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Abstract: The diagnosis of primary central nervous system (CNS) lymphoma, which is predominantly
of the diffuse large B-cell lymphoma type (CNS DLBCL), is challenging. MicroRNAs (miRs) are gene
expression-regulating non-coding RNAs that are potential biomarkers. We aimed to distinguish
miR expression patterns differentiating CNS DLBCL and non-malignant CNS diseases with tumor
presentation (n-ML). Next generation sequencing-based miR profiling of cerebrospinal fluids (CSFs)
and brain tumors was performed. Sample source-specific (CSF vs. brain tumor) miR patterns were
revealed. Even so, a set of 17 miRs differentiating CNS DLBCL from n-ML, no matter if assessed in
CSF or in a tumor, was identified. Along with the results of pathway analyses, this suggests their
pathogenic role in CNS DLBCL. A combination of just four of those miRs (miR-16-5p, miR-21-5p,
miR-92a-3p, and miR-423-5p), assessed in CSFs, discriminated CNS DLBCL from n-ML samples with
100% specificity and 67.0% sensitivity. Analyses of paired CSF-tumor samples from patients with
CNS DLBCL showed significantly lower CSF levels of miR-26a, and higher CSF levels of miR-15a-5p,
miR-15b-5p, miR-19a-3p, miR-106b-3p, miR-221-3p, and miR-423-5p. Noteworthy, the same miRs
belonged to the abovementioned set differentiating CNS DLBCL from non-malignant CNS diseases.
Our results not only add to the basic knowledge, but also hold significant translational potential.

Keywords: primary central nervous system lymphoma; CNS DLBCL; microRNA; miRNA; miR;
next-generation sequencing; cerebrospinal fluid

1. Introduction

Primary central nervous system (CNS) lymphoma (PCNSL) is a malignant extranodal
form of aggressive B-cell non-Hodgkin lymphoma (B-NHL), predominantly of the histo-
logical subtype of primary diffuse large B-cell lymphoma (CNS DLBCL). PCNSL shares
some clinical symptoms with a number of non-neoplastic neurological disorders, and in
imaging exams, inflammatory and other non-neoplastic lesions often present as tumors
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resembling PCNSL [1–3]. In everyday diagnostic practice, cases with unspecific presenta-
tions of brain disorders qualify for time-consuming enhanced diagnostics, while they often
require acute treatment (e.g., due to cerebral edema). According to the WHO criteria, the
ultimate diagnosis of PCNSL requires histopathological and immunohistochemical (IHC)
examination of brain biopsy material [3]. However, the invasive procedure of stereotactic
brain biopsy carries a risk of major complications, including intracranial hemorrhage. In
some cases, stereotactic brain biopsy cannot be performed due to the inaccessible location
of the lesion; in many cases, because of a common initial steroid therapy resulting in
vanishing tumors, HP/IHC examination of brain biopsy samples are inconclusive [4,5].
Complementary diagnostic tools, including neuroimaging and cytological and flow cytom-
etry examination of the cerebrospinal fluid (CSF), are also available, but PCNSL diagnosis
remains challenging [1]. There is a need to develop new diagnostic methods because fast
and reliable diagnosis of PCNSL is a prerequisite for prompt and proper treatment and
strongly influences patients’ outcomes. Several CSF markers, including IL-10, CXCL13 [6,7],
and neopterin [8], have been proposed for PCNSL diagnosis; however, their diagnostic
value has not been confirmed in clinical practice [9]. microRNAs (miRs), small, non-coding
RNA molecules that regulate gene expression, have emerged as promising biomarkers,
also in lymphoid malignancies and neurologic diseases [10,11]. The utility of CSF miR-21,
miR-19b, and miR-92a as PCNSL markers has been suggested [12]. We have recently
confirmed [13] that the miR-21, miR-19b, and miR-92a levels were significantly higher
in CSFs of patients with CNS DLBCL than of patients with non-malignant brain tumors;
however, the diagnostic accuracy of those miRs was found to be lower than previously
suggested. We also demonstrated that CNS DLBCL CSFs and the relevant brain biopsy
samples are characterized by specific, different miR profiles [13].

Our current study based on next-generation sequencing (NGS) explores the miRNome
in brain biopsies and CSF samples, to develop miR signatures that differentiate PCNSL
from non-neoplastic CNS diseases.

2. Materials and Methods
2.1. Patients and Samples

Consecutive CSFs and brain tumor samples analyzed in the study were collected for
routine diagnostic purposes from patients with the initial clinical and/or MRI presentation
suggesting PCNSL and ultimately diagnosed with CNS DLBCL or non-malignant brain
diseases (n-ML). Patients were diagnosed and consulted/treated at the Maria Sklodowska-
Curie National Research Institute of Oncology in Warsaw (Tables 1 and 2).

CSF samples of patients with n-ML were collected in the neurological departments
of Warsaw hospitals, for routine flow cytometry (FCM) diagnosis performed at the Flow
Cytometry Laboratory, Department of Pathology and Laboratory Diagnostics at the Maria
Sklodowska-Curie National Research Institute of Oncology in Warsaw.

CSF samples were obtained via lumbar puncture from patients with the initial clinical
and/or MRI presentation suggesting PCNSL, and subsequently diagnosed with CNS
DLBCL (n = 9, 6 women/3 men, median age 51, range 31–73) or with n-ML (n = 12,
7 women/5 men, median age 39, range 16–81) (Tables 1 and 2). The CSF samples were
centrifuged at 170× g, to recover the cells for the routine cytological and FCM examinations.
The leftover supernatants were centrifuged at 500× g for 10 min at 20 ◦C, aliquoted in
400 µL volumes, and stored at −70 ◦C.

Brain tumor samples were obtained by stereotactic biopsy or surgical resection of
the CNS tumors of patients with the initial clinical and/or MRI presentation suggesting
PCNSL, and subsequently diagnosed with CNS DLBCL (n = 10, 7 women/3 men, median
age 53, range 31–73) or with n-ML (n = 10, 5 women/5 men, median age 40.5, range 28–65)
(Tables 1 and 2).
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Table 1. Pathomorphological characteristics of the CNS DLBCL samples. Cerebrospinal fluids (F), n = 9; brain tumor
samples (T), n = 10.

Sample ID CSF/Tumor Patient Age/Sex Histopathology
IHC

Cell of Origin BCL2 Expression

F1/T1 63/f CNS DLBCL ABC (++)h

F2/T2 36/m CNS DLBCL GCB (++)h

F3/T3 55/m CNS DLBCL ABC (++)h

F4/T4 73/f CNS DLBCL ABC (+)

F5/T5 51/f CNS DLBCL ABC (+)

F6/T6 56/f IVLBCL with CNS
involvement GCB (−)

F7/T7 49/f CNS DLBCL ABC (++)h

F8/T8 31/f CNS DLBCL GCB (+)

F9/T9 42/m CNS DLBCL ABC (+)

–/T10 63/f CNS DLBCL CD5(+) (+)

m, male; f, female; histopathology: primary histopathological diagnosis of central nervous system (CNS) tumor; IHC, immunohistochemical
examination; cell of origin: GCB, germinal center B-cell type; ABC, activated B-cell type (non-GCB); CD5(+), CD5 positive immunohisto-
chemical subgroup; BCL2 expression: (++)h, higher BCL2 staining than in T lymphocytes; (+) BCL2 staining similar to or weaker than in T
lymphocytes; (−) no BCL2 staining in neoplastic cells; IVLBCL, intravascular large B-cell lymphoma.

Table 2. Pathomorphological characteristics of samples from patients with non-malignant CNS diseases. Cerebrospinal
fluid (FN, fluid non-malignant), n = 12; tumor (TN, tumor non-malignant), n = 10.

Sample ID Age/Sex ICD10 (Diagnosis)/HP Cytology

CSFs

1FN 40/m G35 (SM) L, M

2FN 81/f D43.1 (meningioma) L, M

3FN 48/f G37.9 L, M

4FN 30/f G35 (SM) L, M, Neu

5FN 36/m G37.9 L

6FN 48/m G04.9 (ADEM) L, M

7FN 59/m G04.8 L

8FN 49/f D33.1 L, M, E

9FN 16/f G04.0 E, D

10FN 31/f D33 L, M

11FN 38/m I67.7 L, M, E

12FN 37/f D33/reaction process. gliosis L, M

Tumors

11TN 38/m D33/reaction process. gliosis -

12TN 35/f reaction process. gliosis -

13TN 41/f hematoma. reaction process -

14TN 40/m Gliosis -

15TN 54/f hematoma -
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Table 2. Cont.

Sample ID Age/Sex ICD10 (Diagnosis)/HP Cytology

CSFs

16TN 65/m reaction process -

17TN 59/m cerebral hemispheres tissue -

18TN 28/f focal cortical dysplasia (FCD) type IIB -

19TC 30/f ischemic necrosis. gliosis -

20TC 47/m Hematoma -

m, male; f, female. ICD-10, clinical diagnosis of non-neoplastic CNS tumors according to the International Classification of Diseases.
Tenth Revision. Clinical Modification. Diseases of the nervous system codes: D33, Benign neoplasm of brain and other parts of central
nervous system; D33.1, Benign neoplasm of brain. infratentorial; D43.1, Neoplasm of uncertain behavior of brain. infratentorial; G04.0,
Encephalomyelitis disseminatus acuta; G04.8, Other encephalitis. myelitis and encephalomyelitis; G04.9, Encephalitis. myelitis and
encephalomyelitis, unspecified; ADEM, Acute Disseminated Encephalomyelitis; G35, Multiple sclerosis (SM); G37.9, Demyelinating
disease of central nervous system, unspecified; I67.7, Central nervous system vasculitis (cerebral NEC); HP, histopathological diagnosis of
non-neoplastic CNS tumor; cytological smears: L, lymphocytes; M, macrophages; D debris; E erythrocytes; Neu, neutrophils.

Formalin-fixed, paraffin-embedded samples were prepared by routine methods. For
HP examination, hematoxylin and eosin staining was performed. For IHC, tissue sections
were incubated with the diluted antibodies for 1 h in an autostainer (Dako, Carpinteria, CA,
USA) following the antigen-retrieval technique, if necessary, using the EnVision™ Detection
Systems FLEX kit (Dako Corp., Carpinteria, CA, USA, code K 8000) and monoclonal
antibodies (MoAbs) specific for CD20, CD10, BCL6, MUM1, BCL2, CD5, and Ki-67, as
previously described [13]. A reaction for CD20, BCL6, MUM1, and CD5 was considered
positive if at least 20% of the CNS DLBCL cells showed staining, while for CD10 if any
cell showed staining. Cases with a 100% IHC positivity of tumor cells were evaluated as
positive (+). Patterns of BCL2 staining were divided into 3 categories: (–) “negative”–-lack
of BCL2 on CNS DLBCL cells; (+) “positive”—expression of BCL2 on CNS DLBCL cells,
comparable/lower than in the surrounding small T lymphocytes; and (++)h—strong
BCL2 staining on CNS DLBCL cells, higher than in the background cells. A reaction was
considered positive if at least 20% of the CNS DLBCL cells showed the signal of BCL2.

