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1  |   INTRODUCTION

The study of threat-induced defensive reactions has pro-
liferated in the last century, focusing in large part on 
Pavlovian classical conditioning, the critical process by 

which an organism learns the structure of the world and de-
velops predictions or expectations about salient outcomes 
in its environment (Rescorla, 1988). Many of the defensive 
reactions that animals display can also be measured in hu-
mans, providing the opportunity for fundamental insights 
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Abstract
The process of learning allows organisms to develop predictions about outcomes 
in the environment, and learning is sensitive to both simple associations and 
higher order knowledge. However, it is unknown whether consciously attend-
ing to expectations shapes the learning process itself. Here, we directly tested 
whether rating expectations shapes arousal during classical conditioning. 
Participants performed an aversive learning paradigm wherein one image (CS+) 
was paired with shock on 50% of trials, while a second image (CS−) was never 
paired with shock. Halfway through the task, contingencies reversed. One group 
of participants rated the probability of upcoming shock on each trial, while the 
other group made no online ratings. We measured skin conductance response 
(SCR) evoked in response to the CS and used traditional analyses as well as quan-
titative models of reinforcement learning to test whether rating expectations 
influenced arousal and aversive reversal learning. Participants who provided 
online expectancy ratings displayed slower learning based on a hybrid model 
of adaptive learning and reduced reversal of SCR relative to those who did not 
rate expectations. Mediation analysis revealed that the effect of associative learn-
ing on SCR could be fully explained through its effects on subjective expectancy 
within the group who provided ratings. This suggests that the act of rating expec-
tations reduces the speed of learning, likely through changes in attention, and 
that expectations directly influence arousal. Our findings indicate that higher 
order expectancy judgments can alter associative learning.
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through translational work. Of course, humans can also 
verbalize their expectations and feelings, and thus many 
human threat conditioning studies ask participants to pro-
vide expectancy ratings, or estimates of the probability of 
shock, as an additional measure of learning. People report 
increased shock expectancy in response to associations ac-
quired through classical conditioning (Boddez et al., 2013; 
Dunsmoor et al., 2014), verbal instructions (Mertens, 
Braem, et al., 2018; Mertens & De Houwer, 2016), and 
vicarious (social) learning (Selbing & Olsson, 2019). 
Expectancy ratings are also clinically relevant, as they 
are elevated in patients with pathological anxiety (Britton 
et al., 2013; Chan & Lovibond, 1996) and post-traumatic 
stress disorder (Blechert et al., 2007), and meta-analyses 
of fear conditioning in anxiety indicate that of subjective 
ratings differ between patients and controls during both 
acquisition and extinction, driven in part by differences in 
response to the safety cue (CS−) (Duits et al., 2015). For 
these reasons, expectancy ratings have been argued to be 
a valid measure of the aversive learning process (Boddez 
et al., 2013), similar to other defensive reactions. But does 
the act of providing expectancy ratings influence adaptive 
learning and the expression of defensive behaviors includ-
ing physiological arousal?

Although expectancies are influenced by many of the 
same factors as other defensive reactions and behaviors, sev-
eral studies indicate that they are dissociable, suggesting they 
may rely on distinct mechanisms. Studies have shown dissoci-
ations between expectancies and skin conductance responses 
(SCR; Ohman & Soares, 1998; Schell et al., 1991; Schultz et al., 
2013; Schultz & Helmstetter, 2010), eyeblinks (Perruchet, 
2015; Weidemann et al., 2009, 2012), fear-potentiated star-
tle (Kindt et al., 2009), and reaction time (Perruchet et al., 
2006). These dissociations have been implicated as support 
for a dual process model whereby independent mechanisms 
support: (a) processes that are sensitive to associative learn-
ing and can exist outside of conscious awareness (e.g., defen-
sive reactions and physiological responses) and (b) higher 
order processes that support propositional learning and re-
quire awareness (e.g., expectancy, subjective feelings, and 
instructed knowledge; LeDoux, 2013; Mineka & Öhman, 
2002). Consistent with this, studies of the “Perruchet effect” 
(Perruchet, 2015) indicate that in partial reinforcement stud-
ies, unconditioned stimulus (US) expectancy increases after a 
series of trials without reinforcement (consistent with a gam-
bler’s fallacy), whereas behavioral or physiological measures 
decrease when US presentations are less recent. These find-
ings have been viewed as support for the idea that expectancy 
ratings depend on higher order beliefs whereas automatic 
responses including autonomic responses and defensive re-
actions are driven by associative learning (but cf. Weidemann 
et al., 2009, Weidemann, McAndrew, et al., 2016; Weidemann, 
Satkunarajah, et al., 2016).

Importantly, a substantial body of work calls the dual 
process model into question and indicates that higher 
order knowledge can shape learning-related responses 
(for reviews, see Lovibond & Shanks, 2002; Mertens & 
Engelhard, 2020; Mitchell et al., 2009). Critiques of the 
dual process framework point to methodological problems 
in both study design (Lovibond & Shanks, 2002; Singh 
et al., 2013; Weidemann, McAndrew, et al., 2016) and anal-
ysis (Shanks, 2017) as well as publication bias (Mertens & 
Engelhard, 2020; Vadillo et al., 2016). Mechanistic studies 
of instructed fear indicate that higher order knowledge 
can modulate autonomic responses (Atlas et al., 2016; 
Atlas & Phelps, 2018; Costa et al., 2015; Grings et al., 1973; 
Mertens, Boddez, et al., 2018) and responses in learning-
related systems (Atlas et al., 2016; Doll et al., 2009; Li, 
Delgado, et al., 2011). Interactions between higher order 
knowledge and dynamic learning suggest that proposi-
tional knowledge can shape learning through a single 
process. However, it is unknown whether meta-cognitive 
predictions in the form of expectancy ratings have similar 
effects as instructed knowledge on learning and defensive 
responses. To understand whether expectancies influence 
learning-related responses, we must not only compare 
expectancy ratings with physiological responses, but also 
measure physiological responses in the absence of ratings.

