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1 |  INTRODUCTION

The	study	of	threat-	induced	defensive	reactions	has	pro-
liferated	 in	 the	 last	 century,	 focusing	 in	 large	 part	 on	
Pavlovian	 classical	 conditioning,	 the	 critical	 process	 by	

which	an	organism	learns	the	structure	of	the	world	and	de-
velops	predictions	or	expectations	about	salient	outcomes	
in	its	environment	(Rescorla,	1988).	Many	of	the	defensive	
reactions	that	animals	display	can	also	be	measured	in	hu-
mans,	providing	the	opportunity	for	fundamental	insights	
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Abstract
The	process	of	learning	allows	organisms	to	develop	predictions	about	outcomes	
in	 the	 environment,	 and	 learning	 is	 sensitive	 to	 both	 simple	 associations	 and	
higher	order	knowledge.	However,	it	 is	unknown	whether	consciously	attend-
ing	 to	expectations	 shapes	 the	 learning	process	 itself.	Here,	we	directly	 tested	
whether	 rating	 expectations	 shapes	 arousal	 during	 classical	 conditioning.	
Participants	performed	an	aversive	learning	paradigm	wherein	one	image	(CS+)	
was	paired	with	shock	on	50%	of	trials,	while	a	second	image	(CS−)	was	never	
paired	with	shock.	Halfway	through	the	task,	contingencies	reversed.	One	group	
of	participants	rated	the	probability	of	upcoming	shock	on	each	trial,	while	the	
other	group	made	no	online	ratings.	We	measured	skin	conductance	response	
(SCR)	evoked	in	response	to	the	CS	and	used	traditional	analyses	as	well	as	quan-
titative	 models	 of	 reinforcement	 learning	 to	 test	 whether	 rating	 expectations	
influenced	 arousal	 and	 aversive	 reversal	 learning.	 Participants	 who	 provided	
online	 expectancy	 ratings	 displayed	 slower	 learning	 based	 on	 a	 hybrid	 model	
of	adaptive	learning	and	reduced	reversal	of	SCR	relative	to	those	who	did	not	
rate	expectations.	Mediation	analysis	revealed	that	the	effect	of	associative	learn-
ing	on	SCR	could	be	fully	explained	through	its	effects	on	subjective	expectancy	
within	the	group	who	provided	ratings.	This	suggests	that	the	act	of	rating	expec-
tations	reduces	the	speed	of	learning,	likely	through	changes	in	attention,	and	
that	 expectations	 directly	 influence	 arousal.	 Our	 findings	 indicate	 that	 higher	
order	expectancy	judgments	can	alter	associative	learning.
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through	translational	work.	Of	course,	humans	can	also	
verbalize	their	expectations	and	feelings,	and	thus	many	
human	threat	conditioning	studies	ask	participants	to	pro-
vide	expectancy	ratings,	or	estimates	of	the	probability	of	
shock,	as	an	additional	measure	of	learning.	People	report	
increased	shock	expectancy	in	response	to	associations	ac-
quired	through	classical	conditioning	(Boddez	et	al.,	2013;	
Dunsmoor	 et	 al.,	 2014),	 verbal	 instructions	 (Mertens,	
Braem,	 et	 al.,	 2018;	 Mertens	 &	 De	 Houwer,	 2016),	 and	
vicarious	 (social)	 learning	 (Selbing	 &	 Olsson,	 2019).	
Expectancy	 ratings	 are	 also	 clinically	 relevant,	 as	 they	
are	elevated	in	patients	with	pathological	anxiety	(Britton	
et	al.,	2013;	Chan	&	Lovibond,	1996)	and	post-	traumatic	
stress	disorder	 (Blechert	et	al.,	2007),	and	meta-	analyses	
of	fear	conditioning	in	anxiety	indicate	that	of	subjective	
ratings	differ	between	patients	and	controls	during	both	
acquisition	and	extinction,	driven	in	part	by	differences	in	
response	to	the	safety	cue	(CS−)	(Duits	et	al.,	2015).	For	
these	reasons,	expectancy	ratings	have	been	argued	to	be	
a	valid	measure	of	the	aversive	learning	process	(Boddez	
et	al.,	2013),	similar	to	other	defensive	reactions.	But	does	
the	act	of	providing	expectancy	ratings	influence	adaptive	
learning	and	the	expression	of	defensive	behaviors	includ-
ing	physiological	arousal?

Although	 expectancies	 are	 influenced	 by	 many	 of	 the	
same	factors	as	other	defensive	reactions	and	behaviors,	sev-
eral	studies	indicate	that	they	are	dissociable,	suggesting	they	
may	rely	on	distinct	mechanisms.	Studies	have	shown	dissoci-
ations	between	expectancies	and	skin	conductance	responses	
(SCR;	Ohman	&	Soares,	1998;	Schell	et	al.,	1991;	Schultz	et	al.,	
2013;	 Schultz	 &	 Helmstetter,	 2010),	 eyeblinks	 (Perruchet,	
2015;	 Weidemann	 et	 al.,	 2009,	 2012),	 fear-	potentiated	 star-
tle	 (Kindt	 et	 al.,	 2009),	 and	 reaction	 time	 (Perruchet	 et	 al.,	
2006).	These	dissociations	have	been	 implicated	as	 support	
for	a	dual	process	model	whereby	independent	mechanisms	
support:	(a)	processes	that	are	sensitive	to	associative	learn-
ing	and	can	exist	outside	of	conscious	awareness	(e.g.,	defen-
sive	 reactions	 and	 physiological	 responses)	 and	 (b)	 higher	
order	processes	 that	 support	propositional	 learning	and	 re-
quire	 awareness	 (e.g.,	 expectancy,	 subjective	 feelings,	 and	
instructed	 knowledge;	 LeDoux,	 2013;	 Mineka	 &	 Öhman,	
2002).	Consistent	with	this,	studies	of	the	“Perruchet	effect”	
(Perruchet,	2015)	indicate	that	in	partial	reinforcement	stud-
ies,	unconditioned	stimulus	(US)	expectancy	increases	after	a	
series	of	trials	without	reinforcement	(consistent	with	a	gam-
bler’s	fallacy),	whereas	behavioral	or	physiological	measures	
decrease	when	US	presentations	are	less	recent.	These	find-
ings	have	been	viewed	as	support	for	the	idea	that	expectancy	
ratings	 depend	 on	 higher	 order	 beliefs	 whereas	 automatic	
responses	including	autonomic	responses	and	defensive	re-
actions	are	driven	by	associative	learning	(but	cf.	Weidemann	
et	al.,	2009,	Weidemann,	McAndrew,	et	al.,	2016;	Weidemann,	
Satkunarajah,	et	al.,	2016).

Importantly,	a	substantial	body	of	work	calls	the	dual	
process	 model	 into	 question	 and	 indicates	 that	 higher	
order	 knowledge	 can	 shape	 learning-	related	 responses	
(for	 reviews,	 see	 Lovibond	 &	 Shanks,	 2002;	 Mertens	 &	
Engelhard,	 2020;	 Mitchell	 et	 al.,	 2009).	 Critiques	 of	 the	
dual	process	framework	point	to	methodological	problems	
in	 both	 study	 design	 (Lovibond	 &	 Shanks,	 2002;	 Singh	
et	al.,	2013;	Weidemann,	McAndrew,	et	al.,	2016)	and	anal-
ysis	(Shanks,	2017)	as	well	as	publication	bias	(Mertens	&	
Engelhard,	2020;	Vadillo	et	al.,	2016).	Mechanistic	studies	
of	 instructed	 fear	 indicate	 that	 higher	 order	 knowledge	
can	 modulate	 autonomic	 responses	 (Atlas	 et	 al.,	 2016;	
Atlas	&	Phelps,	2018;	Costa	et	al.,	2015;	Grings	et	al.,	1973;	
Mertens,	Boddez,	et	al.,	2018)	and	responses	in	learning-	
related	 systems	 (Atlas	 et	 al.,	 2016;	 Doll	 et	 al.,	 2009;	 Li,	
Delgado,	et	al.,	2011).	Interactions	between	higher	order	
knowledge	 and	 dynamic	 learning	 suggest	 that	 proposi-
tional	 knowledge	 can	 shape	 learning	 through	 a	 single	
process.	However,	it	is	unknown	whether	meta-	cognitive	
predictions	in	the	form	of	expectancy	ratings	have	similar	
effects	as	instructed	knowledge	on	learning	and	defensive	
responses.	To	understand	whether	expectancies	influence	
learning-	related	 responses,	 we	 must	 not	 only	 compare	
expectancy	ratings	with	physiological	responses,	but	also	
measure	physiological	responses	in	the	absence	of	ratings.