For the Ki-67 index assessment, 200 cells were counted under HPF (×400), in each case.
Immunophenotyping of CSF samples was performed by FCM. Concentrated cells

isolated from CSFs by centrifugation were incubated with a panel of MoAbs (for the
staining procedure, see [14], and for a list of MoAbs, see [13]). The expression of B-cell
antigens CD(45/19/20/10/HLADR), T-cell antigens CD(45/3/4/8/5/43), and macrophage
antigens (CD14/CD4/43/HLADR) was quantified on FACSCalibur and FACSCanto II
cytometers (Becton Dickinson, BD, San Jose, CA, USA) and samples were categorized into
three groups, according to the percentages of positive cells: (−), no expression (<20% of
positive neoplastic cells); (+/−), expression in ≥20%<100% of cells; and (+), expression
in 100% of cells. Simultaneously, cytological smears were stained with May–Grünwald–
Giemsa for morphological evaluation.

The final diagnosis of CNS DLBCL and n-ML considered histopathological criteria
and IHC examination according to the 2016 WHO classification [15,16], and included
immunohistochemical subgroups, CD5 positive, germinal-center B-cell (GCB) type, and
activated B-cell (ABC) type, distinguished by the Hans algorithm; i.e., based on CD10,
BCL6, and multiple myeloma oncogene-1 (MUM1) expression, as proposed in the WHO
2008 classification [17]. CNS DLBCLs were classified as ABC (6 cases), GCB (3 cases), and
CD5 positive (1 case). The clinical and patomorphological characteristics of the patients are
presented in Table 1.

The study was conducted in accordance with the Declaration of Helsinki, and the
protocol was approved by the Ethics Committee of the Maria Sklodowska-Curie National
Research Institute of Oncology (April/2011–January/2012).
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2.2. RNA Extraction

Total RNA was isolated from CSF and tumor samples according to the protocols
described earlier by Zajdel et al. [13]. Briefly, total RNA was isolated from CSF samples
with the Gene Matrix Universal RNA/miRNA Purification Kit (EURx, Gdansk, Poland), ac-
cording to the manufacturer’s instructions. Ten 20-µm-thick sections of each formalin-fixed,
paraffin-embedded tissue (FFPET) sample were cut with a disposable blade. Total RNA
was extracted using the RecoverAll™ Total Nucleic Acid Isolation Kit (Applied Biosystems,
Carlsbad, CA 92008 USA), according to the manufacturer’s recommendations. RNA con-
centration and quality were measured with the NanoDrop ND 1000 Spectrophotometer
(NanoDrop Technologies, Wilmington, DE 19810 USA).

2.3. Next-Generation Sequencing

miR libraries were prepared with an Ion Total RNA-Seq Kit v2 and Ion Xpress RNA-
Seq BC01-16 Kit (ThermoFisher, Scientific Carlsbad, CA 92008 USA), according to the
manufacturer’s protocol, cleaned with Qiagen Gel Extraction Kit (Qiagen, Düsseldorf,
Germany), and checked for concentration and quality on Bioanalyzer 2100, using the High
Sensitivity DNA Analysis Kit (Agilent, Santa Clara, CA 95051 USA).

The generated amplicons, of equal concentration for each sample, were sequenced on
the Ion Proton (Thermo Fisher Scientific, Carlsbad, CA 92008 USA) platform using Ion PI
™ Hi-Q ™ Chef Kit and Ion PI ™ Chip Kit v3.

2.4. Quantitative Real-Time PCR

The reverse transcription reaction was performed with the TaqMan Advanced miR
cDNA Synthesis Kit (Applied Biosystems CN A28007, Carlsbad, CA 92008 USA). The
specific TaqMan Advanced miR Assay (Applied Biosystems CN A25576, Carlsbad, CA
92008 USA) was used to measure miRs specified in Table S1. The internal controls were
miR-24-3p for tumor samples and miR-24-3p and miR-23a-3p for CSF samples based on
the NormFinder algorithm.

Quantitative real-time polymerase chain reaction (qPCR) was performed using the
TaqMan Fast Advanced Master Mix (Applied Biosystems, Carlsbad, CA 92008 USA) on
a 7500 Fast Real-Time PCR System (Applied Biosystems, Carlsbad, CA 92008 USA). All
PCR reactions were carried out in triplicates, at a final volume of 10 µL. The data were
analyzed with the 7500 Software v.2.0.6 (Applied Biosystems, Carlsbad, CA 92008 USA)
and the relative miRs quantities were calculated with the 2−∆Ct method.

2.5. Statistical Analysis

The miRDeep2 application: (https://www.mdc-berlin.de/content/mirdeep2-docum
entation, accessed on 22 September 2020) was applied to map NGS reads to the human
genome hg19, to quantify the known miRs (miRBase V21/22) and to predict novel miRs.
Differential miR expression was analyzed with the use of the DESeq2 package; the signifi-
cance threshold was set at 0.05 after the Benjamini–Hochberg correction (q). The obtained
gene expression data were normalized (according to the internal DESeq2 normalization
mechanisms) and, after log2-transformation, used for the principal component analysis
(PCA) and hierarchical clustering in the R environment, to identify similarities in miR
expression patterns between the samples.

The lists of genes with expression levels significantly altered between the studied
groups were subsequently used in ontological analyses performed with the miR enrichment
analysis and annotation tool (miEAA, https://ccb-compute2.cs.uni-saarland.de/mieaa2,
accessed on 1 December 2019). This tool was employed to perform the over-representation
analysis of mature miRs in 28 different categories (Table S2). The enrichment analysis was
performed with the nonparametric Kolmogorov–Smirnov (KS) test. The minimum hits
per sub-category threshold equaled 2. The term was qualified as enriched if the KS test
p-value after the Benjamini–Hochberg adjustment was lower than 0.05. The enriched onto-
logical terms were visualized in word clouds, and the statistical significance of each term

https://www.mdc-berlin.de/content/mirdeep2-documentation
https://www.mdc-berlin.de/content/mirdeep2-documentation
https://ccb-compute2.cs.uni-saarland.de/mieaa2
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along with the over-represented miRs are shown as heatmaps. Finally, miRs of potential
importance for differentiating CNS DLBCL and benign brain lesions were analyzed by the
Pearson’s correlation test to evaluate the relationship between their levels in tumors and
the corresponding CSFs in CNS DLBCL patients.

The differences in miR expression levels between samples revealed at the RT-qPCR
verification were assessed by the Mann–Whitney U test.

Receiver Operator Characteristic (ROC) analysis was performed to quantify the accu-
racy of the miR profiling to discriminate between the CNS DLBCL and n-ML samples.

3. Results
3.1. PCA Analyses

PCA analysis showed that the miR levels clustered samples according to their ma-
lignant vs. non-malignant origin from patients with non-malignant vs. malignant CNS
tumors. The segregation was much more evident for the n-ML and CNS DLBCL tumor
samples than for the CSF samples (Figures 1 and 2).
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3.2. CNS DLBCL-Specific CSF miR Profile

The NGS analysis of all 21 CSF samples identified a total number of 406 miRs of
2588 miR sequences recorded in the miRBase v21. Eighteen CSF miRs were significantly
differentially expressed between the two groups of patients, including 15 (miR-15a-5p,
miR-15b-5p, miR-16-5p, miR-17-3p, miR-19a-3p, miR-19b-3p, miR-20a-5p, miR-21-5p, miR-
25-3p, miR-92a-3p, miR-106b-3p, miR-148a-3p, miR-210-3p, miR-221-3p, and miR-423-5p)
miRs with higher and 3 miRs (miR-9-3p, miR-9-5p, and miR-26a-5p) with lower expression
levels in CNS DLBCL than in non-neoplastic CNS diseases (Table S3).

3.3. CNS DLBCL-Specific miR Profile of Brain Tumors

A total of 349 miRs out of 2588 miR sequences recorded in the miRBase v21 were
detected in 20 FFPET samples of CNS tumors, 10 from CNS DLBCL, and 10 from n-ML.
Significantly different expression of 205 miRs was shown between patients with CNS
DLBCL and with n-ML, including 87 with a higher expression and 118 with a lower
expression in CNS DLBCL (Tables 3 and S3).

3.4. A Common set of CSF and Tumor miRs Differentially Expressed between CNS DLBCL and
Non-Malignant CNS Diseases

Seventeen miRs differentially expressed between patients with CNS DLBCL and those
with n-ML, were common for both CSF and tumor samples. Those included 14 miRs
(miR-15a-5p, miR-15b-5p, miR-16-5p, miR-17-3p, miR-19a-3p, miR-19b-3p, miR-20a-5p,
miR-21-5p, miR-25-3p, miR-92a-3p, miR-106b-3p, miR-148a-3p, miR-210-3p, and miR-
423-5p) with a higher expression in malignant vs. n-ML samples, and 3 miRs (miR-9-3p,
miR-9-5p, and miR-26a-5p) with a lower expression (Table 3, Figure 3). Noteworthy, only
one miR of the CNS DLBCL-specific CSF profile, namely, miR-221-3p, does not belong to
the common set of 17 miRs.
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BCL) and non-malignant CNS diseases (n-ML). Red and green mark miRNAs down- or upregulated
in CNS DLBCL vs n-ML.
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Table 3. Seventeen miRs common for cerebrospinal fluid and tumor samples, significantly differentiating CNS DLBCL and n-ML tumors. RT-qPCR validation of the NGS results.