Our goal was to determine whether the act of providing 
online expectancy ratings during threat conditioning al-
ters dynamic learning and physiological responses, relative 
to conditioning in the absence of ratings. We focused on 
SCR, which might be particularly sensitive to higher order 
knowledge. For example, prior work in patients with amyg-
dala lesions suggests that expectancy ratings may indeed 
modulate learning as measured by SCR, consistent with an 
interactive model. Patients with amygdala lesions did not 
express conditioned responses during standard threat con-
ditioning, as measured by differential SCR, but displayed 
differential SCR when they were asked to provide expec-
tancy ratings (Coppens et al., 2009). This indicates that the 
act of providing expectancy ratings engaged circuits out-
side of the amygdala, which in turn influenced autonomic 
responses. Similarly, in a study of reconsolidation, a pro-
cess that depends on the amygdala (Monfils et al., 2009), 
participants who provided expectancy ratings exhibited 
enhanced fear-potentiated startle during fear acquisition, 
but less evidence of reconsolidation, relative to participants 
who did not provide ratings (Warren et al., 2014). Ryan and 
colleagues (2021) also observed enhanced acquisition and 
extinction learning based on differential SCR when par-
ticipants provided expectancy ratings relative evaluative 
ratings or learning without any ratings. Together, these 
studies suggest that the act of rating expectations can alter 
autonomic responses and engage different neural circuits 
to drive physiological responses, perhaps by increasing the 
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contribution of higher order processes such as attention 
or explicit beliefs. However, it is unknown whether expec-
tancy ratings altered dynamic learning because all studies 
to date measured the effects of providing expectancy rat-
ings in conditions without any stochasticity (i.e., 100% rein-
forcement during conditioning or 0% reinforcement during 
extinction). To determine whether expectancy ratings alter 
learning per se, we must measure the impact of expectancy 
ratings on dynamic associative learning. This can only be 
accomplished in environments that contain some volatil-
ity, such as partial reinforcement schedules and/or contin-
gency reversals. In both partial reinforcement and reversal 
learning, individuals must continually update learning as 
a function of experience, and this requires flexible, adap-
tive learning, whereby individuals increase learning rates 
when environments become less stable (Behrens et al., 
2007; Li, Schiller, et al., 2011; Mackintosh, 1975; Schiller 
et al., 2008). Previous work indicates that reversal learning 
can be modulated through instruction (Atlas, 2019; Atlas 
et al., 2016; Costa et al., 2015; Grings et al., 1973; Mertens 
& De Houwer, 2016). How do expectancy ratings shape the 
dynamic adaptive learning process?

We conducted a human behavioral experiment to ex-
amine whether the act of rating expectancy alters adaptive 
reversal learning. One group of healthy human subjects 

was assigned to an Expectancy Rating Group (“Rating 
Group”), who provided online expectancy ratings during 
aversive learning, and another set of participants was as-
signed to a Viewing Group, who learned from experience 
in the absence of online ratings. Both groups underwent 
the same aversive reversal learning task using partial rein-
forcement (50% reinforcement of the CS+; see Figure 1). 	
We combined quantitative models of adaptive learning 
with traditional statistical analyses and multilevel medi-
ation analyses to ask whether online expectancy ratings 
influence dynamic aversive learning.

We focused on a hybrid model of adaptive learning that 
incorporates associability, or the extent to which attention 
gates learning in response to changes in the environment 
(Mackintosh, 1975; Pearce & Hall, 1980). Consistent with 
previous work (Homan et al., 2019; Li, Schiller, et al., 2011; 
Tzovara et al., 2018; Zhang et al., 2016), we focused on 
SCRs as a measure of physiological arousal that is sensitive 
to adaptive learning, orienting, uncertainty, and attention 
(Ojala & Bach, 2020). We hypothesized that the timecourse 
of associative learning would differ between participants 
who provide online expectancy ratings versus those who 
undergo aversive learning without rating shock proba-
bility. We did not have directional hypotheses, as ratings 
might increase attention to contingencies (Mackintosh, 

F I G U R E  1   Task design. (a) Participants assigned to a Rating Group made expectancy ratings during aversive reversal learning, while 
Viewing Group participants viewed images and received shocks in the same task without making ratings. (b) There was a 50% reinforcement 
rate for the CS+ (i.e., 14 unreinforced presentations and 14 reinforced presentations). Halfway through the task, contingencies reversed and 
the initial CS− became the new CS+ and was reinforced with a 50% reinforcement rate for the duration of the task. (c) On each trial, the CS 
was presented for 4 s followed by a 12 s inter-stimulus interval. CS+ presentation coterminated with a 200 ms shock. Two stimuli were used 
(purple/yellow fractal or red/green fractal) and initial CS assignment was counterbalanced across participants
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1975), consistent with enhanced differential responses 
during acquisition in previous work (Warren et al., 2014), 
or they might reduce overall arousal if they serve to en-
hance elaborative processing and reduce the threat value 
of the conditioned stimulus (e.g., through distraction).

2  |   METHOD

2.1  |  Participants

Participants were recruited from New York University 
and the surrounding community. All participants were 
required to be right-handed and fluent in English. 
Participants were ineligible if they had participated in an 
experiment using shocks within the prior six months, if 
they were taking medication for anxiety or depression, if 
they might be pregnant, or if they had a history of heart 
or blood pressure problems. All participants provided 
informed consent in accordance with the Declaration of 
Helsinki and as approved by the New York University 
Institutional Review Board (IRB # 13-9582). Eighty-nine 
participants provided informed consent. Seven partici-
pants did not show measurable SCR in response to the 
breath-hold task and were dismissed prior to the threat 
conditioning experiment. Technical difficulties prevented 
us from acquiring SCR or behavioral data from two addi-
tional participants. Eighty participants completed the task 
(47 Female, Mean Age = 22.28, SD = 3.09, missing age 
from 6 participants).