Our	goal	was	to	determine	whether	the	act	of	providing	
online	 expectancy	 ratings	 during	 threat	 conditioning	 al-
ters	dynamic	learning	and	physiological	responses,	relative	
to	 conditioning	 in	 the	 absence	 of	 ratings.	We	 focused	 on	
SCR,	which	might	be	particularly	sensitive	to	higher	order	
knowledge.	For	example,	prior	work	in	patients	with	amyg-
dala	 lesions	 suggests	 that	 expectancy	 ratings	 may	 indeed	
modulate	learning	as	measured	by	SCR,	consistent	with	an	
interactive	model.	Patients	with	amygdala	 lesions	did	not	
express	conditioned	responses	during	standard	threat	con-
ditioning,	 as	 measured	 by	 differential	 SCR,	 but	 displayed	
differential	 SCR	 when	 they	 were	 asked	 to	 provide	 expec-
tancy	ratings	(Coppens	et	al.,	2009).	This	indicates	that	the	
act	 of	 providing	 expectancy	 ratings	 engaged	 circuits	 out-
side	of	the	amygdala,	which	in	turn	influenced	autonomic	
responses.	 Similarly,	 in	 a	 study	 of	 reconsolidation,	 a	 pro-
cess	 that	depends	on	 the	amygdala	 (Monfils	et	al.,	2009),	
participants	 who	 provided	 expectancy	 ratings	 exhibited	
enhanced	 fear-	potentiated	 startle	 during	 fear	 acquisition,	
but	less	evidence	of	reconsolidation,	relative	to	participants	
who	did	not	provide	ratings	(Warren	et	al.,	2014).	Ryan	and	
colleagues	(2021)	also	observed	enhanced	acquisition	and	
extinction	 learning	 based	 on	 differential	 SCR	 when	 par-
ticipants	 provided	 expectancy	 ratings	 relative	 evaluative	
ratings	 or	 learning	 without	 any	 ratings.	 Together,	 these	
studies	suggest	that	the	act	of	rating	expectations	can	alter	
autonomic	responses	and	engage	different	neural	circuits	
to	drive	physiological	responses,	perhaps	by	increasing	the	
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contribution	 of	 higher	 order	 processes	 such	 as	 attention	
or	explicit	beliefs.	However,	it	is	unknown	whether	expec-
tancy	ratings	altered	dynamic	learning	because	all	studies	
to	 date	 measured	 the	 effects	 of	 providing	 expectancy	 rat-
ings	in	conditions	without	any	stochasticity	(i.e.,	100%	rein-
forcement	during	conditioning	or	0%	reinforcement	during	
extinction).	To	determine	whether	expectancy	ratings	alter	
learning	per	se,	we	must	measure	the	impact	of	expectancy	
ratings	on	dynamic	associative	learning.	This	can	only	be	
accomplished	 in	 environments	 that	 contain	 some	 volatil-
ity,	such	as	partial	reinforcement	schedules	and/or	contin-
gency	reversals.	In	both	partial	reinforcement	and	reversal	
learning,	 individuals	must	continually	update	 learning	as	
a	 function	of	experience,	and	 this	 requires	 flexible,	adap-
tive	 learning,	whereby	 individuals	 increase	 learning	rates	
when	 environments	 become	 less	 stable	 (Behrens	 et	 al.,	
2007;	 Li,	 Schiller,	 et	 al.,	 2011;	 Mackintosh,	 1975;	 Schiller	
et	al.,	2008).	Previous	work	indicates	that	reversal	learning	
can	be	modulated	 through	 instruction	 (Atlas,	2019;	Atlas	
et	al.,	2016;	Costa	et	al.,	2015;	Grings	et	al.,	1973;	Mertens	
&	De	Houwer,	2016).	How	do	expectancy	ratings	shape	the	
dynamic	adaptive	learning	process?

We	conducted	a	human	behavioral	experiment	 to	ex-
amine	whether	the	act	of	rating	expectancy	alters	adaptive	
reversal	 learning.	 One	 group	 of	 healthy	 human	 subjects	

was	 assigned	 to	 an	 Expectancy	 Rating	 Group	 (“Rating	
Group”),	who	provided	online	expectancy	ratings	during	
aversive	learning,	and	another	set	of	participants	was	as-
signed	to	a	Viewing	Group,	who	learned	from	experience	
in	the	absence	of	online	ratings.	Both	groups	underwent	
the	same	aversive	reversal	learning	task	using	partial	rein-
forcement	(50%	reinforcement	of	the	CS+;	see	Figure	1).		
We	 combined	 quantitative	 models	 of	 adaptive	 learning	
with	 traditional	 statistical	analyses	and	multilevel	medi-
ation	 analyses	 to	 ask	 whether	 online	 expectancy	 ratings	
influence	dynamic	aversive	learning.

We	focused	on	a	hybrid	model	of	adaptive	learning	that	
incorporates	associability,	or	the	extent	to	which	attention	
gates	learning	in	response	to	changes	in	the	environment	
(Mackintosh,	1975;	Pearce	&	Hall,	1980).	Consistent	with	
previous	work	(Homan	et	al.,	2019;	Li,	Schiller,	et	al.,	2011;	
Tzovara	 et	 al.,	 2018;	 Zhang	 et	 al.,	 2016),	 we	 focused	 on	
SCRs	as	a	measure	of	physiological	arousal	that	is	sensitive	
to	adaptive	learning,	orienting,	uncertainty,	and	attention	
(Ojala	&	Bach,	2020).	We	hypothesized	that	the	timecourse	
of	associative	 learning	would	differ	between	participants	
who	provide	online	expectancy	ratings	versus	 those	who	
undergo	 aversive	 learning	 without	 rating	 shock	 proba-
bility.	We	did	not	have	directional	hypotheses,	as	 ratings	
might	 increase	 attention	 to	 contingencies	 (Mackintosh,	

F I G U R E  1  Task	design.	(a)	Participants	assigned	to	a	Rating	Group	made	expectancy	ratings	during	aversive	reversal	learning,	while	
Viewing	Group	participants	viewed	images	and	received	shocks	in	the	same	task	without	making	ratings.	(b)	There	was	a	50%	reinforcement	
rate	for	the	CS+	(i.e.,	14	unreinforced	presentations	and	14	reinforced	presentations).	Halfway	through	the	task,	contingencies	reversed	and	
the	initial	CS−	became	the	new	CS+	and	was	reinforced	with	a	50%	reinforcement	rate	for	the	duration	of	the	task.	(c)	On	each	trial,	the	CS	
was	presented	for	4 s	followed	by	a	12 s	inter-	stimulus	interval.	CS+	presentation	coterminated	with	a	200 ms	shock.	Two	stimuli	were	used	
(purple/yellow	fractal	or	red/green	fractal)	and	initial	CS	assignment	was	counterbalanced	across	participants
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1975),	 consistent	 with	 enhanced	 differential	 responses	
during	acquisition	in	previous	work	(Warren	et	al.,	2014),	
or	 they	 might	 reduce	 overall	 arousal	 if	 they	 serve	 to	 en-
hance	elaborative	processing	and	reduce	the	threat	value	
of	the	conditioned	stimulus	(e.g.,	through	distraction).

2 |  METHOD

2.1 | Participants

Participants	 were	 recruited	 from	 New	 York	 University	
and	 the	 surrounding	 community.	 All	 participants	 were	
required	 to	 be	 right-	handed	 and	 fluent	 in	 English.	
Participants	were	ineligible	if	they	had	participated	in	an	
experiment	 using	 shocks	 within	 the	 prior	 six	 months,	 if	
they	were	taking	medication	for	anxiety	or	depression,	if	
they	might	be	pregnant,	or	if	they	had	a	history	of	heart	
or	 blood	 pressure	 problems.	 All	 participants	 provided	
informed	consent	 in	accordance	with	 the	Declaration	of	
Helsinki	 and	 as	 approved	 by	 the	 New	 York	 University	
Institutional	Review	Board	(IRB	#	13-	9582).	Eighty-	nine	
participants	 provided	 informed	 consent.	 Seven	 partici-
pants	 did	 not	 show	 measurable	 SCR	 in	 response	 to	 the	
breath-	hold	 task	 and	 were	 dismissed	 prior	 to	 the	 threat	
conditioning	experiment.	Technical	difficulties	prevented	
us	from	acquiring	SCR	or	behavioral	data	from	two	addi-
tional	participants.	Eighty	participants	completed	the	task	
(47	 Female,	 Mean	 Age	 =	 22.28,	 SD	 =	 3.09,	 missing	 age	
from	6	participants).