Tumor Samples CSF Samples
miRs NGS RT-qPCR NGS RT-qPCR

q*-Value

FC
(CNS

DLBCL
/n-ML)

ROC
(AUC)

Expression
Level in

CNS
DLBCL

(Median)

Expression
Level in

n-ML
(Median)

p-Value q-Value

FC
(CNS

DLBCL
/n-ML)

ROC
(AUC)

Expression
Level in

CNS
DLBCL

(Median)

Expression
Level

in n-ML
(Median)

p-Value

miR-9-3p p < 0.001 0.24 0.86 0.15 0.69 0.0643 0.0165 0.14 0.84 0.26 0.39 0.3030
miR-9-5p p < 0.001 0.22 0.89 1.33 3.09 0.0455 0.0299 0.15 0.79 0.54 0.77 0.6965

miR-15a-5p 0.0132 2.05 0.81 1.49 0.56 p < 0.001 0.0095 5.31 0.58 2.44 1.86 0.4532
miR-15b-5p p < 0.001 5.23 0.87 0.67 0.26 0.0022 0.0198 5.24 0.79 1.09 0.81 0.2713
miR-16-5p p < 0.001 2.57 0.93 4.20 1.36 p < 0.001 0.0067 4.34 0.72 5.86 1.65 0.0251
miR-17-3p p < 0.001 5.37 0.9 0.07 0.02 p < 0.001 0.0198 16.11 0.73 0.09 0.02 0.0601

miR-19a-3p p < 0.001 6.61 0.96 0.05 0.01 p < 0.001 p < 0.001 4.79 0.96 0.20 0.11 0.1902
miR-19b-3p p < 0.001 5.06 0.95 0.14 0.03 0.0022 0.0095 3.16 0.73 0.86 0.29 0.5961
miR-20a-5p p < 0.001 8.96 0.98 0.39 0.07 p < 0.001 0.0334 5.71 0.68 0.36 0.15 0.1902
miR-21-5p 0.0311 2.78 0.83 4.86 0.52 0.0022 0.0165 3.40 0.76 5.90 3.77 0.0512
miR-25-3p p < 0.001 3.45 0.83 0.71 0.21 p < 0.001 0.0260 12.46 0.37 0.60 0.36 0.1260

miR-26a-5p 0.0097 0.65 0.89 2.45 3.30 0.1211 0.0337 0.40 0.76 1.12 1.39 0.4122
miR-92a-3p p < 0.001 5.77 0.98 1.98 0.53 0.001 0.0219 6.08 0.61 6.76 0.88 0.0357

miR-106b-3p p < 0.001 7.09 1 0.02 0.01 0.0073 0.0253 19.51 0.32 0.05 0.02 0.0466
miR-148a-3p 0.0010 6.21 0.89 0.39 0.04 p < 0.001 0.0095 9.45 0.70 0.57 0.71 0.6965
miR-210-3p p < 0.001 4.17 0.84 0.12 0.05 0.0036 0.0198 10.48 0.68 0.17 0.14 0.3030
miR-423-5p 0.0125 1.80 0.85 1.75 0.63 0.0057 0.0115 4.15 0.68 2.44 1.29 0.0424

CNS DLBCL, Central nervous system primary diffuse large B-cell lymphoma; n-ML, non-malignant brain lesions; CSF, cerebrospinal fluid; FC, fold change; ROC, Receiver Operating Characteristic; AUC, Area
Under Curve; * p-value after the Benjamini–Hochberg adjustment.
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3.5. miR Profiles in Paired CSF/Brain Samples from Patients with CNS DLBCL

The analysis of nine paired CSF and brain tumor samples from patients with CNS
DLBCL revealed 624 miRs to be expressed at a significantly lower level, and 79 miRs at a
significantly higher level in CSF than in brain tumor samples. Noteworthy, among those
expressed at a lower level in the CSFs, there was miR-26a-5p, and those expressed at a
higher level in CSFs included 5 miRs, miR-15a-5p, -15b-5p, -19a-3p, -106b-3p, and -423-5p,
which significantly differentiated CNS DLBCL vs. non-malignant CNS disease, no matter
if assessed in CSF or in a tumor.

3.6. New, Previously Unannotated micoRNA Molecules

NGS analysis revealed five new miRs not yet included in the miRBase v22. However,
none of them significantly differentiated malignant and benign lesions, four were detected
in all or in the majority of tumor biopsies, while their occurrence in CSFs was much less
frequent (Table S4).

3.7. RT-qPCR Validation of the NGS Results

In order to verify the NGS data, we focused on the set of 17 miRs differentially ex-
pressed between patients with CNS DLBCL and with non-malignant CNS diseases in both
CSF and tumor samples. miR expression was verified by RT-qPCR in all tumor brain tumor
samples and CSFs from patients with CNS DLBCL and with non-malignant CNS diseases
included in the NGS analysis. The expression levels of all except two miRs (miR-9-3p and
miR-26a-5p) were confirmed to significantly differentiate CNS DLBCL and non-malignant
brain tumor samples. In CSFs, the levels of five miRs were confirmed to differentiate CNS
DLBCL from n-ML (miR-16-5p, miR-92a-3p, miR-106b-3p, miR-423-5p, and miR-21-5p that
nearly reached the significance threshold) (Table 3). It needs to be emphasized that RT-
qPCR validation of the NGS results is commonly qualified as challenging, as the RT-qPCR
technique, although routinely used, is regarded as not sufficient to validate NGS results.
Significant discrepancies between NGS and RT-qPCR results have been observed in other
studies involving cerebrospinal fluids [18,19]. Considering the above, the validation we
achieved should be regarded as more than satisfactory.

3.8. ROC Analyses

As shown by ROC analyses each of the 17 miRs differentially expressed between
patients with CNS DLBCL and with non-malignant CNS diseases in both CSF and tumor
samples showed a high discrimination power when assessed in tumor samples AUC > 80),
while when assessed in CSFs, 10 of them reached AUC > 70 (Table 3). Combining miR-
16-5p, miR-21-5p, miR-92a-3p, and miR-423-5p (selected out of those that were positively
verified by the RT-qPCR) in the ROC analysis resulted in a high power of discrimination
between CNS DLBCL and n-ML samples, 100% specificity, 100% sensitivity, and AUC = 100
for tumor samples; and 100% specificity, 67.0% sensitivity, and AUC = 82.4 for CSF samples
(Figure 4).

3.9. Functional Analyses of CNS DLBCL-Specific CSF and Tumor miR Profiles

We performed comprehensive ontological analyses of the CNS DLBCL-specific miR
profiles of CSFs and tumor samples using the miR enrichment analysis and an annotation tool
(miEAA, https://ccb-compute2.cs.uni-saarland.de/mieaa2, accessed on 1 December 2019).

https://ccb-compute2.cs.uni-saarland.de/mieaa2
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3.9.1. Bioinformatic Analysis of CNS DLBCL-Specific CSF miR Profile

Ontological analysis of the CNS DLBCL-specific CSF miR profile (18 miRs) revealed
the biological processes that were regulated by this set of miRs. Positive regulation of cellular
metabolic process, organelle organization and positive regulation of cellular biosynthetic process
were the top biological processes. Of all processes revealed, 11 were related to cellular
metabolism (Database: miRPathDB GO Biological process) (Table S5).

The set of CNS DLBCL-specific CSF miRs was linked, among others, to nervous
system diseases, glioblastoma, brain injuries, lymphomas of different cell of origin, and
lymphoproliferative disorders (Database: Diseases MNDR) (Table S6).

Next, with the use of the SM2miR database of small molecules’ effects on miR expres-
sion [20], we identified a number of small molecules/drugs that potentially can significantly
influence the expression level of the set of 18 CSF-derived CNS DLBCL-specific miRs. The
identified small molecules/drugs included various epigenetic drugs: histone deacetylase
inhibitors (HDACi), e.g., LAQ824 (dacinostat) and ITF2357 (givinostat); DNA methylation
inhibitors, such as Decitabine, Azacitidine, and Temozolomide; and the bioactive compounds
curcumin, marine fungal metabolite 1386A, 3,3-diindolylmethane BR-DIM, and ginsenoside Rh2
(Table S7).

Thereafter, using the miRandola database, which classifies extracellular non-coding
RNAs according to their form and source, the set of CNS DLBCL-specific CSF miRs
were found to be predominantly microparticle-associated, binding with Argonaute 2 protein
and microvesicle-derived. According to the miRPathDB GO Cellular component database,
the CSF-derived CNS DLBCL-specific miRs were localized mainly in vesicles, cytoplasm,
nuclear body, and protein-containing complex. Another database, miRWalk Organs, identified
lymphocytes, endothelial cells, and brain, among others, to be the sources of these miRs
(Table S8).

We also showed (Table S9) that the analyzed set of CSF miRs may directly influence
many important cellular processes, miR mediated inhibition of translation and negative regula-
tion of cell population proliferation (GO Annotations database) in particular, and may also
act indirectly, by influencing the function of key genes involved in signaling pathways or
important cellular processes, such as neuron apoptotic process and anaphase-promoting complex
binding (GO Annotation indirect database).

In order to determine whether the CNS DLBCL-specific miRs are linked to particular
signaling pathways, we used the miRPathDB Reactome and miRPathDB KEGG databases.
The miRPathDB Reactome database revealed several significantly enriched pathways, e.g.,
PTEN regulation, PIP3-activated AKT signaling, transcriptional regulation by TP53, signaling
by TGF-beta family members, pre-NOTCH expression and processing, estrogen-dependent gene
expression, ESR-mediated signaling, and regulation of RUNX1 expression and activity (Table
S10). The analysis of the CSF miR set based on the miRPathDB KEGG database identified
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significant participation of these miRs in pathways in cancer, p53 signaling pathway, cell cycle,
and in the FoxO-, neurotrophin-, TNF-, Wnt-, and ErbB-signaling pathways, among others
(Table S10).

By employing the miRTarBase database designated to define miR–target interactions,
we identified 1688 target genes related to the analyzed group of CNS DLBCL-specific CSF
miRs and largely linked to important cancer signaling pathways. There was a significant
abundance of miRs related to genes responsible not only for basic signaling pathways and
cellular processes, often disturbed in carcinogenesis (TFB1M, NFKB1, GIT2, PTEN, and
RASA1), but also to genes involved in ion transport (SLC9A6 and ITPR1), cell communica-
tion (DICER1, DENND6A, and ARCN1), and adhesion (DENND6A, RASSF5, and BTBD7).
Other identified genes are directly related to the functioning of B lymphocytes (NFKB1,
POU2AF1, and RASSF5) or the pathogenesis of DLBCL (NFKB1, MAP2K3 CHEK1, DDX3X,
and NOTCH2) (Table S11). This set of genes also included some of the abovementioned
genes, e.g., PTEN and NOTCH.

3.9.2. Bioinformatic Analysis of CNS DLBCL-Specific Tumor miR Profile

Ontological analysis (miRPathDB GO Biological process database) of 205 brain tumor
miRs, with significantly different expression between CNS DLBCL and non-malignant
CNS diseases, showed that these miRs are involved in many cellular processes, with cellular
protein modification process, immune system process, positive regulation of metabolic process,
response to organic substance and growth factor, negative regulation of cell death, and intracellular
signal transduction on top of the list (Table S12).