2.2  |  Stimuli and materials

Participants underwent a threat conditioning paradigm 
with a 50% reinforcement rate and one reversal of CS-US 
contingencies (Figure 1b). Two fractal images served as 
conditioned stimuli (Figure 1c). Image assignment (initial 
CS+, initial CS−) was counterbalanced across subjects. 
A Grass Medical Instruments SD9 Stimulator delivered 
shocks to participants’ right forearms (200 ms duration) 
through a bar electrode (BIOPAC Systems, Inc., Goleta, 
CA) filled with standard NaCl electrolyte gel (Signagel 
from Parker Laboratories, Fairfield, NJ). Shocks cotermi-
nated with the CS presentation and consisted of a 200 ms 
duration train of pulses at 40 Hz.

SCR were measured through shielded Ag-AgCl elec-
trodes filled with 0.5% NaCl isotonic electrolyte gel (EL507; 
BIOPAC Systems, Inc., Goleta, CA) attached to the left 
palm. Data were recorded at a sample rate of 200 Hz using 
an MP-150 BIOPAC system with the AcqKnowledge soft-
ware (BIOPAC Systems, Inc., Goleta, CA). Acknowledge 
software was used for analysis. Participants also completed 

the Spielberger State-Trait Anxiety Inventory STAI (form 
X); (Gaudry et al., 1975) and the Intolerance of Uncertainty 
Scale (IUS; Buhr & Dugas, 2002). The present study focuses 
on between-groups differences in SCR without respect to 
anxiety or intolerance of uncertainty.

2.3  |  Procedure

2.3.1  |  Skin conductance eligibility and 
shock calibration

Participants provided informed consent “to take part in 
a research study to learn more about emotion and cogni-
tion.” Following consent, the participant completed ques-
tionnaires and was invited to a behavioral testing room 
where they were affixed with SCR and shock electrodes 
and completed the task on a computer. The experimenter 
remained in the room for the duration of the task. As all 
participants were right handed, participants used a mouse 
to record ratings with their right hand and skin conduct-
ance was recorded from the index and middle fingers of 
the left hand.

Prior to the main experiment, participants performed a 
breath holding task to ensure that they showed measurable 
SCR. Participants were asked to take a deep breath and hold 
it for three seconds. Participants whose skin conductance 
increased in response to the breath hold were eligible to 
continue. Seven participants were dismissed at this point.

Following the breath holding task, an electric shock 
stimulator was attached to the participant’s right wrist. 
We calibrated the shock intensity using an ascending 
staircase procedure, in which intensity was increased in-
crementally from 20 V in 5-V increments until it reached 
a level that participants considered “highly annoying but 
not painful”. Once this level was achieved, the shock re-
mained at this intensity throughout the conditioning task 
(M = 36.78 V, SD = 9.69).

2.3.2  |  Experimental design

Participants were randomly assigned to the Rating Group 
or the Viewing Group. Participants in the Rating Group 
were asked to rate the expected likelihood of shock during 
each CS presentation, using a continuous visual analogue 
scale ranging from “0%: sure of no shock” to “100%: sure of 
shock” (Figure 1a). This type of online US-expectancy rat-
ing is thought to be one of the most valid measures of con-
tingency awareness (Boddez et al., 2013). Participants were 
asked to record expectancy ratings using the mouse within 
the 4-second CS presentation. If a participant failed to record 
a response during the 4-s period, the final location of the 
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mouse was used as the rating. On average, subjects missed 
fewer than 1 rating (M = 0.23, SD = 0.53). Participants in 
the Viewing Group viewed the CS images while making no 
overt responses. Participants received general contingency 
instructions but were not informed about the specific rela-
tionships between the CSs and outcomes. All participants 
were told to “try to figure out the relationship between the 
stimuli you see and the shocks you feel.”

All participants underwent the same aversive reversal 
learning task with a single reversal and 50% reinforcement 
rate (see Figure 1). During the first 42 trials, the original 
CS+ coterminated with a shock (US) on 50% of CS+ trials 
(i.e., 14 pairings), while the CS− was never paired with the 
US. Thus, the pre-reversal phase included 14 CS− trials, 14 
unreinforced CS+ trials, and 14 trials in which the CS+ co-
terminated with a shock US. Halfway through the task the 
contingencies reversed, such that the former CS+ became 
the CS− and vice versa for the last 42 trials. Reinforcement 
rates were the same, that is, the new CS+ (original CS−) had 
a 50% reinforcement rate (i.e., 14 unpaired trials, 14 trials 
paired with a shock) and there were 14 new CS− (original 
CS+) presentations. Participants were not instructed upon 
reversal. We used two trial orders, which were each pseudo-
randomized within the constraints that there were never 
three of the same CS image sequentially or two shocks in 
a row. All participants saw the same total number of each 
CS type (42 original CS+ trials, 42 original CS− trials) and 
received 28 shocks over the course of the experiment. Each 
CS was displayed for 4 s, followed by a 12-s inter-stimulus 
interval (ISI) during which a fixation cross was displayed. CS 
images were counterbalanced across participants.

Following the experimental task, participants answered 
a series of post-task questions assessing declarative knowl-
edge of the CS-US contingencies, subjective emotional re-
actions to each of the CS images, and a free response item 
regarding any patterns or relationships observed during the 
study. Free responses were not included in the current anal-
yses. Participants were then debriefed and dismissed.

2.3.3  |  Skin conductance data processing

SCR data was processed in AcqKnowledge (BIOPAC 
Systems, Inc., Goleta, CA) and filtered with a 25-Hz low-
pass FIR filter and smoothed with a Gaussian kernel of 
10 samples. SCRs were measured as the base-to-peak am-
plitude difference for each trial during the 0.5–4.5 s window 
after stimulus onset. SCR amplitudes that were less than 
0.02  microSiemens were considered non-responses and 
scored as 0. Amplitude estimates were square root trans-
formed (Schlosberg & Stanley, 1953) and normalized rela-
tive to each participant’s mean square-root-transformed US 
response (Ben-Shakhar, 1985; Fowles et al., 1981).