2.2 | Stimuli and materials

Participants	 underwent	 a	 threat	 conditioning	 paradigm	
with	a	50%	reinforcement	rate	and	one	reversal	of	CS-	US	
contingencies	 (Figure	 1b).	 Two	 fractal	 images	 served	 as	
conditioned	stimuli	(Figure	1c).	Image	assignment	(initial	
CS+,	 initial	 CS−)	 was	 counterbalanced	 across	 subjects.	
A	 Grass	 Medical	 Instruments	 SD9	 Stimulator	 delivered	
shocks	 to	participants’	 right	 forearms	 (200 ms	duration)	
through	 a	 bar	 electrode	 (BIOPAC	 Systems,	 Inc.,	 Goleta,	
CA)	 filled	 with	 standard	 NaCl	 electrolyte	 gel	 (Signagel	
from	Parker	Laboratories,	Fairfield,	NJ).	Shocks	cotermi-
nated	with	the	CS	presentation	and	consisted	of	a	200 ms	
duration	train	of	pulses	at	40 Hz.

SCR	 were	 measured	 through	 shielded	 Ag-	AgCl	 elec-
trodes	filled	with	0.5%	NaCl	isotonic	electrolyte	gel	(EL507;	
BIOPAC	 Systems,	 Inc.,	 Goleta,	 CA)	 attached	 to	 the	 left	
palm.	Data	were	recorded	at	a	sample	rate	of	200 Hz	using	
an	MP-	150	BIOPAC	system	with	the	AcqKnowledge	soft-
ware	 (BIOPAC	 Systems,	 Inc.,	 Goleta,	 CA).	 Acknowledge	
software	was	used	for	analysis.	Participants	also	completed	

the	 Spielberger	 State-	Trait	 Anxiety	 Inventory	 STAI	 (form	
X);	(Gaudry	et	al.,	1975)	and	the	Intolerance	of	Uncertainty	
Scale	(IUS;	Buhr	&	Dugas,	2002).	The	present	study	focuses	
on	between-	groups	differences	 in	SCR	without	respect	to	
anxiety	or	intolerance	of	uncertainty.

2.3 | Procedure

2.3.1	 |	 Skin	conductance	eligibility	and	
shock	calibration

Participants	 provided	 informed	 consent	 “to	 take	 part	 in	
a	research	study	to	learn	more	about	emotion	and	cogni-
tion.”	Following	consent,	the	participant	completed	ques-
tionnaires	 and	 was	 invited	 to	 a	 behavioral	 testing	 room	
where	 they	were	affixed	with	SCR	and	 shock	electrodes	
and	completed	the	task	on	a	computer.	The	experimenter	
remained	in	the	room	for	the	duration	of	the	task.	As	all	
participants	were	right	handed,	participants	used	a	mouse	
to	record	ratings	with	their	right	hand	and	skin	conduct-
ance	was	recorded	from	the	index	and	middle	fingers	of	
the	left	hand.

Prior	to	the	main	experiment,	participants	performed	a	
breath	holding	task	to	ensure	that	they	showed	measurable	
SCR.	Participants	were	asked	to	take	a	deep	breath	and	hold	
it	for	three	seconds.	Participants	whose	skin	conductance	
increased	 in	 response	 to	 the	 breath	 hold	 were	 eligible	 to	
continue.	Seven	participants	were	dismissed	at	this	point.

Following	 the	 breath	 holding	 task,	 an	 electric	 shock	
stimulator	 was	 attached	 to	 the	 participant’s	 right	 wrist.	
We	 calibrated	 the	 shock	 intensity	 using	 an	 ascending	
staircase	procedure,	in	which	intensity	was	increased	in-
crementally	from	20 V	in	5-	V	increments	until	it	reached	
a	level	that	participants	considered	“highly	annoying	but	
not	painful”.	Once	this	level	was	achieved,	the	shock	re-
mained	at	this	intensity	throughout	the	conditioning	task	
(M	=	36.78	V,	SD	=	9.69).

2.3.2	 |	 Experimental	design

Participants	were	 randomly	assigned	 to	 the	Rating	Group	
or	 the	 Viewing	 Group.	 Participants	 in	 the	 Rating	 Group	
were	asked	to	rate	the	expected	likelihood	of	shock	during	
each	CS	presentation,	using	a	continuous	visual	analogue	
scale	ranging	from	“0%:	sure	of	no	shock”	to	“100%:	sure	of	
shock”	(Figure	1a).	This	type	of	online	US-	expectancy	rat-
ing	is	thought	to	be	one	of	the	most	valid	measures	of	con-
tingency	awareness	(Boddez	et	al.,	2013).	Participants	were	
asked	to	record	expectancy	ratings	using	the	mouse	within	
the	4-	second	CS	presentation.	If	a	participant	failed	to	record	
a	 response	 during	 the	 4-	s	 period,	 the	 final	 location	 of	 the	
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mouse	was	used	as	the	rating.	On	average,	subjects	missed	
fewer	than	1	rating	(M	=	0.23,	SD	=	0.53).	Participants	in	
the	Viewing	Group	viewed	the	CS	images	while	making	no	
overt	responses.	Participants	received	general	contingency	
instructions	but	were	not	informed	about	the	specific	rela-
tionships	between	 the	CSs	and	outcomes.	All	participants	
were	told	to	“try	to	figure	out	the	relationship	between	the	
stimuli	you	see	and	the	shocks	you	feel.”

All	 participants	 underwent	 the	 same	 aversive	 reversal	
learning	task	with	a	single	reversal	and	50%	reinforcement	
rate	 (see	 Figure	 1).	 During	 the	 first	 42	 trials,	 the	 original	
CS+	coterminated	with	a	shock	(US)	on	50%	of	CS+	trials	
(i.e.,	14	pairings),	while	the	CS−	was	never	paired	with	the	
US.	Thus,	the	pre-	reversal	phase	included	14	CS−	trials,	14	
unreinforced	CS+	trials,	and	14	trials	in	which	the	CS+	co-
terminated	with	a	shock	US.	Halfway	through	the	task	the	
contingencies	reversed,	such	that	 the	former	CS+	became	
the	CS−	and	vice	versa	for	the	last	42	trials.	Reinforcement	
rates	were	the	same,	that	is,	the	new	CS+	(original	CS−)	had	
a	50%	reinforcement	 rate	 (i.e.,	14	unpaired	 trials,	14	 trials	
paired	with	a	shock)	and	there	were	14	new	CS−	(original	
CS+)	presentations.	Participants	were	not	instructed	upon	
reversal.	We	used	two	trial	orders,	which	were	each	pseudo-	
randomized	 within	 the	 constraints	 that	 there	 were	 never	
three	of	 the	same	CS	image	sequentially	or	 two	shocks	 in	
a	row.	All	participants	saw	the	same	total	number	of	each	
CS	type	(42	original	CS+	trials,	42	original	CS−	trials)	and	
received	28 shocks	over	the	course	of	the	experiment.	Each	
CS	was	displayed	for	4 s,	followed	by	a	12-	s	inter-	stimulus	
interval	(ISI)	during	which	a	fixation	cross	was	displayed.	CS	
images	were	counterbalanced	across	participants.

Following	the	experimental	task,	participants	answered	
a	series	of	post-	task	questions	assessing	declarative	knowl-
edge	of	 the	CS-	US	contingencies,	 subjective	emotional	re-
actions	to	each	of	the	CS	images,	and	a	free	response	item	
regarding	any	patterns	or	relationships	observed	during	the	
study.	Free	responses	were	not	included	in	the	current	anal-
yses.	Participants	were	then	debriefed	and	dismissed.

2.3.3	 |	 Skin	conductance	data	processing

SCR	 data	 was	 processed	 in	 AcqKnowledge	 (BIOPAC	
Systems,	 Inc.,	 Goleta,	 CA)	 and	 filtered	 with	 a	 25-	Hz	 low-	
pass	 FIR	 filter	 and	 smoothed	 with	 a	 Gaussian	 kernel	 of	
10 samples.	SCRs	were	measured	as	 the	base-	to-	peak	am-
plitude	difference	for	each	trial	during	the	0.5–	4.5 s	window	
after	 stimulus	 onset.	 SCR	 amplitudes	 that	 were	 less	 than	
0.02  microSiemens	 were	 considered	 non-	responses	 and	
scored	 as	 0.	 Amplitude	 estimates	 were	 square	 root	 trans-
formed	(Schlosberg	&	Stanley,	1953)	and	normalized	rela-
tive	to	each	participant’s	mean	square-	root-	transformed	US	
response	(Ben-	Shakhar,	1985;	Fowles	et	al.,	1981).