Next, we used the Mammalian ncRNA-Disease Repository database (MNDR), des-
ignated to extract the miR–disease associations, and found that the CNS DLBCL-specific
tumor miR profile is linked to many cancers, including lymphoma, B-cell lymphoma, Burkitt
lymphoma, as well as to diseases of the CNS, including neurodegenerative disease, amyotrophic
lateral sclerosis, and brain disease (Table S13).

SM2miR database-based analysis revealed that the expression level of brain tumor-
derived CNS DLBCL-specific miRs might be significantly modified by several epigenetic
drugs, including DNA methylation inhibitors, e.g., Decitabine, Azacitidine, and Temozolo-
mide, as well as histone deacetylase inhibitors (HDACi), e.g., LAQ824 (Dacinostat), ITF2357
(Givinostat), Vorinostat (SAHA), and Trichostatin A (TSA). Small molecules with a poten-
tially significant influence on these miRs’ expression levels include arsenic trioxide and
the following bioactive compounds: Aidi injection (extracts from Radix Ginseng, Astragalo-
side, Eleutherococcus senticosus, and Cantharidin), bioactive compound from Panax ginseng
(ginsenoside Rh2), marine fungal metabolite 1386A, and curcumin (Table S7).

According to the Tissue Atlas database, the analyzed CNS DLBCL-specific miRs were
classified as expressed primarily in brain, spinal cord, and dura mater. The miRandola
database classified the analyzed miRs mainly as circulating (Table S14).

Next, we found that the analyzed 205 miR profile is linked to various molecular func-
tions, such as negative regulation of anoikis, neuron apoptotic process, cerebral cortex development,
and epithelial to mesenchymal transition (GO Annotations indirect database). We also found
that those 205 CNS DLBCL-specific miRs participate in the regulation of a number of
signaling pathways, including FoxO, HIF-1, PI3K-Akt, TGF-beta, mTOR, ErbB, and TP53
(miRPathDB KEGG database) (Table S15).

Analyses employing the miRPathDB Reactome database confirmed that the CNS
DLBCL-specific miR set is significantly linked to the following pathways: PIP3 activated
AKT signaling, TGF-beta receptor complex, and transcriptional regulation by TP53 pathways,
as well as PTEN regulation, interleukin-4 and interleukin-13 signaling, signaling by nuclear
receptors, and TP53 regulates metabolic genes (Table S15).

The analysis of miR-target interactions with the use of the miRTarBase database
revealed a set of 3023 genes that most strongly interact with the identified group of CNS
DLBCL-specific miRs (Table S11). These genes are responsible for many important cellular
processes (e.g., proliferation and apoptosis) and are associated with the pathogenesis of
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DLBCL, BCL2, RUNX2, NOTCH2, MYC, APC, BMPR2, PTEN, IL6, CAMTA1, and PRKAR1A
among them. The identified set of genes also includes ARCN1, BTBD7, and PTEN, strongly
related to the CNS DLBCL-specific CSF miRs (Table S11).

4. Discussion

We present the first NGS-based study examining CSF and brain biopsy miRNomes,
in order to identify patterns differentiating patients with CNS DLBCL from those with
non-malignant CNS diseases.

In line with our previous RTq-PCR-based study that focused on seven miRs [13], we
revealed CNS DLBCL-specific miR profiles that are different for CSF and brain biopsy
samples. Still, we identified here a set of 17 miRs that differentiates CNS DLBCL from
non-malignant CNS tumors, no matter if assessed in CSF or brain biopsy samples, which
implies their biomarker potential. Combined levels of just four of those miRs presented a
high power of discrimination between the CNS DLBCL and n-ML samples.

Molecular discordance between CSF and brain samples has been reported in other
diseases. In sporadic Creutzfeldt–Jakob disease, there was no correlation between altered
miR profiles in CSF and pathologically affected brain regions, while in Alzheimer’s disease
a limited correlation has been shown [21–23]. Even the established Alzheimer disease
marker, amyloid-β 42, presented an increased brain deposition and decreased CSF and
plasma levels [24]. In cancer patients, the profiles of circulating miRs have been shown
not necessarily to reflect their expression in tumor samples [25–31]. The lack of correlation
between the disease-specific miR levels in body fluids and the matched tumor biopsies
is not clearly understood, and may be associated with the systemic effects of cancer
progression [32]. A multi-organ origin of most plasma-circulating miRs has also been
suggested [33]. CSF miRs may also derive from different cell types, such as those associated
with the ventricular choroid plexus, ventricular system, the subarachnoid space, and spinal
cord, while miRs detected in tumor biopsy specimens may be regarded as originating
mainly from cancer cells [34]. Disease-related CSF miR profiles may also be biased by
miRs that, encapsulated in exosomes, may cross the blood–brain barrier (BBB) [35] or
brain-derived miRs that reach the circulation due to a BBB dysfunction which frequently
accompanies CNS cancers and neurodegenerative diseases [36]. In addition, it has been
demonstrated that miRs can be selectively secreted by or retained in normal or malignant
cells [37–40]. As shown in a recent study in healthy donors, brain tissues and CSF exosomes
differ in miR profiles, suggesting a selective secretion of miRs by brain tissues [39].

Our NGS analysis of paired CSF and brain biopsy samples from CNS DLBCL patients
demonstrated significantly lower CSF miR-26a levels, and significantly higher CSF levels
of miR-15a-5p, miR-15b-5p, miR-19a-3p, miR-106b-3p, miR-221-3p, and miR-423-5p. Note-
worthy, we also found that the levels of exactly the same miRs differentiated CNS DLBCL
from non-malignant CNS diseases, no matter if assessed in CSF or in a tumor. These CNS
DLBCL-specific changes in miR content in CSFs and brain biopsies may suggest their role
in the pathogenesis of brain diseases.

The tumor suppressor activity of miR-26a and its downregulation has been docu-
mented in many malignancies, including lung [41], breast [42], nasopharyngeal [43], gastric
cancers [44], prostate cancers [45], melanoma [46], and Burkitt lymphoma [47]. Notewor-
thy, a widespread MYC-induced repression of miRs (miR-26a included) contributes to
the pathogenesis of MYC-driven aggressive B-NHLs [48], and MYC expression has been
demonstrated in 70–90% of CNS DLBCL cases [49–51]. The CNS DLBCL-specific miR-26a
downregulation that we present here is also in line with the previous studies suggesting an
MYC-miR-26a-EZH2 positive feedback loop in aggressive B-NHLs [52].

Our data suggest an oncogenic role of miR-15a-5p, miR-19a-3p, miR-106b-3p, and
miR-423-5p. Significantly increased levels of serum miR-15a-5p have been shown in DLBCL
patients [53,54], and a link between an increased miR-15a-5p expression and neuroblas-
toma progression has been suggested based on studies involving clinical samples and cell
lines [55,56]. Increased miR-19a-3p expression and its oncogenic role has been demon-
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strated in multiple myeloma [57], hepatocellular carcinoma [58], ovarian cancer [59], and
osteosarcoma [60]. Elevated circulating miR-106b-3p levels have been found in pancreatic
cancer [61], colorectal cancer [62], and hepatocellular carcinoma [63], and in esophageal
squamous cell carcinoma cells miR-106b-3p expression has been found to be increased and
to induce malignant features [64].

With respect to miR-423-5p, its upregulation in glioma has been associated with
enhanced growth, migration, neurosphere formation, invasion, and resistance to temozolo-
mide [65], while in lung cancer it has been linked to brain metastases [66]. In addition,
increased serum exosome miR-423-5p levels have been associated with the promotion of
gastric cancer growth and metastasis [67].

We also found significantly higher CSF miR-221-3p levels to differentiate CNS DLBCL
from non-malignant CNS diseases. In CNS DLBCL patients, miR-221-3p expression was
also higher in CSFs than in tumor brain biopsies. Noteworthy, miR-221-3p upregulation
has been reported in ABC DLBCL [68], and CNS DLBCL mostly belongs to the ABC
subgroup [69,70]. Exosomal miR-221-3p in breast cancer [71] and glioma [72] has been
implicated in drug resistance.

Ontological analyses demonstrated significant associations between the CNS DLBCL-
specific set of miRs (CSF- and/or brain biopsy-derived) with CNS diseases and various
DLBCL subtypes as well as with numerous biological processes, pathways, and molecular
functions, the latter including Anaphase-promoting complex binding. Interestingly, a recent
study pointed to anaphase-promoting complex as a new promising treatment target in
DLBCL and mantle cell lymphoma [73]. Concordantly, other analyses of miR–target
interactions in CSFs and brain biopsies of CNS DLBCL patients identified a significant
abundance of miRs related to the genes responsible for functioning of B lymphocytes
and the pathogenesis of B-NHLs, among others. Taken together, these findings support
the relevance of the identified set of miRs to the underlying molecular CNS DLBCL
pathogenesis and point to the potential of those miRs as diagnostic biomarkers.

Many biological processes regulated by the CSF- and brain biopsy-derived CNS
DLBCL-specific set of miRs were found to be related to cellular metabolism. This is in
line with the previously postulated tumor metabolism-dependent shaping of the B-NHL
microenvironment, which influence tumor progression [74].

Moreover, we revealed that the expression of miRs of the identified CNS DLBCL-
specific profiles may be affected by a group of small molecules/drugs and bioactive
substances, including arsenic trioxide and epigenetic drugs (histone deacetylase inhibitors
(HDACis), LAQ824 (dacinostat), ITF2357 (givinostat), Vorinostat, DNA methyltransferase
inhibitors (DNMTis), Decitabine, Azacitidine, and Temozolomide). The combination of
arsenic trioxide with other compounds proved efficient in various hematological and
lymphoid malignancies, including acute promyelocytic leukemia [75], primary effusion
lymphoma [76], and adult T-cell leukemia/lymphoma [77]. HDACis and DNMTis demon-
strated promising anticancer activities in both hematological and lymphoid malignancies
and solid tumors [78,79] and Vorinostat (SAHA) has been approved for treating primary
cutaneous T-cell lymphoma [80]. Therapeutic efficacy of HDACis and DNMTis is still under
investigation, especially in combination with other cancer drugs [81–86]. Interestingly, it
has recently been found that HDAC enhanced the therapeutic effects of methotrexate in
PCNSL [87]. The identified miR profiles provide suggestions on potential new therapeutic
options for PCNSL.