2.4  |  Statistical analyses

We used ANOVAs to analyze post-task ratings as a func-
tion of Group (Rating vs. Viewing Only) and Stimulus type 
(Original CS+ vs. Original CS−) and used linear mixed 
models to analyze SCR outcomes on unreinforced trials (i.e., 
trials that were not paired with a US) as a function of Group, 
Stimulus, and Phase (Pre- vs. Post-reversal). ANOVAs were 
implemented using Matlab’s “anovan.m” program and we 
modeled subject as random and nested in Group.

To account for the fact that conditioning and reversal 
learning are dynamic processes that occur over time as a 
function of reinforcement and experience, we used linear 
mixed effects models that model outcomes trial-by-trial 
and can account for effects that vary over time, as well as 
computational models of learning (see next section). Linear 
mixed models are advantageous relative to ANOVAs, which 
use summary statistics, average responses across trials, and 
cannot capture the dynamic nature of nature of learning. 
All linear mixed models were analyzed in R (R Core Team, 
2014) using the nlme package (Bates et al., 2015). We mod-
eled fixed effects of Group, Stimulus Type, Phase, and Trial, 
and all possible interactions. Slopes and intercepts were 
treated as random, and we modeled autoregression (AR(1)). 
Post-hoc pairwise comparisons were evaluated using the R 
package “emmeans” (Lenth, 2020).

2.4.1  |  Computational modeling

While our linear mixed models provide tests of whether 
responses emerge gradually as a function of time (i.e., 
linear effect of Trial), computational models of reinforce-
ment learning provide further insight on the dynamic 
learning process by testing how responses update not 
only as a function of trial, but also in response to specific 
outcomes. More specifically, they test whether expected 
value (EV) updates in response to a given reinforcement 
(r), which depends on the learning rate (�), or the speed of 
updating, and the prediction error (δ) which is the devia-
tion between EV and reinforcement (r) on a given trial. 

The learning rate governs the extent to which a predic-
tion error causes EV to update on the next trial. Thus re-
inforcement learning models extend insights from mixed 
models by not only testing whether the magnitude of the 
differential response increases over time (e.g., a Cue × 
Trial interaction), but also how learning takes place on 
a trial-by-trial basis, both in response to unexpected re-
inforcements (e.g., shocks) and unexpected omissions of 
reinforcement (e.g., reversals).

�t = rt − EV(CS)t
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Because reversals engage contextual shifts that have been 
previously shown to engage adaptive learning (Behrens 
et al., 2007; Li, Schiller, et al., 2011), we evaluated a “hybrid 
model” of adaptive learning (Li, Schiller, et al., 2011) to test 
whether act of rating expectations modulates value-based 
learning. In contrast to a standard Rescorla-Wagner model 
(Rescorla & Wagner, 1972) which assumes that learning is 
stable over time, hybrid models are based on the Pearce-Hall 
model and allow learning rates vary dynamically as a func-
tion of associability (Mackintosh, 1975; Pearce & Hall, 1980), 
which is inversely related to the stability of the environment. 
In other words, learning rates are higher in volatile environ-
ments and lower in stable environments, and depend on the 
recent history of prediction errors. The model is referred to 
as a “hybrid” model because it integrates the concept of pre-
diction error from the Rescorla-Wagner model with associa-
bility from the Pearce-Hall model (Li, Schiller, et al., 2011). 
Prior work using hybrid models in aversive learning (Atlas 
et al., 2019; Li, Schiller, et al., 2011; Zhang et al., 2016) indi-
cates that SCR reflects the joint combination of associability 
(i.e., the current dynamic learning rate (�)) and expected 
value (EV). These parameters update dynamically based on 
two free parameters, κ and η, which control the rate at which 
prediction errors influence outcomes: 

 

We fit models using Matlab’s “fmincon.m” function and 
minimized the sum squared errors between EV or EV and 
associability and each participant’s SCR on unreinforced 
trials. We also included a linear effect of time in all mod-
els, and fit models separately to participants in each group. 
Consistent with previous work (Atlas & Phelps, 2018; Miller 
et al., 1998; Wu, 1986), we used a “jack-knife” approach to 
model fitting and iteratively left out one subject on each 
iteration and fit to the remaining subjects to estimate pa-
rameters across the group. This provides a distribution of 
scores for statistical comparison, while reducing the noise 
associated with individual model fits. We compared three 
models: (1) a hybrid model with four free parameters (κ, η, 
initial EV, initial �); (2) a model that assumed an initial EV 
of 0.5 and an initial � of 1.0 (i.e., only κ and η were modeled 
as free parameters); (3) a standard Rescorla-Wagner model 
that included a constant learning rate which was assumed 
to be stable over time, and the learning rate (�) and initial 
EV were modeled as free parameters.

We fit models to skin conductance on unreinforced tri-
als throughout the entire task (i.e., pre- and post-reversal) 
and computed Aikake’s Information Criterion for each 
model (Akaike, 1974), which penalizes models for extra pa-
rameters. We used Bayesian model selection implemented 

with SPM_bms (Stephan et al., 2009) to compare models. 
The hybrid model with four free parameters was deter-
mined to be the best fit across participants (see Results) 
and we therefore use this model for inference.

We compared group differences in each parameter 
using two-sample t-tests in Matlab based on fitted pa-
rameters from jack-knife approaches. We also evaluated 
models fit to individuals and across the entire group for 
completeness.

2.4.2  |  Multilevel mediation analysis

To understand the relationship between expectancy rat-
ings and observed differential responses in autonomic 
arousal within the Rating Group, we tested whether 
expectancy ratings formally mediated conditioned re-
sponses (i.e., differential effects of CS on SCR). Multi-
level mediation analyses were implemented in Matlab 
using the Mediation-Moderation Toolbox (Atlas et al., 
2010; Wager et al., 2009). We modeled CS type (current 
CS+ vs. current CS−) as the input variable (X), SCR 
on unreinforced trials as the outcome variable (Y), and 
tested for mediation by expectancy ratings. On trials on 
which subjects did not provide an expectancy rating (M 
= 1.55, SD = 2.36), we used the mouse position at the 
end of the 4 s CS period as a measure of expectancy. We 
used bootstrapping to test the significance of mediation 
to account for non-normality of the indirect path (Shrout 
& Bolger, 2002).