2.4 | Statistical analyses

We	used	ANOVAs	 to	analyze	post-	task	 ratings	as	a	 func-
tion	of	Group	(Rating	vs.	Viewing	Only)	and	Stimulus	type	
(Original	 CS+	 vs.	 Original	 CS−)	 and	 used	 linear	 mixed	
models	to	analyze	SCR	outcomes	on	unreinforced	trials	(i.e.,	
trials	that	were	not	paired	with	a	US)	as	a	function	of	Group,	
Stimulus,	and	Phase	(Pre-		vs.	Post-	reversal).	ANOVAs	were	
implemented	using	Matlab’s	“anovan.m”	program	and	we	
modeled	subject	as	random	and	nested	in	Group.

To	 account	 for	 the	 fact	 that	 conditioning	 and	 reversal	
learning	are	dynamic	processes	 that	occur	over	 time	as	a	
function	of	reinforcement	and	experience,	we	used	linear	
mixed	 effects	 models	 that	 model	 outcomes	 trial-	by-	trial	
and	can	account	for	effects	that	vary	over	time,	as	well	as	
computational	models	of	learning	(see	next	section).	Linear	
mixed	models	are	advantageous	relative	to	ANOVAs,	which	
use	summary	statistics,	average	responses	across	trials,	and	
cannot	capture	the	dynamic	nature	of	nature	of	learning.	
All	linear	mixed	models	were	analyzed	in	R	(R	Core	Team,	
2014)	using	the	nlme	package	(Bates	et	al.,	2015).	We	mod-
eled	fixed	effects	of	Group,	Stimulus	Type,	Phase,	and	Trial,	
and	 all	 possible	 interactions.	 Slopes	 and	 intercepts	 were	
treated	as	random,	and	we	modeled	autoregression	(AR(1)).	
Post-	hoc	pairwise	comparisons	were	evaluated	using	the	R	
package	“emmeans”	(Lenth,	2020).

2.4.1	 |	 Computational	modeling

While	our	 linear	mixed	models	provide	 tests	of	whether	
responses	 emerge	 gradually	 as	 a	 function	 of	 time	 (i.e.,	
linear	effect	of	Trial),	computational	models	of	reinforce-
ment	 learning	 provide	 further	 insight	 on	 the	 dynamic	
learning	 process	 by	 testing	 how	 responses	 update	 not	
only	as	a	function	of	trial,	but	also	in	response	to	specific	
outcomes.	 More	 specifically,	 they	 test	 whether	 expected	
value	(EV)	updates	in	response	to	a	given	reinforcement	
(r),	which	depends	on	the	learning	rate	(�),	or	the	speed	of	
updating,	and	the	prediction	error	(δ)	which	is	the	devia-
tion	between	EV	and	reinforcement	(r)	on	a	given	trial.	

The	learning	rate	governs	the	extent	to	which	a	predic-
tion	error	causes	EV	to	update	on	the	next	trial.	Thus	re-
inforcement	learning	models	extend	insights	from	mixed	
models	by	not	only	testing	whether	the	magnitude	of	the	
differential	 response	 increases	 over	 time	 (e.g.,	 a	 Cue	 ×	
Trial	 interaction),	 but	 also	 how	 learning	 takes	 place	 on	
a	 trial-	by-	trial	 basis,	 both	 in	 response	 to	 unexpected	 re-
inforcements	(e.g.,	shocks)	and	unexpected	omissions	of	
reinforcement	(e.g.,	reversals).

�t = rt − EV(CS)t
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Because	reversals	engage	contextual	shifts	that	have	been	
previously	 shown	 to	 engage	 adaptive	 learning	 (Behrens	
et	al.,	2007;	Li,	Schiller,	et	al.,	2011),	we	evaluated	a	“hybrid	
model”	of	adaptive	learning	(Li,	Schiller,	et	al.,	2011)	to	test	
whether	 act	 of	 rating	 expectations	 modulates	 value-	based	
learning.	In	contrast	to	a	standard	Rescorla-	Wagner	model	
(Rescorla	&	Wagner,	1972)	which	assumes	that	learning	is	
stable	over	time,	hybrid	models	are	based	on	the	Pearce-	Hall	
model	and	allow	learning	rates	vary	dynamically	as	a	func-
tion	of	associability	(Mackintosh,	1975;	Pearce	&	Hall,	1980),	
which	is	inversely	related	to	the	stability	of	the	environment.	
In	other	words,	learning	rates	are	higher	in	volatile	environ-
ments	and	lower	in	stable	environments,	and	depend	on	the	
recent	history	of	prediction	errors.	The	model	is	referred	to	
as	a	“hybrid”	model	because	it	integrates	the	concept	of	pre-
diction	error	from	the	Rescorla-	Wagner	model	with	associa-
bility	from	the	Pearce-	Hall	model	(Li,	Schiller,	et	al.,	2011).	
Prior	work	using	hybrid	models	in	aversive	learning	(Atlas	
et	al.,	2019;	Li,	Schiller,	et	al.,	2011;	Zhang	et	al.,	2016)	indi-
cates	that	SCR	reflects	the	joint	combination	of	associability	
(i.e.,	 the	 current	 dynamic	 learning	 rate	 (�))	 and	 expected	
value	(EV).	These	parameters	update	dynamically	based	on	
two	free	parameters,	κ	and	η,	which	control	the	rate	at	which	
prediction	errors	influence	outcomes:	

	

We	fit	models	using	Matlab’s	“fmincon.m”	function	and	
minimized	the	sum	squared	errors	between	EV	or	EV	and	
associability	 and	 each	 participant’s	 SCR	 on	 unreinforced	
trials.	We	also	included	a	linear	effect	of	time	in	all	mod-
els,	and	fit	models	separately	to	participants	in	each	group.	
Consistent	with	previous	work	(Atlas	&	Phelps,	2018;	Miller	
et	al.,	1998;	Wu,	1986),	we	used	a	“jack-	knife”	approach	to	
model	 fitting	 and	 iteratively	 left	 out	 one	 subject	 on	 each	
iteration	and	fit	 to	 the	remaining	subjects	 to	estimate	pa-
rameters	across	the	group.	This	provides	a	distribution	of	
scores	for	statistical	comparison,	while	reducing	the	noise	
associated	with	individual	model	fits.	We	compared	three	
models:	(1)	a	hybrid	model	with	four	free	parameters	(κ,	η,	
initial	EV,	initial	�);	(2)	a	model	that	assumed	an	initial	EV	
of	0.5	and	an	initial	�	of	1.0	(i.e.,	only	κ	and	η	were	modeled	
as	free	parameters);	(3)	a	standard	Rescorla-	Wagner	model	
that	included	a	constant	learning	rate	which	was	assumed	
to	be	stable	over	time,	and	the	learning	rate	(�)	and	initial	
EV	were	modeled	as	free	parameters.

We	fit	models	to	skin	conductance	on	unreinforced	tri-
als	throughout	the	entire	task	(i.e.,	pre-		and	post-	reversal)	
and	 computed	 Aikake’s	 Information	 Criterion	 for	 each	
model	(Akaike,	1974),	which	penalizes	models	for	extra	pa-
rameters.	We	used	Bayesian	model	selection	implemented	

with	SPM_bms	(Stephan	et	al.,	2009)	to	compare	models.	
The	 hybrid	 model	 with	 four	 free	 parameters	 was	 deter-
mined	 to	be	 the	best	 fit	across	participants	 (see	Results)	
and	we	therefore	use	this	model	for	inference.

We	 compared	 group	 differences	 in	 each	 parameter	
using	 two-	sample	 t-	tests	 in	 Matlab	 based	 on	 fitted	 pa-
rameters	 from	 jack-	knife	 approaches.	 We	 also	 evaluated	
models	 fit	 to	 individuals	and	across	 the	entire	group	 for	
completeness.