5. Conclusions

We discovered specific patterns of CSF miRs and brain tumor miRs differentiating
CNS DLBCL from n-ML. A set of 17 miRs, no matter if assessed in CSF or in a tumor,
differentiated CNS DLBCL from non-malignant CNS diseases. These miRs are probably
linked to the pathogenesis of CNS DLBCL and have biomarker potential. Assessment of a
few selected miRs in a CSF might provide a less invasive alternative to brain biopsy and
might serve as a diagnostic tool for patients who do not qualify for brain biopsy.
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Further studies are necessary to validate the biomarker potential of miRs on an inde-
pendent set of samples, and to assess the diagnostic power of miRs in patients following a
common initial steroid treatment known to hinder PCNSL diagnosis based on stereotactic
brain biopsy [4,5] because of vanishing tumors.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/1
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tool (miEAA); Table S3: A list of CSF and tumor miRs significantly differentiating CNS DLBCL and n-
ML diseases; Table S4: Newly identified miRNAs; Table S5: CNS DLBCL-specific CSF microRNAs and
biological processes; Table S6: CNS DLBCL-specific CSF microRNAs and diseases; Table S7: Drugs
potentially affecting CNS DLBCL-specific CSF/tumor miRNAs; Table S8: Sources of CNS DLBCL-
specific CSF microRNAs; Table S9: Molecular functions of CNS DLBCL-specific CSF microRNAs;
Table S10: CNS DLBCL-specific CSF microRNAs and signaling pathways; Table S11: Top genes
strongly associated with the CNS DLBCL-specific miRNA set; Table S12: CNS DLBCL-specific
tumor microRNAs and biological processes; Table S13: CNS DLBCL-specific FFPET microRNAs
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Author Contributions: Conceptualization: G.R., J.K.S. and M.S.; methodology: M.S., G.R., A.P.,
L.M.S., M.Z., M.K., M.D., A.B. and Z.B; software: A.P., L.M.S. and M.K. (Maria Kulecka); validation:
M.S., M.Z., M.K., and J.K.S.; formal analysis: M.S., A.P., L.M.S., M.K. (Maria Kulecka) and M.K.;
investigation: M.S., G.R., A.P., M.Z., M.K., M.D., A.B., Z.B. and M.C.; resources: G.R. and Z.B.; data
curation: M.S., G.R., A.P., L.M.S., M.K. (Maria Kulecka) and M.C.; writing—original draft preparation:
M.S. and J.K.S.; writing—review and editing: M.S., G.R., L.M.S., M.C. and J.K.S.; visualization: M.S.,
L.M.S., M.C. and J.K.S.; supervision: J.K.S.; project administration: M.S.; funding acquisition: J.K.S.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki, the protocol was approved by the Ethics Committee of the Maria Sklodowska-Curie
National Research Institute of Oncology (April/2011–January/2012).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Acknowledgments: We thank Maria Cieslikowska and Pawel Swoboda for their assistance in collect-
ing and initial characterization of clinical material, and Katarzyna Blachnio for her participation in
the histopathology- and FCM-based CNS DLBCL diagnosis.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Han, C.H.; Batchelor, T.T. Diagnosis and management of primary central nervous system lymphoma. Cancer 2017, 123, 4314–4324.

[CrossRef]
2. Abrey, L.E.; Batchelor, T.T.; Ferreri, A.J.; Gospodarowicz, M.; Pulczynski, E.J.; Zucca, E.; Smith, J.R.; Korfel, A.; Soussain, C.;

DeAngelis, L.M.; et al. Report of an international workshop to standardize baseline evaluation and response criteria for primary
CNS lymphoma. J. Clin. Oncol. 2005, 23, 5034–5043. [CrossRef] [PubMed]

3. Hoang-Xuan, K.; Bessell, E.; Bromberg, J.; Hottinger, A.F.; Preusser, M.; Ruda, R.; Schlegel, U.; Siegal, T.; Soussain, C.;
Abacioglu, U.; et al. Diagnosis and treatment of primary CNS lymphoma in immunocompetent patients: Guidelines from
the European Association for Neuro-Oncology. Lancet Oncol. 2015, 16, e322–e332. [CrossRef]

4. Deckert, M.; Engert, A.; Bruck, W.; Ferreri, A.J.; Finke, J.; Illerhaus, G.; Klapper, W.; Korfel, A.; Kuppers, R.; Maarouf, M.; et al.
Modern concepts in the biology, diagnosis, differential diagnosis and treatment of primary central nervous system lymphoma.
Leukemia 2011, 25, 1797–1807. [CrossRef]

5. Bruck, W.; Brunn, A.; Klapper, W.; Kuhlmann, T.; Metz, I.; Paulus, W.; Deckert, M.; Netzwerk Lymphome und Lymphomatoide
Lasionen des, N. Differential diagnosis of lymphoid infiltrates in the central nervous system: Experience of the Network
Lymphomas and Lymphomatoid Lesions in the Nervous System. Pathologe 2013, 34, 186–197. [CrossRef]

6. Sasayama, T.; Nakamizo, S.; Nishihara, M.; Kawamura, A.; Tanaka, H.; Mizukawa, K.; Miyake, S.; Taniguchi, M.; Hosoda, K.;
Kohmura, E. Cerebrospinal fluid interleukin-10 is a potentially useful biomarker in immunocompetent primary central nervous
system lymphoma (PCNSL). Neuro-oncology 2012, 14, 368–380. [CrossRef] [PubMed]

https://www.mdpi.com/article/10.3390/biom11091395/s1
https://www.mdpi.com/article/10.3390/biom11091395/s1
http://doi.org/10.1002/cncr.30965
http://doi.org/10.1200/JCO.2005.13.524
http://www.ncbi.nlm.nih.gov/pubmed/15955902
http://doi.org/10.1016/S1470-2045(15)00076-5
http://doi.org/10.1038/leu.2011.169
http://doi.org/10.1007/s00292-013-1742-9
http://doi.org/10.1093/neuonc/nor203
http://www.ncbi.nlm.nih.gov/pubmed/22156547


Biomolecules 2021, 11, 1395 15 of 18

7. Rubenstein, J.L.; Wong, V.S.; Kadoch, C.; Gao, H.X.; Barajas, R.; Chen, L.; Josephson, S.A.; Scott, B.; Douglas, V.; Maiti, M.; et al.
CXCL13 plus interleukin 10 is highly specific for the diagnosis of CNS lymphoma. Blood 2013, 121, 4740–4748. [CrossRef]
[PubMed]

8. Viaccoz, A.; Ducray, F.; Tholance, Y.; Barcelos, G.K.; Thomas-Maisonneuve, L.; Ghesquieres, H.; Meyronet, D.; Quadrio, I.;
Cartalat-Carel, S.; Louis-Tisserand, G.; et al. CSF neopterin level as a diagnostic marker in primary central nervous system
lymphoma. Neuro-oncology 2015, 17, 1497–1503. [CrossRef] [PubMed]

9. van Westrhenen, A.; Smidt, L.C.A.; Seute, T.; Nierkens, S.; Stork, A.C.J.; Minnema, M.C.; Snijders, T.J. Diagnostic markers for CNS
lymphoma in blood and cerebrospinal fluid: A systematic review. Br. J. Haematol. 2018, 182, 384–403. [CrossRef]

10. Rao, P.; Benito, E.; Fischer, A. MicroRNAs as biomarkers for CNS disease. Front. Mol. Neurosci. 2013, 6, 39. [CrossRef]
11. Wei, D.; Wan, Q.; Li, L.; Jin, H.; Liu, Y.; Wang, Y.; Zhang, G. MicroRNAs as Potential Biomarkers for Diagnosing Cancers of

Central Nervous System: A Meta-analysis. Mol. Neurobiol. 2015, 51, 1452–1461. [CrossRef]
12. Baraniskin, A.; Kuhnhenn, J.; Schlegel, U.; Chan, A.; Deckert, M.; Gold, R.; Maghnouj, A.; Zollner, H.; Reinacher-Schick, A.;

Schmiegel, W.; et al. Identification of microRNAs in the cerebrospinal fluid as marker for primary diffuse large B-cell lymphoma
of the central nervous system. Blood 2011, 117, 3140–3146. [CrossRef]

13. Zajdel, M.; Rymkiewicz, G.; Sromek, M.; Cieslikowska, M.; Swoboda, P.; Kulinczak, M.; Goryca, K.; Bystydzienski, Z.; Blachnio,
K.; Ostrowska, B.; et al. Tumor and Cerebrospinal Fluid microRNAs in Primary Central Nervous System Lymphomas. Cancers
2019, 11, 1647. [CrossRef]

14. Zajdel, M.; Rymkiewicz, G.; Chechlinska, M.; Blachnio, K.; Pienkowska-Grela, B.; Grygalewicz, B.; Goryca, K.; Cieslikowska, M.;
Bystydzienski, Z.; Swoboda, P.; et al. miR expression in MYC-negative DLBCL/BL with partial trisomy 11 is similar to classical
Burkitt lymphoma and different from diffuse large B-cell lymphoma. Tumour Biol. 2015, 36, 5377–5388. [CrossRef] [PubMed]

15. Borowitz, M.J.; Chan, J.K.C.; Béné, M.C.; Arber, D.A. T-lymphoblastic leukaemia/lymphoma. In WHO Classification of Tumours of
Haematopoietic and Lymphoid Tissues, Revised, 4th ed.; Swerdlow, S.H., Campo, E., Harris, N.L., Jaffe, E.S., Pileri, S.A., Stein, H.,
Thiele, J., Arber, D.A., Hasserjian, R.P., Le Beau, M.M., et al., Eds.; IARC: Lyon, France, 2017; pp. 209–212.

16. Louis, D.N.; Perry, A.; Reifenberger, G.; von Deimling, A.; Figarella-Branger, D.; Cavenee, W.K.; Ohgaki, H.; Wiestler, O.D.;
Kleihues, P.; Ellison, D.W. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: A
summary. Acta Neuropathol. 2016, 131, 803–820. [CrossRef]

17. Borowitz, M.J.; Chan, J.K.C. T lymphoblastic leukaemia/lymphoma. In WHO Classification of Tumours of Haematopoietic and
Lymphoid Tissues, 4th ed.; Swerdlow, S.H., Campo, E., Harris, N.L., Jaffe, E.S., Pileri, S.A., Stein, H., Thiele, J., Vardiman, J.W., Eds.;
IARC: Lyon, France, 2008; pp. 176–178.