Our mediation analysis differs from the multilevel 
models and quantitative learning models in that it tests 
responses only within the Rating Group. Furthermore, 
the mediation model measures the contribution of sub-
jective expectancy ratings themselves both as a function 
of CS type and in relationship to evoked SCR, whereas 
the multilevel models and computational models exam-
ine SCR as a function of whether or not ratings were col-
lected, rather than considering the trial-by-trial ratings 
themselves.

3  |   RESULTS

3.1  |  Post-task ratings

There were no differences between Groups in the num-
ber of perceived reversals during the task (MRG = 1.79, 	
SDRG = 0.95; MPG = 1.66, SDPG = 1.05; p > .5; see Figure 2). 
Retrospective probability ratings indicated that participants 
associated a higher likelihood of shock with the original 
CS+ during the beginning of the study and a higher likeli-
hood of shock with the original CS− at the end of the study 

EV(CS)t+1 = EV(CS)t + ∗ �(CS)t × �t

�(CS)t+1 = � ||�t
|
| + (1 − �) �(CS)t
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(Stimulus × Phase, F(1,291) = 136.07, p < .001; η2 = 0.508). 
Participants also reported higher likelihood of shock at the 
start of the task versus the end (F(1,291) = 7.41, p = .008; 	
η2 = 0.007). Probability estimates did not differ by group 
(all p’s > .3). Retrospective affect ratings also did not differ 
as a function of CS Type or Group (all p’s > .2).

3.2  |  Participants who make expectancy 
ratings show sustained SCRs based 
on original contingencies

We used linear mixed models to examine the effects of 
Group, Phase (Pre- vs. Post-reversal), Stimulus (Original 

F I G U R E  2   Retrospective ratings. Upon task completion, participants retrospectively rated (a) number of perceived reversals, (b) 
probability of shock associated with each stimulus at the beginning and at the end of the study; and (c) affect in response to each stimulus. 
Groups did not differ in any retrospective ratings. Error bars denote SEM

(a) (b) (c)

F I G U R E  3   Skin conductance as a function of Group and Phase. Left: This figure illustrates skin conductance responses as a function 
of Stimulus prior to reversal (top) and following contingency reversals (bottom). Only the Viewing Group showed significant differences 
prior to reversal and a complete reversal of the differential response when contingencies changed. Middle: SCR and expectancy ratings show 
a similar timecourse on unreinforced trials within Rating Group participants, where responses do not reverse until several trials after the 
reversals. Top right: SCR in the Viewing Group reverses immediately upon contingency reversal. Raincloud plots are visualized using the R 
package raincloudplots (Allen et al., 2021)
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CS+ vs. Original CS−), and Trial on SCR to unreinforced 
trials to measure whether rating expectations alters aver-
sive learning (Figure 3). A fully specified linear mixed 
model failed to converge using the lme4 package in R with 
various optimization factors, so we used the lme package 
from nlme which allowed us to control for autoregression 
and evaluate the full model. We included fixed factors for 
Stimulus, Phase, Trial, and Stimulus*Phase interactions, 
and included random intercepts per subject and random 
factors for all effects except Trial. Results revealed signifi-
cant main effects of Stimulus (p = .014), Phase (p = .003), 
and Trial (p = .001), as well as significant interactions 
between Stimulus and Phase (p < .001), Phase and Trial 
(p < .001), Group × Stimulus × Phase (p = .021), Group × 
Stimulus × Trial (p = .039), and Stimulus × Phase × Trial 	
(p < .001). We were most interested in the Group × 
Stimulus × Phase interaction. Posthoc analyses separated 
by Group indicated that the Viewing Group showed a sig-
nificant Stimulus × Phase interaction (B = 0.067, p < .001) 
whereas the Stimulus × Phase interaction was not signifi-
cant in the Rating Group (p > .1). For complete results 
and results separated by group, please see Tables S1–S3. 
We also conducted pair-wise comparisons post-hoc be-
tween all factors using the R package emmeans (Lenth, 
2020). Pairwise comparisons indicated that the key inter-
action was driven by the fact that only the Viewing Group 
showed significant differences between the CS+ and CS− 
prior to reversal (p < .001) and that responses to the origi-
nal CS− increased after the reversal within the Viewing 
Group (p < .001). There were no significant differences as 
a function of Stimulus or Phase within the Rating Group 
in pairwise post-hoc tests based on adjusted p-values. For 
complete results of pair-wise post-hoc tests, see Table S4.

3.3  |  Rating expectancy slows 
associative learning

Next, we fit dynamic learning models to SCR on unrein-
forced trials throughout the entire task (i.e., both pre- and 
post-reversal) to test whether rating expectations alters 
dynamic value-based learning. We fit models separately 
to each individual and used jack-knife estimation to itera-
tively leave out one subject and fit estimates to remaining 
participants in each group, which provides a distribution 
of estimates for between-group comparison that is less 
sensitive to noise than individual subject-level fits. We 
compared a standard Rescorla-Wagner model (Rescorla 
& Wagner, 1972) which assumes a stable learning rate 
across time with two variations of a hybrid model (Atlas 
et al., 2019; Li, Delgado, et al., 2011; Mackintosh, 1975; 
Pearce & Hall, 1980) that assumes that learning rates 
vary as a function of associability (see Method for model 

details). Model comparison using SPM_bms (Stephan 
et al., 2009) revealed that a hybrid model that included all 
parameters as free provided the best fit for our data, based 
on an exceedance probability of 0.76, versus the hybrid 
model that assumed starting parameters for learning rate 
and expected value (exceedance probability = .24) and the 
Rescorla-Wagner model (exceedance probability = 0). We 
therefore make inferences based on the hybrid model that 
included four free parameters.