2.4.2	 |	 Multilevel	mediation	analysis

To	understand	the	relationship	between	expectancy	rat-
ings	 and	 observed	 differential	 responses	 in	 autonomic	
arousal	 within	 the	 Rating	 Group,	 we	 tested	 whether	
expectancy	 ratings	 formally	 mediated	 conditioned	 re-
sponses	 (i.e.,	 differential	 effects	 of	 CS	 on	 SCR).	 Multi-	
level	 mediation	 analyses	 were	 implemented	 in	 Matlab	
using	 the	 Mediation-	Moderation	 Toolbox	 (Atlas	 et	 al.,	
2010;	Wager	et	al.,	2009).	We	modeled	CS	type	(current	
CS+	 vs.	 current	 CS−)	 as	 the	 input	 variable	 (X),	 SCR	
on	unreinforced	 trials	as	 the	outcome	variable	 (Y),	and	
tested	for	mediation	by	expectancy	ratings.	On	trials	on	
which	subjects	did	not	provide	an	expectancy	rating	(M	
=	 1.55,	 SD	 =	 2.36),	 we	 used	 the	 mouse	 position	 at	 the	
end	of	the	4 s	CS	period	as	a	measure	of	expectancy.	We	
used	bootstrapping	to	test	the	significance	of	mediation	
to	account	for	non-	normality	of	the	indirect	path	(Shrout	
&	Bolger,	2002).

Our	 mediation	 analysis	 differs	 from	 the	 multilevel	
models	and	quantitative	learning	models	in	that	it	tests	
responses	 only	 within	 the	 Rating	 Group.	 Furthermore,	
the	mediation	model	measures	the	contribution	of	sub-
jective	expectancy	ratings	themselves	both	as	a	function	
of	CS	 type	and	 in	 relationship	 to	evoked	SCR,	whereas	
the	multilevel	models	and	computational	models	exam-
ine	SCR	as	a	function	of	whether	or	not	ratings	were	col-
lected,	 rather	 than	 considering	 the	 trial-	by-	trial	 ratings	
themselves.

3 |  RESULTS

3.1 | Post- task ratings

There	 were	 no	 differences	 between	 Groups	 in	 the	 num-
ber	 of	 perceived	 reversals	 during	 the	 task	 (MRG	 =	 1.79,		
SDRG	=	0.95;	MPG	=	1.66,	SDPG	=	1.05;	p	>	.5;	see	Figure	2).	
Retrospective	probability	ratings	indicated	that	participants	
associated	 a	 higher	 likelihood	 of	 shock	 with	 the	 original	
CS+	during	the	beginning	of	the	study	and	a	higher	likeli-
hood	of	shock	with	the	original	CS−	at	the	end	of	the	study	

EV(CS)t+1 = EV(CS)t + ∗ �(CS)t × �t

�(CS)t+1 = � ||�t
|
| + (1 − �) �(CS)t



   | 7 of 15ATLAS et al.

(Stimulus × Phase,	F(1,291)	=	136.07,	p	<	.001;	η2	=	0.508).	
Participants	also	reported	higher	likelihood	of	shock	at	the	
start	of	the	task	versus	the	end	(F(1,291)	=	7.41,	p	=	.008;		
η2	=	0.007).	Probability	estimates	did	not	differ	by	group	
(all	p’s	>	.3).	Retrospective	affect	ratings	also	did	not	differ	
as	a	function	of	CS	Type	or	Group	(all	p’s	>	.2).

3.2 | Participants who make expectancy 
ratings show sustained SCRs based 
on original contingencies

We	 used	 linear	 mixed	 models	 to	 examine	 the	 effects	 of	
Group,	Phase	(Pre-		vs.	Post-	reversal),	Stimulus	(Original	

F I G U R E  2  Retrospective	ratings.	Upon	task	completion,	participants	retrospectively	rated	(a)	number	of	perceived	reversals,	(b)	
probability	of	shock	associated	with	each	stimulus	at	the	beginning	and	at	the	end	of	the	study;	and	(c)	affect	in	response	to	each	stimulus.	
Groups	did	not	differ	in	any	retrospective	ratings.	Error	bars	denote	SEM

(a) (b) (c)

F I G U R E  3  Skin	conductance	as	a	function	of	Group	and	Phase.	Left:	This	figure	illustrates	skin	conductance	responses	as	a	function	
of	Stimulus	prior	to	reversal	(top)	and	following	contingency	reversals	(bottom).	Only	the	Viewing	Group	showed	significant	differences	
prior	to	reversal	and	a	complete	reversal	of	the	differential	response	when	contingencies	changed.	Middle:	SCR	and	expectancy	ratings	show	
a	similar	timecourse	on	unreinforced	trials	within	Rating	Group	participants,	where	responses	do	not	reverse	until	several	trials	after	the	
reversals.	Top	right:	SCR	in	the	Viewing	Group	reverses	immediately	upon	contingency	reversal.	Raincloud	plots	are	visualized	using	the	R	
package	raincloudplots	(Allen	et	al.,	2021)
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CS+	vs.	Original	CS−),	and	Trial	on	SCR	to	unreinforced	
trials	to	measure	whether	rating	expectations	alters	aver-
sive	 learning	 (Figure	 3).	 A	 fully	 specified	 linear	 mixed	
model	failed	to	converge	using	the	lme4	package	in	R	with	
various	optimization	factors,	so	we	used	the	lme	package	
from	nlme	which	allowed	us	to	control	for	autoregression	
and	evaluate	the	full	model.	We	included	fixed	factors	for	
Stimulus,	Phase,	Trial,	and	Stimulus*Phase	 interactions,	
and	included	random	intercepts	per	subject	and	random	
factors	for	all	effects	except	Trial.	Results	revealed	signifi-
cant	main	effects	of	Stimulus	(p	=	.014),	Phase	(p	=	.003),	
and	 Trial	 (p	 =	 .001),	 as	 well	 as	 significant	 interactions	
	between	Stimulus	and	Phase	(p	<	.001),	Phase	and	Trial	
(p	<	.001),	Group	×	Stimulus	×	Phase	(p	=	.021),	Group	×	
Stimulus	×	Trial	(p	=	.039),	and	Stimulus	×	Phase	×	Trial		
(p	 <	 .001).	 We	 were	 most	 interested	 in	 the	 Group	 ×	
Stimulus	×	Phase	interaction.	Posthoc	analyses	separated	
by	Group	indicated	that	the	Viewing	Group	showed	a	sig-
nificant	Stimulus	×	Phase	interaction	(B	=	0.067,	p	<	.001)	
whereas	the	Stimulus	×	Phase	interaction	was	not	signifi-
cant	 in	 the	 Rating	 Group	 (p	 >	 .1).	 For	 complete	 results	
and	results	separated	by	group,	please	see	Tables	S1–	S3.	
We	 also	 conducted	 pair-	wise	 comparisons	 post-	hoc	 be-
tween	 all	 factors	 using	 the	 R	 package	 emmeans	 (Lenth,	
2020).	Pairwise	comparisons	indicated	that	the	key	inter-
action	was	driven	by	the	fact	that	only	the	Viewing	Group	
showed	significant	differences	between	the	CS+	and	CS−	
prior	to	reversal	(p	<	.001)	and	that	responses	to	the	origi-
nal	CS−	 increased	after	 the	reversal	within	 the	Viewing	
Group	(p	<	.001).	There	were	no	significant	differences	as	
a	function	of	Stimulus	or	Phase	within	the	Rating	Group	
in	pairwise	post-	hoc	tests	based	on	adjusted	p-	values.	For	
complete	results	of	pair-	wise	post-	hoc	tests,	see	Table	S4.

3.3 | Rating expectancy slows 
associative learning

Next,	we	fit	dynamic	learning	models	to	SCR	on	unrein-
forced	trials	throughout	the	entire	task	(i.e.,	both	pre-		and	
post-	reversal)	 to	 test	 whether	 rating	 expectations	 alters	
dynamic	 value-	based	 learning.	 We	 fit	 models	 separately	
to	each	individual	and	used	jack-	knife	estimation	to	itera-
tively	leave	out	one	subject	and	fit	estimates	to	remaining	
participants	in	each	group,	which	provides	a	distribution	
of	 estimates	 for	 between-	group	 comparison	 that	 is	 less	
sensitive	 to	 noise	 than	 individual	 subject-	level	 fits.	 We	
compared	 a	 standard	 Rescorla-	Wagner	 model	 (Rescorla	
&	 Wagner,	 1972)	 which	 assumes	 a	 stable	 learning	 rate	
across	time	with	two	variations	of	a	hybrid	model	(Atlas	
et	 al.,	 2019;	 Li,	 Delgado,	 et	 al.,	 2011;	 Mackintosh,	 1975;	
Pearce	 &	 Hall,	 1980)	 that	 assumes	 that	 learning	 rates	
vary	as	a	function	of	associability	(see	Method	for	model	

details).	 Model	 comparison	 using	 SPM_bms	 (Stephan	
et	al.,	2009)	revealed	that	a	hybrid	model	that	included	all	
parameters	as	free	provided	the	best	fit	for	our	data,	based	
on	 an	 exceedance	 probability	 of	 0.76,	 versus	 the	 hybrid	
model	that	assumed	starting	parameters	for	learning	rate	
and	expected	value	(exceedance	probability	=	.24)	and	the	
Rescorla-	Wagner	model	(exceedance	probability	=	0).	We	
therefore	make	inferences	based	on	the	hybrid	model	that	
included	four	free	parameters.