18. Metpally, R.P.; Nasser, S.; Malenica, I.; Courtright, A.; Carlson, E.; Ghaffari, L.; Villa, S.; Tembe, W.; Van Keuren-Jensen, K.
Comparison of Analysis Tools for miRNA High Throughput Sequencing Using Nerve Crush as a Model. Front. Genet. 2013, 4, 20.
[CrossRef] [PubMed]

19. Waller, R.; Wyles, M.; Heath, P.R.; Kazoka, M.; Wollff, H.; Shaw, P.J.; Kirby, J. Small RNA Sequencing of Sporadic Amyotrophic
Lateral Sclerosis Cerebrospinal Fluid Reveals Differentially Expressed miRNAs Related to Neural and Glial Activity. Front.
Neurosci. 2017, 11, 731. [CrossRef]

20. Liu, X.; Wang, S.; Meng, F.; Wang, J.; Zhang, Y.; Dai, E.; Yu, X.; Li, X.; Jiang, W. SM2miR: A database of the experimentally
validated small molecules’ effects on microRNA expression. Bioinformatics 2013, 29, 409–411. [CrossRef]

21. Cogswell, J.P.; Ward, J.; Taylor, I.A.; Waters, M.; Shi, Y.; Cannon, B.; Kelnar, K.; Kemppainen, J.; Brown, D.; Chen, C.; et al.
Identification of miRNA changes in Alzheimer’s disease brain and CSF yields putative biomarkers and insights into disease
pathways. J. Alzheimers Dis. 2008, 14, 27–41. [CrossRef] [PubMed]

22. Bekris, L.M.; Lutz, F.; Montine, T.J.; Yu, C.E.; Tsuang, D.; Peskind, E.R.; Leverenz, J.B. MicroRNA in Alzheimer’s disease: An
exploratory study in brain, cerebrospinal fluid and plasma. Biomarkers 2013, 18, 455–466. [CrossRef]

23. Llorens, F.; Thune, K.; Marti, E.; Kanata, E.; Dafou, D.; Diaz-Lucena, D.; Vivancos, A.; Shomroni, O.; Zafar, S.; Schmitz, M.; et al.
Regional and subtype-dependent miRNA signatures in sporadic Creutzfeldt-Jakob disease are accompanied by alterations in
miRNA silencing machinery and biogenesis. PLoS Pathog. 2018, 14, e1006802. [CrossRef]

24. Molinuevo, J.L.; Ayton, S.; Batrla, R.; Bednar, M.M.; Bittner, T.; Cummings, J.; Fagan, A.M.; Hampel, H.; Mielke, M.M.;
Mikulskis, A.; et al. Current state of Alzheimer’s fluid biomarkers. Acta Neuropathol. 2018, 136, 821–853. [CrossRef]

25. Cookson, V.J.; Bentley, M.A.; Hogan, B.V.; Horgan, K.; Hayward, B.E.; Hazelwood, L.D.; Hughes, T.A. Circulating microRNA
profiles reflect the presence of breast tumours but not the profiles of microRNAs within the tumours. Cell. Oncol. 2012, 35,
301–308. [CrossRef]

26. Halvorsen, A.R.; Bjaanaes, M.; LeBlanc, M.; Holm, A.M.; Bolstad, N.; Rubio, L.; Penalver, J.C.; Cervera, J.; Mojarrieta, J.C.;
Lopez-Guerrero, J.A.; et al. A unique set of 6 circulating microRNAs for early detection of non-small cell lung cancer. Oncotarget
2016, 7, 37250–37259. [CrossRef] [PubMed]

27. Bookland, M.; Gillan, E.; Song, X.; Kolmakova, A. Peripheral circulation miRNA expression of pediatric brain tumors and its
relation to tumor miRNA expression levels. J. Neurosurg. Pediatr. 2020, 26, 136–144. [CrossRef] [PubMed]

28. Armstrong, D.A.; Green, B.B.; Seigne, J.D.; Schned, A.R.; Marsit, C.J. MicroRNA molecular profiling from matched tumor and
bio-fluids in bladder cancer. Mol. Cancer 2015, 14, 194. [CrossRef] [PubMed]

29. Cecene, G.; Ak, S.; Eskiler, G.G.; Demirdogen, E.; Erturk, E.; Gokgoz, S.; Polatkan, V.; Egeli, U.; Tunca, B.; Tezcan, G.; et al.
Circulating miR-195 as a Therapeutic Biomarker in Turkish Breast Cancer Patients. Asian Pac. J. Cancer Prev. 2016, 17, 4241–4246.

http://doi.org/10.1182/blood-2013-01-476333
http://www.ncbi.nlm.nih.gov/pubmed/23570798
http://doi.org/10.1093/neuonc/nov092
http://www.ncbi.nlm.nih.gov/pubmed/26014047
http://doi.org/10.1111/bjh.15410
http://doi.org/10.3389/fnmol.2013.00039
http://doi.org/10.1007/s12035-014-8822-6
http://doi.org/10.1182/blood-2010-09-308684
http://doi.org/10.3390/cancers11111647
http://doi.org/10.1007/s13277-015-3203-y
http://www.ncbi.nlm.nih.gov/pubmed/25677902
http://doi.org/10.1007/s00401-016-1545-1
http://doi.org/10.3389/fgene.2013.00020
http://www.ncbi.nlm.nih.gov/pubmed/23459507
http://doi.org/10.3389/fnins.2017.00731
http://doi.org/10.1093/bioinformatics/bts698
http://doi.org/10.3233/JAD-2008-14103
http://www.ncbi.nlm.nih.gov/pubmed/18525125
http://doi.org/10.3109/1354750X.2013.814073
http://doi.org/10.1371/journal.ppat.1006802
http://doi.org/10.1007/s00401-018-1932-x
http://doi.org/10.1007/s13402-012-0089-1
http://doi.org/10.18632/oncotarget.9363
http://www.ncbi.nlm.nih.gov/pubmed/27191990
http://doi.org/10.3171/2020.2.PEDS19715
http://www.ncbi.nlm.nih.gov/pubmed/32384264
http://doi.org/10.1186/s12943-015-0466-2
http://www.ncbi.nlm.nih.gov/pubmed/26576778


Biomolecules 2021, 11, 1395 16 of 18

30. Qattan, A.; Intabli, H.; Alkhayal, W.; Eltabache, C.; Tweigieri, T.; Amer, S.B. Robust expression of tumor suppressor miRNA’s let-7
and miR-195 detected in plasma of Saudi female breast cancer patients. BMC Cancer 2017, 17, 799. [CrossRef] [PubMed]

31. McDermott, A.M.; Miller, N.; Wall, D.; Martyn, L.M.; Ball, G.; Sweeney, K.J.; Kerin, M.J. Identification and validation of oncologic
miRNA biomarkers for luminal A-like breast cancer. PLoS ONE 2014, 9, e87032. [CrossRef]

32. McAllister, S.S.; Weinberg, R.A. The tumour-induced systemic environment as a critical regulator of cancer progression and
metastasis. Nat. Cell Biol. 2014, 16, 717–727. [CrossRef]

33. Turchinovich, A.; Burwinkel, B. Distinct AGO1 and AGO2 associated miRNA profiles in human cells and blood plasma. RNA
Biol. 2012, 9, 1066–1075. [CrossRef] [PubMed]

34. Shalaby, T.; Grotzer, M.A. Tumor-Associated CSF MicroRNAs for the Prediction and Evaluation of CNS Malignancies. Int. J. Mol.
Sci. 2015, 16, 29103–29119. [CrossRef]

35. van den Berg, M.M.J.; Krauskopf, J.; Ramaekers, J.G.; Kleinjans, J.C.S.; Prickaerts, J.; Briede, J.J. Circulating microRNAs as
potential biomarkers for psychiatric and neurodegenerative disorders. Prog. Neurobiol. 2020, 185, 101732. [CrossRef] [PubMed]

36. Palmer, A.M. The role of the blood-CNS barrier in CNS disorders and their treatment. Neurobiol. Dis. 2010, 37, 3–12. [CrossRef]
37. Pigati, L.; Yaddanapudi, S.C.; Iyengar, R.; Kim, D.J.; Hearn, S.A.; Danforth, D.; Hastings, M.L.; Duelli, D.M. Selective release of

microRNA species from normal and malignant mammary epithelial cells. PLoS ONE 2010, 5, e13515. [CrossRef] [PubMed]
38. Tosar, J.P.; Gambaro, F.; Sanguinetti, J.; Bonilla, B.; Witwer, K.W.; Cayota, A. Assessment of small RNA sorting into different

extracellular fractions revealed by high-throughput sequencing of breast cell lines. Nucleic Acids Res. 2015, 43, 5601–5616.
[CrossRef] [PubMed]

39. Yagi, Y.; Ohkubo, T.; Kawaji, H.; Machida, A.; Miyata, H.; Goda, S.; Roy, S.; Hayashizaki, Y.; Suzuki, H.; Yokota, T. Next-generation
sequencing-based small RNA profiling of cerebrospinal fluid exosomes. Neurosci. Lett. 2017, 636, 48–57. [CrossRef]

40. Syed, S.N.; Frank, A.C.; Raue, R.; Brune, B. MicroRNA-A Tumor Trojan Horse for Tumor-Associated Macrophages. Cells 2019,
8, 1482. [CrossRef]

41. Dang, X.; Ma, A.; Yang, L.; Hu, H.; Zhu, B.; Shang, D.; Chen, T.; Luo, Y. MicroRNA-26a regulates tumorigenic properties of EZH2
in human lung carcinoma cells. Cancer Genet. 2012, 205, 113–123. [CrossRef]

42. Zhang, B.; Liu, X.X.; He, J.R.; Zhou, C.X.; Guo, M.; He, M.; Li, M.F.; Chen, G.Q.; Zhao, Q. Pathologically decreased miR-26a
antagonizes apoptosis and facilitates carcinogenesis by targeting MTDH and EZH2 in breast cancer. Carcinogenesis 2011, 32, 2–9.
[CrossRef]

43. Lu, J.; He, M.L.; Wang, L.; Chen, Y.; Liu, X.; Dong, Q.; Chen, Y.C.; Peng, Y.; Yao, K.T.; Kung, H.F.; et al. MiR-26a inhibits cell
growth and tumorigenesis of nasopharyngeal carcinoma through repression of EZH2. Cancer Res. 2011, 71, 225–233. [CrossRef]

44. Li, Y.; Wang, P.; Wu, L.L.; Yan, J.; Pang, X.Y.; Liu, S.J. miR-26a-5p Inhibit Gastric Cancer Cell Proliferation and Invasion Through
Mediated Wnt5a. Onco Targets Ther. 2020, 13, 2537–2550. [CrossRef]