Jack-knife estimation revealed that Viewing Group 
participants had significantly higher values than Rating 
Group participants for all parameters (Figure 4), includ-
ing initial learning rate (MPG = 1.0; SEPG = 0.0; MRG = 
0.66; SDRG = 0.86; t(1,78) = −19.11, p < .001), initial ex-
pected value (MPG = 0.29; SEPG = 0.05; MRG = 0. 01; SERG 
= 0.004; t(1,78) = −5.49, p < .001), kappa (MPG = 0.42; 
SEPG = 0.02; MRG = 0.28; SERG = 0.004; t(1,78) = −6.79, 
p < .001), and eta (MPG = 0.42; SEPG = 0.04; MRG = 0.23; 
SERG = 0.006; t(1,78) = −2.14, p = .036). Fitting sepa-
rately to each individual revealed parameters that dif-
fered in the same direction although group differences 
were not significant in these fits, consistent with the fact 
that individual estimates are noisier (see Figure S1 and 
Table S5).

F I G U R E  4   Hybrid model learning parameters differ by group. 
Fitting a Rescorla-Wagner model of reinforcement learning to SCR 
on unreinforced trials revealed higher learning rates in Viewing 
Group participants than participants in the Rating Group, whether 
fit to individuals or jack-knife estimation to iteratively fit across 
each group using cross validation. Learning rates depicted here are 
from jack-knife estimation. See Figure S1 for complete results of 
jack-knife estimation and fits to individuals
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3.4  |  Expectancies mediate differential 
responses in SCR

Finally, we tested whether subjective expectancies formally 
mediated the effects of conditioned cues on SCR within the 
Rating Group. Here, we analyzed differential effects, that 
is, effects of current contingencies including the reversal 
(Cue × Phase interactions), rather than original contingen-
cies, and included all Rating Group participants. As shown 
in Figure 5, there was a significant differential effect (cur-
rent CS+ > current CS−) on SCR on unreinforced trials 
(Path c = 0.04(0.01), p < .001), consistent with analyses 
reported above. There was also a significant differential 
effect on expectancy (Path a = 0.14(0.02), p < .001), such 
that shock expectancy was higher in response to the cur-
rent CS+ than the current CS−, and an effect of expec-
tancy on SCR, controlling for the differential effect (Path 
b = 0.18(0.05), p < .001), such that skin conductance was 
higher when subjects expected a shock. Finally, we found 

that expectancy ratings fully mediated the relationship be-
tween CS and SCR (Path a × b = 0.02 (0.0), p < .001), such 
that the differential effect on SCR was absent when con-
trolling for expectancy rating (Path c′ = 0.01(0.01), p > .16; 
see Figure 3), indicating that subjective expectancy fully 
explains differential responses in SCR when individuals 
make expectancy ratings. We also examined the covariance 
between Paths a and b, since the mediation effect in multi-
level mediation (i.e., c–c′, the difference between the direct 
and indirect effects) can be driven by both the product of 
the path coefficients and the covariance of the paths (i.e., 
c–c′ = a × b + cov(a,b); (Kenny et al., 2003). In this case, 
we observed significant negative covariance (see Figure 3), 	
suggesting that participants who showed stronger CS ef-
fects on expectancy showed weaker additional effects of 
expectancy on arousal. Finally, to evaluate directionality, 
we tested a reversed mediation, that is, whether physiologi-
cal arousal mediates effects on expectancy, as proposed by 
models such as the somatic marker hypothesis (Poppa & 

F I G U R E  5   Expectancy fully mediates differential response within participants who make ratings. Multilevel mediation revealed 
that trial-by-trial expectancy ratings fully mediated effects of the current contingencies on SCR across participants. We used bootstrap 
estimation to determine the significance of the mediation effect (Shrout & Bolger, 2002). Slope plots depict individual estimates in blue 
lines, with the 95% confidence interval depicted in the gray shaded area that surrounds the overall group effect. Analyses were conducted in 
the Multilevel Mediation Moderation Toolbox (Atlas et al., 2010; Wager et al., 2009). Upper left: There was a significant effect of current CS 
contingencies on subjective expectancy (i.e., Path a in the mediation framework). Upper right: There was a significant effect of expectancy 
on SCR, controlling for current CS contingencies (i.e., Path b in the mediation framework). Lower panel: There was a significant direct effect 
of Current CS contingencies on SCR, which was non-significant when controlling for expectancy rating. There was a significant negative 
association between Path A and Path B coefficients, which suggests mediation was driven primarily by within-subjects effects



10 of 15  |      ATLAS et al.

Bechara, 2017). When we tested whether CS effects on ex-
pectancy were mediated by SCR, we found that effect of 
cues on expectations was the same whether or not we con-
trol for cue effects on SCR (c = 0.14, STE = .02, p < .001; c′ 
= 0.14, STE = .02, p < .001) and there was no evidence of 
mediation (a × b = 0, p > .08). This provides further sup-
port for directionality of our model, that is, that cues affect 
expectations which in turn affect SCR.

3.5  |  Comparing learners and  
non-learners

Our main analyses focus on quantitative models across all 
participants to assess how the act of providing expectancy 
ratings alters dynamic adaptive learning in response to re-
inforcement. However, classic approaches often average 
across responses regardless of time to discern whether in-
dividuals can be classified as learners (i.e., those who show 
elevated arousal in response to a CS+ relative to a CS−) 
or non-learners (those who show no differences). While 
this approach has known limitations (Lonsdorf et al., 
2017), it can still provide convergent information regard-
ing the overall effects of expectancy ratings on learning. 
We used a differential response cut-off of 0.05 µS during 
late acquisition to identify learners (see Figure S2). There 
were more learners in the Rating Group (26/40, or 65%) 
than the Viewing Group (18/40, or 45%), although differ-
ences were marginal based on a chi-square test (χ2 = 3.23, 	
p =  .072). There were no differences between Learners and 
Non-learners or interactions between Group and Learning 
in the number of perceived reversals or affect ratings for 
either CS, but we did observe significant interactions with 
Learning Status when evaluating post-task probability 
ratings (see Supplementary Results and Figure S3).

