog retention data in human. Genomic data

for the 20,415 human coding genes is provided in S1 Data. The only edge with confidence

ratio CXY > 10−3 is RecDominance− ProteinComplexwith CXY = 0.25 (blue edges cor-

respond to anti-correlations).

(TIFF)
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S1 Software. Software and tools. miic software is provided in two formats: an R-package to

be used in the R environment, and miic and FCI executables, which were used for all bench-

marks included in the paper.

(ZIP)

S1 Data. Dataset of human genomic properties. This dataset contains all genomic data for

the 20,415 human genes analyzed in Fig 4.

(XLS)

S1 Table. Effect of BIC/MDL versus NML criteria in applications. Choosing the BIC/MDL

instead of NML criterion in the three genetic network applications, Figs 2, 3 & 4, leads to

somewhat sparser reconstituted networks including 82% to 100% of initial edges, yet no addi-

tional edges (i.e. consistent with a lower recall), and 66% to 75% conserved edge orientations

(i.e. identical −,!, and$ edges).

(XLS)
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els with the R package pcalg. J Stat Softw. 2012; 47(11):1–26. https://doi.org/10.18637/jss.v047.i11
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