45. Koh, C.M.; Iwata, T.; Zheng, Q.; Bethel, C.; Yegnasubramanian, S.; De Marzo, A.M. Myc enforces overexpression of EZH2 in early
prostatic neoplasia via transcriptional and post-transcriptional mechanisms. Oncotarget 2011, 2, 669–683. [CrossRef]

46. Reuland, S.N.; Smith, S.M.; Bemis, L.T.; Goldstein, N.B.; Almeida, A.R.; Partyka, K.A.; Marquez, V.E.; Zhang, Q.; Norris, D.A.;
Shellman, Y.G. MicroRNA-26a is strongly downregulated in melanoma and induces cell death through repression of silencer of
death domains (SODD). J. Investig. Dermatol 2013, 133, 1286–1293. [CrossRef]

47. Sander, S.; Bullinger, L.; Klapproth, K.; Fiedler, K.; Kestler, H.A.; Barth, T.F.; Moller, P.; Stilgenbauer, S.; Pollack, J.R.; Wirth, T. MYC
stimulates EZH2 expression by repression of its negative regulator miR-26a. Blood 2008, 112, 4202–4212. [CrossRef] [PubMed]

48. Tao, J.; Zhao, X.; Tao, J. c-MYC-miRNA circuitry: A central regulator of aggressive B-cell malignancies. Cell Cycle 2014, 13, 191–198.
[CrossRef] [PubMed]

49. Gill, K.Z.; Iwamoto, F.; Allen, A.; Hoehn, D.; Murty, V.V.; Alobeid, B.; Bhagat, G. MYC protein expression in primary diffuse large
B-cell lymphoma of the central nervous system. PLoS ONE 2014, 9, e114398. [CrossRef]

50. Brunn, A.; Nagel, I.; Montesinos-Rongen, M.; Klapper, W.; Vater, I.; Paulus, W.; Hans, V.; Blumcke, I.; Weis, J.; Siebert, R.; et al.
Frequent triple-hit expression of MYC, BCL2, and BCL6 in primary lymphoma of the central nervous system and absence of
a favorable MYC(low)BCL2 (low) subgroup may underlie the inferior prognosis as compared to systemic diffuse large B cell
lymphomas. Acta Neuropathol. 2013, 126, 603–605. [CrossRef] [PubMed]

51. Shi, Q.Y.; Feng, X.; Bao, W.; Ma, J.; Lv, J.H.; Wang, X.; Rao, Q.; Shi, Q.L. MYC/BCL2 Co-Expression Is a Stronger Prognostic
Factor Compared With the Cell-of-Origin Classification in Primary CNS DLBCL. J. Neuropathol. Exp. Neurol. 2017, 76, 942–948.
[CrossRef]

52. Zhao, X.; Lwin, T.; Zhang, X.; Huang, A.; Wang, J.; Marquez, V.E.; Chen-Kiang, S.; Dalton, W.S.; Sotomayor, E.; Tao, J. Disruption
of the MYC-miRNA-EZH2 loop to suppress aggressive B-cell lymphoma survival and clonogenicity. Leukemia 2013, 27, 2341–2350.
[CrossRef] [PubMed]

53. Fang, C.; Zhu, D.X.; Dong, H.J.; Zhou, Z.J.; Wang, Y.H.; Liu, L.; Fan, L.; Miao, K.R.; Liu, P.; Xu, W.; et al. Serum microRNAs are
promising novel biomarkers for diffuse large B cell lymphoma. Ann. Hematol. 2012, 91, 553–559. [CrossRef] [PubMed]

54. Beheshti, A.; Stevenson, K.; Vanderburg, C.; Ravi, D.; McDonald, J.T.; Christie, A.L.; Shigemori, K.; Jester, H.; Weinstock, D.M.;
Evens, A.M. Identification of Circulating Serum Multi-MicroRNA Signatures in Human DLBCL Models. Sci. Rep. 2019, 9, 17161.
[CrossRef]

55. Guo, J.; Dong, Q.; Fang, Z.; Chen, X.; Lu, H.; Wang, K.; Yin, Y.; Cai, X.; Zhao, N.; Chen, J.; et al. Identification of miRNAs that are
associated with tumor metastasis in neuroblastoma. Cancer Biol. Ther. 2010, 9, 446–452. [CrossRef]

http://doi.org/10.1186/s12885-017-3776-5
http://www.ncbi.nlm.nih.gov/pubmed/29183284
http://doi.org/10.1371/journal.pone.0087032
http://doi.org/10.1038/ncb3015
http://doi.org/10.4161/rna.21083
http://www.ncbi.nlm.nih.gov/pubmed/22858679
http://doi.org/10.3390/ijms161226150
http://doi.org/10.1016/j.pneurobio.2019.101732
http://www.ncbi.nlm.nih.gov/pubmed/31816349
http://doi.org/10.1016/j.nbd.2009.07.029
http://doi.org/10.1371/journal.pone.0013515
http://www.ncbi.nlm.nih.gov/pubmed/20976003
http://doi.org/10.1093/nar/gkv432
http://www.ncbi.nlm.nih.gov/pubmed/25940616
http://doi.org/10.1016/j.neulet.2016.10.042
http://doi.org/10.3390/cells8121482
http://doi.org/10.1016/j.cancergen.2012.01.002
http://doi.org/10.1093/carcin/bgq209
http://doi.org/10.1158/0008-5472.CAN-10-1850
http://doi.org/10.2147/OTT.S241199
http://doi.org/10.18632/oncotarget.327
http://doi.org/10.1038/jid.2012.400
http://doi.org/10.1182/blood-2008-03-147645
http://www.ncbi.nlm.nih.gov/pubmed/18713946
http://doi.org/10.4161/cc.27646
http://www.ncbi.nlm.nih.gov/pubmed/24394940
http://doi.org/10.1371/journal.pone.0114398
http://doi.org/10.1007/s00401-013-1169-7
http://www.ncbi.nlm.nih.gov/pubmed/24061549
http://doi.org/10.1093/jnen/nlx083
http://doi.org/10.1038/leu.2013.94
http://www.ncbi.nlm.nih.gov/pubmed/23538750
http://doi.org/10.1007/s00277-011-1350-9
http://www.ncbi.nlm.nih.gov/pubmed/21987025
http://doi.org/10.1038/s41598-019-52985-x
http://doi.org/10.4161/cbt.9.6.10894


Biomolecules 2021, 11, 1395 17 of 18

56. Xin, C.; Buhe, B.; Hongting, L.; Chuanmin, Y.; Xiwei, H.; Hong, Z.; Lulu, H.; Qian, D.; Renjie, W. MicroRNA-15a promotes
neuroblastoma migration by targeting reversion-inducing cysteine-rich protein with Kazal motifs (RECK) and regulating matrix
metalloproteinase-9 expression. FEBS J. 2013, 280, 855–866. [CrossRef]

57. Zhang, X.; Chen, Y.; Zhao, P.; Zang, L.; Zhang, Z.; Wang, X. MicroRNA-19a functions as an oncogene by regulating
PTEN/AKT/pAKT pathway in myeloma. Leuk. Lymphoma 2017, 58, 932–940. [CrossRef] [PubMed]

58. Jiang, X.M.; Yu, X.N.; Liu, T.T.; Zhu, H.R.; Shi, X.; Bilegsaikhan, E.; Guo, H.Y.; Song, G.Q.; Weng, S.Q.; Huang, X.X.; et al.
microRNA-19a-3p promotes tumor metastasis and chemoresistance through the PTEN/Akt pathway in hepatocellular carcinoma.
Biomed. Pharmacother. 2018, 105, 1147–1154. [CrossRef] [PubMed]

59. Bai, R.; Cui, Z.; Ma, Y.; Wu, Y.; Wang, N.; Huang, L.; Yao, Q.; Sun, J. The NF-kappaB-modulated miR-19a-3p enhances malignancy
of human ovarian cancer cells through inhibition of IGFBP-3 expression. Mol. Carcinog. 2019, 58, 2254–2265. [CrossRef] [PubMed]

60. Zhang, B.; Liu, Y.; Zhang, J. Silencing of miR-19a-3p enhances osteosarcoma cells chemosensitivity by elevating the expression of
tumor suppressor PTEN. Oncol. Lett. 2019, 17, 414–421. [CrossRef] [PubMed]

61. Cao, Z.; Liu, C.; Xu, J.; You, L.; Wang, C.; Lou, W.; Sun, B.; Miao, Y.; Liu, X.; Wang, X.; et al. Plasma microRNA panels to diagnose
pancreatic cancer: Results from a multicenter study. Oncotarget 2016, 7, 41575–41583. [CrossRef]

62. Liu, H.; Liu, Y.; Sun, P.; Leng, K.; Xu, Y.; Mei, L.; Han, P.; Zhang, B.; Yao, K.; Li, C.; et al. Colorectal cancer-derived exosomal
miR-106b-3p promotes metastasis by down-regulating DLC-1 expression. Clin. Sci. 2020, 134, 419–434. [CrossRef]

63. Moshiri, F.; Salvi, A.; Gramantieri, L.; Sangiovanni, A.; Guerriero, P.; De Petro, G.; Bassi, C.; Lupini, L.; Sattari, A.; Cheung, D.;
et al. Circulating miR-106b-3p, miR-101-3p and miR-1246 as diagnostic biomarkers of hepatocellular carcinoma. Oncotarget 2018,
9, 15350–15364. [CrossRef] [PubMed]

64. Qiao, G.; Dai, C.; He, Y.; Shi, J.; Xu, C. Effects of miR106b3p on cell proliferation and epithelialmesenchymal transition, and
targeting of ZNRF3 in esophageal squamous cell carcinoma. Int. J. Mol. Med. 2019, 43, 1817–1829. [CrossRef] [PubMed]

65. Li, S.; Zeng, A.; Hu, Q.; Yan, W.; Liu, Y.; You, Y. miR-423-5p contributes to a malignant phenotype and temozolomide chemoresis-
tance in glioblastomas. Neuro-oncology 2017, 19, 55–65. [CrossRef]

66. Sun, G.; Ding, X.; Bi, N.; Wu, L.; Wang, J.; Zhang, W.; Dong, X.; Lv, N.; Song, Y.; Zhan, Q.; et al. MiR-423-5p in brain metastasis:
Potential role in diagnostics and molecular biology. Cell Death Dis. 2018, 9, 936. [CrossRef]

67. Yang, H.; Fu, H.; Wang, B.; Zhang, X.; Mao, J.; Li, X.; Wang, M.; Sun, Z.; Qian, H.; Xu, W. Exosomal miR-423-5p targets SUFU
to promote cancer growth and metastasis and serves as a novel marker for gastric cancer. Mol. Carcinog. 2018, 57, 1223–1236.
[CrossRef]