4  |   DISCUSSION

Studies of threat conditioning have provided vast insights 
into the mechanisms that underlie learning and memory 
by measuring various defensive responses, many of which 
are largely conserved across human and animal models. 
Here, we asked whether the uniquely human act of rat-
ing expectations alters learning and threat expression in 
the form of autonomic arousal. We found that making ex-
pectancy ratings during aversive reversal learning slowed 
dynamic learning, as measured by SCR to conditioned 
cues. Participants who made online expectancy ratings 
were slower to reverse conditioned responses when con-
tingencies changed, relative to participants who under-
went the task without making ratings. Within the Rating 
Group, expectancy ratings fully mediated the differential 

response in SCR, suggesting that cues affect expectations 
which in turn affect SCR. In this section we discuss these 
findings, their relationship with previous work, and ques-
tions that should be addressed in future work.

Expectancy ratings have traditionally been included in 
many threat conditioning studies as a measure of learn-
ing (Boddez et al., 2013). However, rating expectations 
engages cognitive processes that may not occur in the 
absence of ratings. In particular, providing subjective rat-
ings requires attention, decision-making, and probability 
inference. Our results indicate that these concurrent pro-
cesses act to reduce the rate of simple associative learning, 
in particular making individuals less sensitive to changes 
in contingencies, that is, reversals. The group differences 
we observed are quite surprising, given the relatively high 
50% reinforcement rate used. In fact, during piloting, we 
found that subjects who made expectancy ratings did not 
show SCR reversals at all when we used a 30% reinforce-
ment rate, whereas this reinforcement rate was sufficient 
to induce repeated SCR reversals when expectancy ratings 
were not incorporated (Atlas et al., 2016). One possibil-
ity is that explicitly rating probabilities causes people to 
make higher order predictions that in turn guide atten-
tion. Numerous studies of associability indicate that atten-
tion can gate learning (Atlas et al., 2019; Li, Schiller, et al., 
2011; Mackintosh, 1975; Pearce & Hall, 1980; Roesch et al., 
2012), and that attention and learning rates decrease as an 
environment becomes more stable (Behrens et al., 2007; 
Browning et al., 2015). Individuals who explicitly believe 
the environment has stabilized may pay less attention to 
individual outcomes, and therefore may be slower to react 
to the contingency reversal, consistent with over-learning. 
Relatedly, providing online expectancy ratings might have 
served as a distraction in Rating Group participants, re-
ducing their attention to changes in the environment, or 
might have shifted individuals from automatic to elabo-
rative processing. It is also possible that specific features 
of the task (e.g., stimulus duration, stimulus discrimin-
ability) moderate the extent to which providing online 
expectancy ratings alters attention. For example, our CS 
duration was rather short, although it was sufficient for 
subjects to provide expectancy ratings. Longer CS pre-
sentations might allow subjects to attend to subjective ex-
pectancy without time pressure or memory load, perhaps 
affording greater awareness to the contingencies. Future 
studies should directly measure the role of attention to 
differentiate between these alternatives and to understand 
how expectancy and attention interact to shape behavior 
and autonomic responses.

Interactions between expectancy and attention can also 
explain how our findings relate to previous work examin-
ing the relationships between expectancy ratings and phys-
iological responses during threat conditioning (Perruchet, 
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2015; Ryan et al., 2021; Warren et al., 2014). In two studies 
using 100% reinforcement, participants who made expec-
tancy ratings demonstrated enhanced fear acquisition and 
enhanced extinction retention based either on startle po-
tentiation (Warren et al., 2014) or SCR (Ryan et al., 2021). 
In contrast, we combined partial reinforcement and re-
versal learning with a hybrid model of adaptive learning 
and found that the process of rating expectations reduced 
sensitivity to prediction errors and changes in context. We 
believe these findings can be easily reconciled based on dif-
ferences in environmental volatility. If expectancy ratings 
reduced attention to individual outcomes and enhanced 
confidence in judgments, this would be beneficial in stable 
environments (e.g., tasks with 100% or 0% reinforcement 
during acquisition and extinction, respectively) but be 
deleterious in stochastic environments such as the partial 
reinforcement reversal task we used here (or a lower rein-
forcement rate with more reversals, as mentioned above). 
Future work should systematically manipulate reinforce-
ment rate to formally measure the impact of expectancy 
ratings as a function of volatility.

While the between-groups aspect of our study high-
lights how the inclusion of expectancy ratings can shape 
autonomic responses relative to learning without online 
ratings, our within-subjects mediation approach also pro-
vides insight on the dynamic contribution of subjective 
expectancy ratings themselves. We found that subjective 
expectations fully mediated the differential SCR response 
within the Rating Group. These findings are relevant in 
light of previous work that compared the dynamics of ex-
pectancy ratings and autonomic responses within subjects 
and observed meaningful dissociations. In particular, stud-
ies of the so-called Perruchet effect (Perruchet, 2015) and 
gamblers’ fallacy (Clark et al., 2002) indicate that the recent 
history of association has divergent effects on eye-blink 
conditioning versus subjective expectancy. Unconditioned 
stimulus (US) recency is positively associated with the 
magnitude of the conditioned response, yet negatively re-
lated to expectancy; in other words, the greater the time 
since US presentation, the more people expect reinforce-
ment, but the weaker the magnitude of the conditioned 
eye-blink. This suggests expectancy ratings are sensitive to 
higher order beliefs such as the gamblers’ fallacy, but that 
conditioned eyeblink is not, which might support a dual 
process model. In exploratory analyses, we analyzed Rating 
Group responses as a function of US recency, and found 
that expectancy ratings did show a pattern that might be 
consistent with gamblers’ fallacy (i.e., higher expectancy 
following more unreinforced CS+ presentations; see 
Figure S4). However, consistent with our mediation analy-
ses and a single process model, we did not see dissociations 
between SCR and expectancy ratings; both showed similar 
effects of US history, and in fact trial-by-trial expectancy 