Jack-	knife	 estimation	 revealed	 that	 Viewing	 Group	
participants	had	significantly	higher	values	than	Rating	
Group	participants	for	all	parameters	(Figure	4),	includ-
ing	 initial	 learning	rate	(MPG	=	1.0;	SEPG	=	0.0;	MRG	=	
0.66;	SDRG	=	0.86;	t(1,78)	=	−19.11,	p	<	.001),	initial	ex-
pected	value	(MPG	=	0.29;	SEPG	=	0.05;	MRG	=	0.	01;	SERG	
=	0.004;	t(1,78)	=	−5.49,	p	<	.001),	kappa	(MPG	=	0.42;	
SEPG	=	0.02;	MRG	=	0.28;	SERG	=	0.004;	t(1,78)	=	−6.79,	
p	<	.001),	and	eta	(MPG	=	0.42;	SEPG	=	0.04;	MRG	=	0.23;	
SERG	 =	 0.006;	 t(1,78)	 =	 −2.14,	 p	 =	 .036).	 Fitting	 sepa-
rately	 to	 each	 individual	 revealed	 parameters	 that	 dif-
fered	 in	 the	 same	 direction	 although	 group	 differences	
were	not	significant	in	these	fits,	consistent	with	the	fact	
that	individual	estimates	are	noisier	(see	Figure	S1	and	
Table	S5).

F I G U R E  4  Hybrid	model	learning	parameters	differ	by	group.	
Fitting	a	Rescorla-	Wagner	model	of	reinforcement	learning	to	SCR	
on	unreinforced	trials	revealed	higher	learning	rates	in	Viewing	
Group	participants	than	participants	in	the	Rating	Group,	whether	
fit	to	individuals	or	jack-	knife	estimation	to	iteratively	fit	across	
each	group	using	cross	validation.	Learning	rates	depicted	here	are	
from	jack-	knife	estimation.	See	Figure	S1	for	complete	results	of	
jack-	knife	estimation	and	fits	to	individuals
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3.4 | Expectancies mediate differential 
responses in SCR

Finally,	we	tested	whether	subjective	expectancies	formally	
mediated	the	effects	of	conditioned	cues	on	SCR	within	the	
Rating	Group.	Here,	we	analyzed	differential	effects,	that	
is,	 effects	 of	 current	 contingencies	 including	 the	 reversal	
(Cue	×	Phase	interactions),	rather	than	original	contingen-
cies,	and	included	all	Rating	Group	participants.	As	shown	
in	Figure	5,	there	was	a	significant	differential	effect	(cur-
rent	 CS+	 >	 current	 CS−)	 on	 SCR	 on	 unreinforced	 trials	
(Path	 c	 =	 0.04(0.01),	 p	 <	 .001),	 consistent	 with	 analyses	
reported	 above.	 There	 was	 also	 a	 significant	 differential	
effect	on	expectancy	(Path	a	=	0.14(0.02),	p	<	.001),	such	
that	shock	expectancy	was	higher	in	response	to	the	cur-
rent	 CS+	 than	 the	 current	 CS−,	 and	 an	 effect	 of	 expec-
tancy	on	SCR,	controlling	for	 the	differential	effect	(Path	
b	=	0.18(0.05),	p	<	.001),	such	that	skin	conductance	was	
higher	when	subjects	expected	a	shock.	Finally,	we	found	

that	expectancy	ratings	fully	mediated	the	relationship	be-
tween	CS	and	SCR	(Path	a × b	=	0.02	(0.0),	p	<	.001),	such	
that	 the	differential	effect	on	SCR	was	absent	when	con-
trolling	for	expectancy	rating	(Path	c′	=	0.01(0.01),	p	>	.16;	
see	 Figure	 3),	 indicating	 that	 subjective	 expectancy	 fully	
explains	 differential	 responses	 in	 SCR	 when	 individuals	
make	expectancy	ratings.	We	also	examined	the	covariance	
between	Paths	a	and	b,	since	the	mediation	effect	in	multi-
level	mediation	(i.e.,	c–	c′,	the	difference	between	the	direct	
and	indirect	effects)	can	be	driven	by	both	the	product	of	
the	path	coefficients	and	the	covariance	of	the	paths	(i.e.,	
c–	c′	=	a	×	b	+	cov(a,b);	(Kenny	et	al.,	2003).	In	this	case,	
we	observed	significant	negative	covariance	(see	Figure	3),		
suggesting	 that	 participants	 who	 showed	 stronger	 CS	 ef-
fects	 on	 expectancy	 showed	 weaker	 additional	 effects	 of	
expectancy	on	arousal.	Finally,	 to	evaluate	directionality,	
we	tested	a	reversed	mediation,	that	is,	whether	physiologi-
cal	arousal	mediates	effects	on	expectancy,	as	proposed	by	
models	such	as	 the	somatic	marker	hypothesis	(Poppa	&	

F I G U R E  5  Expectancy	fully	mediates	differential	response	within	participants	who	make	ratings.	Multilevel	mediation	revealed	
that	trial-	by-	trial	expectancy	ratings	fully	mediated	effects	of	the	current	contingencies	on	SCR	across	participants.	We	used	bootstrap	
estimation	to	determine	the	significance	of	the	mediation	effect	(Shrout	&	Bolger,	2002).	Slope	plots	depict	individual	estimates	in	blue	
lines,	with	the	95%	confidence	interval	depicted	in	the	gray	shaded	area	that	surrounds	the	overall	group	effect.	Analyses	were	conducted	in	
the	Multilevel	Mediation	Moderation	Toolbox	(Atlas	et	al.,	2010;	Wager	et	al.,	2009).	Upper left:	There	was	a	significant	effect	of	current	CS	
contingencies	on	subjective	expectancy	(i.e.,	Path	a	in	the	mediation	framework).	Upper right:	There	was	a	significant	effect	of	expectancy	
on	SCR,	controlling	for	current	CS	contingencies	(i.e.,	Path	b	in	the	mediation	framework).	Lower panel:	There	was	a	significant	direct	effect	
of	Current	CS	contingencies	on	SCR,	which	was	non-	significant	when	controlling	for	expectancy	rating.	There	was	a	significant	negative	
association	between	Path	A	and	Path	B	coefficients,	which	suggests	mediation	was	driven	primarily	by	within-	subjects	effects
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Bechara,	2017).	When	we	tested	whether	CS	effects	on	ex-
pectancy	 were	 mediated	 by	 SCR,	 we	 found	 that	 effect	 of	
cues	on	expectations	was	the	same	whether	or	not	we	con-
trol	for	cue	effects	on	SCR	(c	=	0.14,	STE	=	.02,	p	<	.001;	c′	
=	0.14,	STE	=	.02,	p	<	.001)	and	there	was	no	evidence	of	
mediation	(a	×	b	=	0,	p	>	.08).	This	provides	further	sup-
port	for	directionality	of	our	model,	that	is,	that	cues	affect	
expectations	which	in	turn	affect	SCR.

3.5 | Comparing learners and  
non- learners

Our	main	analyses	focus	on	quantitative	models	across	all	
participants	to	assess	how	the	act	of	providing	expectancy	
ratings	alters	dynamic	adaptive	learning	in	response	to	re-
inforcement.	 However,	 classic	 approaches	 often	 average	
across	responses	regardless	of	time	to	discern	whether	in-
dividuals	can	be	classified	as	learners	(i.e.,	those	who	show	
elevated	arousal	in	response	to	a	CS+	relative	to	a	CS−)	
or	non-	learners	 (those	who	show	no	differences).	While	
this	 approach	 has	 known	 limitations	 (Lonsdorf	 et	 al.,	
2017),	it	can	still	provide	convergent	information	regard-
ing	 the	overall	effects	of	expectancy	ratings	on	 learning.	
We	used	a	differential	response	cut-	off	of	0.05	µS	during	
late	acquisition	to	identify	learners	(see	Figure	S2).	There	
were	more	 learners	 in	 the	Rating	Group	(26/40,	or	65%)	
than	the	Viewing	Group	(18/40,	or	45%),	although	differ-
ences	were	marginal	based	on	a	chi-	square	test	(χ2	=	3.23,		
p	=		.072).	There	were	no	differences	between	Learners	and	
Non-	learners	or	interactions	between	Group	and	Learning	
in	the	number	of	perceived	reversals	or	affect	ratings	for	
either	CS,	but	we	did	observe	significant	interactions	with	
Learning	 Status	 when	 evaluating	 post-	task	 probability	
	ratings	(see	Supplementary	Results	and	Figure	S3).