68. Larrabeiti-Etxebarria, A.; Lopez-Santillan, M.; Santos-Zorrozua, B.; Lopez-Lopez, E.; Garcia-Orad, A. Systematic Review of the
Potential of MicroRNAs in Diffuse Large B Cell Lymphoma. Cancers 2019, 11, 144. [CrossRef] [PubMed]

69. Hattab, E.M.; Martin, S.E.; Al-Khatib, S.M.; Kupsky, W.J.; Vance, G.H.; Stohler, R.A.; Czader, M.; Al-Abbadi, M.A. Most primary
central nervous system diffuse large B-cell lymphomas occurring in immunocompetent individuals belong to the nongerminal
center subtype: A retrospective analysis of 31 cases. Mod. Pathol. 2010, 23, 235–243. [CrossRef] [PubMed]

70. Gurbuxani, S.; Anastasi, J.; Hyjek, E. Diffuse large B-cell lymphoma–more than a diffuse collection of large B cells: An entity in
search of a meaningful classification. Arch. Pathol. Lab. Med. 2009, 133, 1121–1134. [CrossRef]

71. Pan, X.; Hong, X.; Lai, J.; Cheng, L.; Cheng, Y.; Yao, M.; Wang, R.; Hu, N. Exosomal MicroRNA-221-3p Confers Adriamycin
Resistance in Breast Cancer Cells by Targeting PIK3R1. Front. Oncol. 2020, 10, 441. [CrossRef] [PubMed]

72. Yang, J.K.; Yang, J.P.; Tong, J.; Jing, S.Y.; Fan, B.; Wang, F.; Sun, G.Z.; Jiao, B.H. Exosomal miR-221 targets DNM3 to induce tumor
progression and temozolomide resistance in glioma. J. Neurooncol. 2017, 131, 255–265. [CrossRef] [PubMed]

73. Maes, A.; Maes, K.; De Raeve, H.; De Smedt, E.; Vlummens, P.; Szablewski, V.; Devin, J.; Faict, S.; De Veirman, K.; Menu, E.; et al.
The anaphase-promoting complex/cyclosome: A new promising target in diffuse large B-cell lymphoma and mantle cell
lymphoma. Br. J. Cancer 2019, 120, 1137–1146. [CrossRef]

74. Beielstein, A.C.; Pallasch, C.P. Tumor Metabolism as a Regulator of Tumor-Host Interactions in the B-Cell Lymphoma
Microenvironment-Fueling Progression and Novel Brakes for Therapy. Int. J. Mol. Sci. 2019, 20, 4158. [CrossRef] [PubMed]

75. Breccia, M.; Cicconi, L.; Minotti, C.; Latagliata, R.; Gianni, L.; Lo-Coco, F. Efficacy of prolonged therapy with combined arsenic
trioxide and ATRA for relapse of acute promyelocytic leukemia. Haematologica 2011, 96, 1390–1391. [CrossRef]

76. Moodad, S.; El Hajj, R.; Hleihel, R.; Hajjar, L.; Tawil, N.; Karam, M.; Hamie, M.; Abou Merhi, R.; El Sabban, M.; El Hajj, H.
Lenalidomide in Combination with Arsenic Trioxide: An Effective Therapy for Primary Effusion Lymphoma. Cancers 2020,
12, 2483. [CrossRef] [PubMed]

77. Kchour, G.; Tarhini, M.; Kooshyar, M.M.; El Hajj, H.; Wattel, E.; Mahmoudi, M.; Hatoum, H.; Rahimi, H.; Maleki, M.;
Rafatpanah, H.; et al. Phase 2 study of the efficacy and safety of the combination of arsenic trioxide, interferon alpha, and
zidovudine in newly diagnosed chronic adult T-cell leukemia/lymphoma (ATL). Blood 2009, 113, 6528–6532. [CrossRef] [PubMed]

78. Venugopal, B.; Evans, T.R. Developing histone deacetylase inhibitors as anti-cancer therapeutics. Curr. Med. Chem. 2011, 18,
1658–1671. [CrossRef]

79. Imai, Y.; Maru, Y.; Tanaka, J. Action mechanisms of histone deacetylase inhibitors in the treatment of hematological malignancies.
Cancer Sci. 2016, 107, 1543–1549. [CrossRef]

80. Mann, B.S.; Johnson, J.R.; Cohen, M.H.; Justice, R.; Pazdur, R. FDA approval summary: Vorinostat for treatment of advanced
primary cutaneous T-cell lymphoma. Oncologist 2007, 12, 1247–1252. [CrossRef]

http://doi.org/10.1111/febs.12074
http://doi.org/10.1080/10428194.2016.1213827
http://www.ncbi.nlm.nih.gov/pubmed/27830963
http://doi.org/10.1016/j.biopha.2018.06.097
http://www.ncbi.nlm.nih.gov/pubmed/30021351
http://doi.org/10.1002/mc.23113
http://www.ncbi.nlm.nih.gov/pubmed/31513316
http://doi.org/10.3892/ol.2018.9592
http://www.ncbi.nlm.nih.gov/pubmed/30655782
http://doi.org/10.18632/oncotarget.9491
http://doi.org/10.1042/CS20191087
http://doi.org/10.18632/oncotarget.24601
http://www.ncbi.nlm.nih.gov/pubmed/29632649
http://doi.org/10.3892/ijmm.2019.4107
http://www.ncbi.nlm.nih.gov/pubmed/30816445
http://doi.org/10.1093/neuonc/now129
http://doi.org/10.1038/s41419-018-0955-5
http://doi.org/10.1002/mc.22838
http://doi.org/10.3390/cancers11020144
http://www.ncbi.nlm.nih.gov/pubmed/30691158
http://doi.org/10.1038/modpathol.2009.164
http://www.ncbi.nlm.nih.gov/pubmed/19935644
http://doi.org/10.5858/133.7.1121
http://doi.org/10.3389/fonc.2020.00441
http://www.ncbi.nlm.nih.gov/pubmed/32426266
http://doi.org/10.1007/s11060-016-2308-5
http://www.ncbi.nlm.nih.gov/pubmed/27837435
http://doi.org/10.1038/s41416-019-0471-0
http://doi.org/10.3390/ijms20174158
http://www.ncbi.nlm.nih.gov/pubmed/31454887
http://doi.org/10.3324/haematol.2011.045500
http://doi.org/10.3390/cancers12092483
http://www.ncbi.nlm.nih.gov/pubmed/32883022
http://doi.org/10.1182/blood-2009-03-211821
http://www.ncbi.nlm.nih.gov/pubmed/19411628
http://doi.org/10.2174/092986711795471284
http://doi.org/10.1111/cas.13062
http://doi.org/10.1634/theoncologist.12-10-1247


Biomolecules 2021, 11, 1395 18 of 18

81. Ganai, S.A. Strategy for enhancing the therapeutic efficacy of histone deacetylase inhibitor dacinostat: The novel paradigm to
tackle monotonous cancer chemoresistance. Arch. Pharm. Res. 2015. [CrossRef]

82. Hontecillas-Prieto, L.; Flores-Campos, R.; Silver, A.; de Alava, E.; Hajji, N.; Garcia-Dominguez, D.J. Synergistic Enhancement of
Cancer Therapy Using HDAC Inhibitors: Opportunity for Clinical Trials. Front. Genet. 2020, 11, 578011. [CrossRef]

83. Ganai, S.A. Histone deacetylase inhibitor givinostat: The small-molecule with promising activity against therapeutically challeng-
ing haematological malignancies. J. Chemother. 2016, 28, 247–254. [CrossRef]

84. Wang, M.; Fang, X.; Wang, X. Emerging role of histone deacetylase inhibitors in the treatment of diffuse large B-cell lymphoma.
Leuk. Lymphoma 2020, 61, 763–775. [CrossRef]

85. Gomez, S.; Tabernacki, T.; Kobyra, J.; Roberts, P.; Chiappinelli, K.B. Combining epigenetic and immune therapy to overcome
cancer resistance. Semin. Cancer Biol. 2020, 65, 99–113. [CrossRef] [PubMed]

86. Pera, B.; Tang, T.; Marullo, R.; Yang, S.N.; Ahn, H.; Patel, J.; Elstrom, R.; Ruan, J.; Furman, R.; Leonard, J.; et al. Combinatorial
epigenetic therapy in diffuse large B cell lymphoma pre-clinical models and patients. Clin. Epigenet. 2016, 8, 79. [CrossRef]
[PubMed]

87. Fujimoto, K.; Shinojima, N.; Hayashi, M.; Nakano, T.; Ichimura, K.; Mukasa, A. Histone deacetylase inhibition enhances the
therapeutic effects of methotrexate on primary central nervous system lymphoma. Neurooncol. Adv. 2020, 2, vdaa084. [CrossRef]
[PubMed]

http://doi.org/10.1007/s12272-015-0673-9
http://doi.org/10.3389/fgene.2020.578011
http://doi.org/10.1080/1120009X.2016.1145375
http://doi.org/10.1080/10428194.2019.1691194
http://doi.org/10.1016/j.semcancer.2019.12.019
http://www.ncbi.nlm.nih.gov/pubmed/31877341
http://doi.org/10.1186/s13148-016-0245-y
http://www.ncbi.nlm.nih.gov/pubmed/27453763
http://doi.org/10.1093/noajnl/vdaa084
http://www.ncbi.nlm.nih.gov/pubmed/32793886

	Introduction 
	Materials and Methods 
	Patients and Samples 
	RNA Extraction 
	Next-Generation Sequencing 
	Quantitative Real-Time PCR 
	Statistical Analysis 

	Results 
	PCA Analyses 
	CNS DLBCL-Specific CSF miR Profile 
	CNS DLBCL-Specific miR Profile of Brain Tumors 
	A Common set of CSF and Tumor miRs Differentially Expressed between CNS DLBCL and Non-Malignant CNS Diseases 
	miR Profiles in Paired CSF/Brain Samples from Patients with CNS DLBCL 
	New, Previously Unannotated micoRNA Molecules 
	RT-qPCR Validation of the NGS Results 
	ROC Analyses 
	Functional Analyses of CNS DLBCL-Specific CSF and Tumor miR Profiles 
	Bioinformatic Analysis of CNS DLBCL-Specific CSF miR Profile 
	Bioinformatic Analysis of CNS DLBCL-Specific Tumor miR Profile 


	Discussion 
	Conclusions 
	References