ratings fully mediated the effect of conditioned cues on 
SCR. This suggests that SCR reflects subjective expecta-
tions (at least when ratings are made) and builds on other 
studies that have drawn into question the generalizability 
of the Perruchet effect (Weidemann, Satkunarajah, et al., 
2016). Importantly, our study differed from previous work 
on the Perruchet effect (Perruchet, 2015; Perruchet et al., 
2006; Weidemann et al., 2009) in many ways: We included 
CS− trials, we did not instruct participants about stimulus 
contingencies, and we measured SCR instead of eyeblink, 
although the Perruchet effect has been replicated with SCR 
in previous work (McAndrew et al., 2012). Future studies 
should use a fully balanced design with and without ex-
pectancy ratings to simultaneously evaluate the Perruchet 
effect within participants who provide expectancy ratings 
and to test whether the conditioned response differs as a 
function of whether ratings are collected. In addition, fu-
ture studies should formally compare the impact of ex-
pectancy ratings on different measures of conditioning, as 
SCR, eyeblink, and startle have been shown to be differ-
entially sensitive to expectancy and awareness in previous 
work (Clark et al., 2002; Hamm & Vaitl, 1996; Manns et al., 
2002; Weike, 2005), although there is much debate in this 
area (Lovibond & Shanks, 2002; Mertens & Engelhard, 
2020; Schultz & Helmstetter, 2010) and all measures are 
sensitive to instructed reversals in the absence of reinforce-
ment, indicating that they can be shaped by higher order 
knowledge (Costa et al., 2015).

Our findings are consistent with a model whereby 
higher order processes like instructed knowledge, meta-
cognition, and executive function shape associative learn-
ing, that is, a single process model of threat learning 
(Grings, 1973; Mitchell et al., 2009). Which neural systems 
are likely to mediate the effects of expectancy rating on 
learning and autonomic responses? We and others have 
shown that instructed knowledge influences responses in 
the dorsolateral prefrontal cortex, which in turn shapes 
learning-related responses in the striatum and ventro-
medial prefrontal cortex (Atlas et al., 2016; Li, Delgado, 
et al., 2011), although reversal learning in the amygdala 
depended on experiential learning rather than instruction 
(Atlas, 2019; Atlas et al., 2016, 2019). It is possible that ex-
plicit expectations, which engage meta-cognition, act as 
an internally generated instruction. This seems plausible, 
based on prior work on amygdala lesion patients. Patients 
with amygdala lesions do not show SCRs during passive 
threat conditioning, but do show differential SCR when 
they make expectancy ratings (Coppens et al., 2009), indi-
cating that higher order systems bypass the amygdala to in-
teract with subcortical arousal circuits. Future work should 
directly compare neural mechanisms of threat learning 
with and without expectancy ratings to test whether ex-
plicitly rating expectations alters the brain responses that 
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mediate aversive learning, or whether aversive learn-
ing systems respond similarly irrespective of whether 
subjects make ratings. In addition, in the present study 	
both groups received general contingency instructions 
(i.e., that there would be a relationship between the stim-
uli and shocks) although they were not informed about 
the relationship. General contingency instructions differ 
from pure uninstructed learning, that is, when partici-
pants are not informed about relationships between CS 
stimuli and shock outcomes (Mertens et al., 2021). Future 
work should measure whether expectancy ratings interact 
with instructed knowledge and directly evaluate whether 
both types of higher order processes have similar mecha-
nisms and downstream effects on adaptive learning.

While traditional approaches used behavioral measures 
as an index of emotion, affective scientists increasingly rec-
ognize the important distinction between defensive behav-
iors and subjective feelings (LeDoux, 2012; LeDoux, 2013). 
Our findings expand this conversation by demonstrating 
that explicitly reporting subjective predictions can actually 
alter physiological arousal. Importantly, it is not known 
whether our findings of reductions in adaptive learning 
are specific to expectancy ratings, or a consequence of pro-
viding any subjective rating during learning. For instance, 
does rating subjective fear alter learning in a different way 
from rating subjective expectancy? If the impact of expec-
tancy ratings on learning is mediated by general cognitive 
processes such as decision making, meta-cognition, and 
divided attention, then the type of rating might not mat-
ter, and all concurrent decisions might lead to reductions 
in adaptive learning. Alternatively, different types of con-
current ratings may have different effects on the trajec-
tory of learning. For example, the act of rating expectancy 
might cause individuals to use higher order knowledge to 
focus on probability and reduce the impact of anxiety or 
fear, whereas rating subjective fear might heighten a sense 
of threat and anxiety and increase physiological arousal. 
Consistent with potential dissociations, recent findings in-
dicate that the effect of CS-US pairing on startle potentia-
tion and amygdala activation is not mediated by subjective 
expectancy, but rather by subjective fear (Mertens, Braem, 
et al., 2018). Future work should use between-subjects de-
signs to directly compare how different subjective ratings 
impact associative learning to resolve these possibilities. 
Studies should also include an attentional control condition 
to control for the extent to which making any type of judg-
ment influences the learning process. As mentioned above, 
future work should systematically manipulate and measure 
impacts of reinforcement rate, contingency instructions, 
and CS duration to test how these factors impact learning, 
attention, and the impact of expectancy ratings on multiple 
autonomic measures and defensive reactions. If all studies 
that incorporate subjective ratings also include a Viewing 

group, we will discover the conditions under which ratings 
impair or enhance learning as a field.

In conclusion, our study demonstrates that rating expec-
tations alters learning in dynamic environments. We found 
that participants who provided expectancy ratings during 
aversive learning were slower to react when contingencies 
reversed, relative to participants who did not provide expec-
tancy ratings. Furthermore, our mediation analyses indi-
cated that subjective expectations directly shape autonomic 
responses within the group that provided ratings. Although 
the goal of learning is to generate predictions and expecta-
tions about outcomes in the environment, our work shows 
that making these expectations explicit can shape the dy-
namic process of learning itself, as measured by dynamic 
changes in anticipatory arousal. Studies of threat condition-
ing, threat related processing, and learning should quantify 
the extent to which concurrent measures like expectancy 
ratings may directly alter the behavior of interest.
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