4 |  DISCUSSION

Studies	of	threat	conditioning	have	provided	vast	insights	
into	the	mechanisms	that	underlie	learning	and	memory	
by	measuring	various	defensive	responses,	many	of	which	
are	 largely	conserved	across	human	and	animal	models.	
Here,	we	asked	whether	 the	uniquely	human	act	of	 rat-
ing	expectations	alters	 learning	and	threat	expression	 in	
the	form	of	autonomic	arousal.	We	found	that	making	ex-
pectancy	ratings	during	aversive	reversal	learning	slowed	
dynamic	 learning,	 as	 measured	 by	 SCR	 to	 conditioned	
cues.	 Participants	 who	 made	 online	 expectancy	 ratings	
were	slower	to	reverse	conditioned	responses	when	con-
tingencies	 changed,	 relative	 to	 participants	 who	 under-
went	the	task	without	making	ratings.	Within	the	Rating	
Group,	expectancy	ratings	fully	mediated	the	differential	

response	in	SCR,	suggesting	that	cues	affect	expectations	
which	in	turn	affect	SCR.	In	this	section	we	discuss	these	
findings,	their	relationship	with	previous	work,	and	ques-
tions	that	should	be	addressed	in	future	work.

Expectancy	ratings	have	traditionally	been	included	in	
many	 threat	conditioning	studies	as	a	measure	of	 learn-
ing	 (Boddez	 et	 al.,	 2013).	 However,	 rating	 expectations	
engages	 cognitive	 processes	 that	 may	 not	 occur	 in	 the	
absence	of	ratings.	In	particular,	providing	subjective	rat-
ings	requires	attention,	decision-	making,	and	probability	
inference.	Our	results	indicate	that	these	concurrent	pro-
cesses	act	to	reduce	the	rate	of	simple	associative	learning,	
in	particular	making	individuals	less	sensitive	to	changes	
in	contingencies,	that	is,	reversals.	The	group	differences	
we	observed	are	quite	surprising,	given	the	relatively	high	
50%	reinforcement	rate	used.	In	fact,	during	piloting,	we	
found	that	subjects	who	made	expectancy	ratings	did	not	
show	SCR	reversals	at	all	when	we	used	a	30%	reinforce-
ment	rate,	whereas	this	reinforcement	rate	was	sufficient	
to	induce	repeated	SCR	reversals	when	expectancy	ratings	
were	 not	 incorporated	 (Atlas	 et	 al.,	 2016).	 One	 possibil-
ity	 is	 that	 explicitly	 rating	 probabilities	 causes	 people	 to	
make	 higher	 order	 predictions	 that	 in	 turn	 guide	 atten-
tion.	Numerous	studies	of	associability	indicate	that	atten-
tion	can	gate	learning	(Atlas	et	al.,	2019;	Li,	Schiller,	et	al.,	
2011;	Mackintosh,	1975;	Pearce	&	Hall,	1980;	Roesch	et	al.,	
2012),	and	that	attention	and	learning	rates	decrease	as	an	
environment	becomes	more	 stable	 (Behrens	et	al.,	 2007;	
Browning	et	al.,	2015).	Individuals	who	explicitly	believe	
the	environment	has	stabilized	may	pay	less	attention	to	
individual	outcomes,	and	therefore	may	be	slower	to	react	
to	the	contingency	reversal,	consistent	with	over-	learning.	
Relatedly,	providing	online	expectancy	ratings	might	have	
served	 as	 a	 distraction	 in	 Rating	 Group	 participants,	 re-
ducing	their	attention	to	changes	in	the	environment,	or	
might	 have	 shifted	 individuals	 from	 automatic	 to	 elabo-
rative	processing.	It	 is	also	possible	that	specific	features	
of	 the	 task	 (e.g.,	 stimulus	 duration,	 stimulus	 discrimin-
ability)	 moderate	 the	 extent	 to	 which	 providing	 online	
expectancy	 ratings	alters	attention.	For	example,	our	CS	
duration	 was	 rather	 short,	 although	 it	 was	 sufficient	 for	
subjects	 to	 provide	 expectancy	 ratings.	 Longer	 CS	 pre-
sentations	might	allow	subjects	to	attend	to	subjective	ex-
pectancy	without	time	pressure	or	memory	load,	perhaps	
affording	greater	awareness	 to	 the	contingencies.	Future	
studies	 should	 directly	 measure	 the	 role	 of	 attention	 to	
differentiate	between	these	alternatives	and	to	understand	
how	expectancy	and	attention	interact	to	shape	behavior	
and	autonomic	responses.

Interactions	between	expectancy	and	attention	can	also	
explain	how	our	findings	relate	to	previous	work	examin-
ing	the	relationships	between	expectancy	ratings	and	phys-
iological	responses	during	threat	conditioning	(Perruchet,	
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2015;	Ryan	et	al.,	2021;	Warren	et	al.,	2014).	In	two	studies	
using	100%	reinforcement,	participants	who	made	expec-
tancy	ratings	demonstrated	enhanced	fear	acquisition	and	
enhanced	extinction	retention	based	either	on	startle	po-
tentiation	(Warren	et	al.,	2014)	or	SCR	(Ryan	et	al.,	2021).	
In	 contrast,	 we	 combined	 partial	 reinforcement	 and	 re-
versal	 learning	with	a	hybrid	model	of	adaptive	 learning	
and	found	that	the	process	of	rating	expectations	reduced	
sensitivity	to	prediction	errors	and	changes	in	context.	We	
believe	these	findings	can	be	easily	reconciled	based	on	dif-
ferences	in	environmental	volatility.	If	expectancy	ratings	
reduced	 attention	 to	 individual	 outcomes	 and	 enhanced	
confidence	in	judgments,	this	would	be	beneficial	in	stable	
environments	 (e.g.,	 tasks	with	100%	or	0%	reinforcement	
during	 acquisition	 and	 extinction,	 respectively)	 but	 be	
deleterious	in	stochastic	environments	such	as	the	partial	
reinforcement	reversal	task	we	used	here	(or	a	lower	rein-
forcement	rate	with	more	reversals,	as	mentioned	above).	
Future	work	should	 systematically	manipulate	 reinforce-
ment	 rate	 to	 formally	 measure	 the	 impact	 of	 expectancy	
ratings	as	a	function	of	volatility.

While	 the	 between-	groups	 aspect	 of	 our	 study	 high-
lights	how	the	 inclusion	of	expectancy	ratings	can	shape	
autonomic	 responses	 relative	 to	 learning	 without	 online	
ratings,	our	within-	subjects	mediation	approach	also	pro-
vides	 insight	 on	 the	 dynamic	 contribution	 of	 subjective	
expectancy	 ratings	 themselves.	 We	 found	 that	 subjective	
expectations	fully	mediated	the	differential	SCR	response	
within	 the	 Rating	 Group.	 These	 findings	 are	 relevant	 in	
light	of	previous	work	that	compared	the	dynamics	of	ex-
pectancy	ratings	and	autonomic	responses	within	subjects	
and	observed	meaningful	dissociations.	In	particular,	stud-
ies	of	the	so-	called	Perruchet	effect	(Perruchet,	2015)	and	
gamblers’	fallacy	(Clark	et	al.,	2002)	indicate	that	the	recent	
history	 of	 association	 has	 divergent	 effects	 on	 eye-	blink	
conditioning	versus	subjective	expectancy.	Unconditioned	
stimulus	 (US)	 recency	 is	 positively	 associated	 with	 the	
magnitude	of	the	conditioned	response,	yet	negatively	re-
lated	 to	 expectancy;	 in	 other	 words,	 the	 greater	 the	 time	
since	US	presentation,	 the	more	people	expect	 reinforce-
ment,	 but	 the	 weaker	 the	 magnitude	 of	 the	 conditioned	
eye-	blink.	This	suggests	expectancy	ratings	are	sensitive	to	
higher	order	beliefs	such	as	the	gamblers’	fallacy,	but	that	
conditioned	 eyeblink	 is	 not,	 which	 might	 support	 a	 dual	
process	model.	In	exploratory	analyses,	we	analyzed	Rating	
Group	responses	as	a	 function	of	US	 recency,	and	 found	
that	expectancy	ratings	did	show	a	pattern	that	might	be	
consistent	 with	 gamblers’	 fallacy	 (i.e.,	 higher	 expectancy	
following	 more	 unreinforced	 CS+	 presentations;	 see	
Figure	S4).	However,	consistent	with	our	mediation	analy-
ses	and	a	single	process	model,	we	did	not	see	dissociations	
between	SCR	and	expectancy	ratings;	both	showed	similar	
effects	 of	 US	 history,	 and	 in	 fact	 trial-	by-	trial	 expectancy	

ratings	 fully	 mediated	 the	 effect	 of	 conditioned	 cues	 on	
SCR.	 This	 suggests	 that	 SCR	 reflects	 subjective	 expecta-
tions	(at	least	when	ratings	are	made)	and	builds	on	other	
studies	that	have	drawn	into	question	the	generalizability	
of	 the	Perruchet	effect	(Weidemann,	Satkunarajah,	et	al.,	
2016).	Importantly,	our	study	differed	from	previous	work	
on	the	Perruchet	effect	(Perruchet,	2015;	Perruchet	et	al.,	
2006;	Weidemann	et	al.,	2009)	in	many	ways:	We	included	
CS−	trials,	we	did	not	instruct	participants	about	stimulus	
contingencies,	and	we	measured	SCR	instead	of	eyeblink,	
although	the	Perruchet	effect	has	been	replicated	with	SCR	
in	previous	work	(McAndrew	et	al.,	2012).	Future	studies	
should	 use	 a	 fully	 balanced	 design	 with	 and	 without	 ex-
pectancy	ratings	to	simultaneously	evaluate	the	Perruchet	
effect	within	participants	who	provide	expectancy	ratings	
and	to	 test	whether	 the	conditioned	response	differs	as	a	
function	of	whether	ratings	are	collected.	In	addition,	fu-
ture	 studies	 should	 formally	 compare	 the	 impact	 of	 ex-
pectancy	ratings	on	different	measures	of	conditioning,	as	
SCR,	 eyeblink,	 and	 startle	 have	 been	 shown	 to	 be	 differ-
entially	sensitive	to	expectancy	and	awareness	in	previous	
work	(Clark	et	al.,	2002;	Hamm	&	Vaitl,	1996;	Manns	et	al.,	
2002;	Weike,	2005),	although	there	is	much	debate	in	this	
area	 (Lovibond	 &	 Shanks,	 2002;	 Mertens	 &	 Engelhard,	
2020;	 Schultz	 &	 Helmstetter,	 2010)	 and	 all	 measures	 are	
sensitive	to	instructed	reversals	in	the	absence	of	reinforce-
ment,	indicating	that	they	can	be	shaped	by	higher	order	
knowledge	(Costa	et	al.,	2015).

Our	 findings	 are	 consistent	 with	 a	 model	 whereby	
higher	 order	 processes	 like	 instructed	 knowledge,	 meta-	
cognition,	and	executive	function	shape	associative	learn-
ing,	 that	 is,	 a	 single	 process	 model	 of	 threat	 learning	
(Grings,	1973;	Mitchell	et	al.,	2009).	Which	neural	systems	
are	 likely	 to	 mediate	 the	 effects	 of	 expectancy	 rating	 on	
learning	 and	 autonomic	 responses?	We	 and	 others	 have	
shown	that	instructed	knowledge	influences	responses	in	
the	 dorsolateral	 prefrontal	 cortex,	 which	 in	 turn	 shapes	
learning-	related	 responses	 in	 the	 striatum	 and	 ventro-
medial	 prefrontal	 cortex	 (Atlas	 et	 al.,	 2016;	 Li,	 Delgado,	
et	al.,	2011),	although	reversal	 learning	 in	 the	amygdala	
depended	on	experiential	learning	rather	than	instruction	
(Atlas,	2019;	Atlas	et	al.,	2016,	2019).	It	is	possible	that	ex-
plicit	 expectations,	 which	 engage	 meta-	cognition,	 act	 as	
an	internally	generated	instruction.	This	seems	plausible,	
based	on	prior	work	on	amygdala	lesion	patients.	Patients	
with	amygdala	lesions	do	not	show	SCRs	during	passive	
threat	 conditioning,	 but	 do	 show	 differential	 SCR	 when	
they	make	expectancy	ratings	(Coppens	et	al.,	2009),	indi-
cating	that	higher	order	systems	bypass	the	amygdala	to	in-
teract	with	subcortical	arousal	circuits.	Future	work	should	
directly	 compare	 neural	 mechanisms	 of	 threat	 learning	
with	and	without	expectancy	 ratings	 to	 test	whether	ex-
plicitly	rating	expectations	alters	the	brain	responses	that	
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mediate	 aversive	 learning,	 or	 whether	 aversive	 learn-
ing	 systems	 respond	 similarly	 irrespective	 of	 whether	
subjects	 make	 ratings.	 In	 addition,	 in	 the	 present	 study		
both	 groups	 received	 general	 contingency	 instructions	
(i.e.,	that	there	would	be	a	relationship	between	the	stim-
uli	 and	 shocks)	 although	 they	 were	 not	 informed	 about	
the	 relationship.	 General	 contingency	 instructions	 differ	
from	 pure	 uninstructed	 learning,	 that	 is,	 when	 partici-
pants	 are	 not	 informed	 about	 relationships	 between	 CS	
stimuli	and	shock	outcomes	(Mertens	et	al.,	2021).	Future	
work	should	measure	whether	expectancy	ratings	interact	
with	instructed	knowledge	and	directly	evaluate	whether	
both	types	of	higher	order	processes	have	similar	mecha-
nisms	and	downstream	effects	on	adaptive	learning.

While	traditional	approaches	used	behavioral	measures	
as	an	index	of	emotion,	affective	scientists	increasingly	rec-
ognize	the	important	distinction	between	defensive	behav-
iors	and	subjective	feelings	(LeDoux,	2012;	LeDoux,	2013).	
Our	 findings	 expand	 this	 conversation	 by	 demonstrating	
that	explicitly	reporting	subjective	predictions	can	actually	
alter	 physiological	 arousal.	 Importantly,	 it	 is	 not	 known	
whether	 our	 findings	 of	 reductions	 in	 adaptive	 learning	
are	specific	to	expectancy	ratings,	or	a	consequence	of	pro-
viding	any	subjective	rating	during	learning.	For	instance,	
does	rating	subjective	fear	alter	learning	in	a	different	way	
from	rating	subjective	expectancy?	If	the	impact	of	expec-
tancy	ratings	on	learning	is	mediated	by	general	cognitive	
processes	 such	 as	 decision	 making,	 meta-	cognition,	 and	
divided	 attention,	 then	 the	 type	 of	 rating	 might	 not	 mat-
ter,	and	all	concurrent	decisions	might	 lead	to	reductions	
in	adaptive	 learning.	Alternatively,	different	 types	of	con-
current	 ratings	 may	 have	 different	 effects	 on	 the	 trajec-
tory	of	learning.	For	example,	the	act	of	rating	expectancy	
might	cause	individuals	to	use	higher	order	knowledge	to	
focus	 on	 probability	 and	 reduce	 the	 impact	 of	 anxiety	 or	
fear,	whereas	rating	subjective	fear	might	heighten	a	sense	
of	 threat	 and	 anxiety	 and	 increase	 physiological	 arousal.	
Consistent	with	potential	dissociations,	recent	findings	in-
dicate	that	the	effect	of	CS-	US	pairing	on	startle	potentia-
tion	and	amygdala	activation	is	not	mediated	by	subjective	
expectancy,	but	rather	by	subjective	fear	(Mertens,	Braem,	
et	al.,	2018).	Future	work	should	use	between-	subjects	de-
signs	 to	directly	compare	how	different	subjective	ratings	
impact	 associative	 learning	 to	 resolve	 these	 possibilities.	
Studies	should	also	include	an	attentional	control	condition	
to	control	for	the	extent	to	which	making	any	type	of	judg-
ment	influences	the	learning	process.	As	mentioned	above,	
future	work	should	systematically	manipulate	and	measure	
impacts	 of	 reinforcement	 rate,	 contingency	 instructions,	
and	CS	duration	to	test	how	these	factors	impact	learning,	
attention,	and	the	impact	of	expectancy	ratings	on	multiple	
autonomic	measures	and	defensive	reactions.	If	all	studies	
that	 incorporate	subjective	ratings	also	include	a	Viewing	

group,	we	will	discover	the	conditions	under	which	ratings	
impair	or	enhance	learning	as	a	field.

In	conclusion,	our	study	demonstrates	that	rating	expec-
tations	alters	learning	in	dynamic	environments.	We	found	
that	participants	who	provided	expectancy	ratings	during	
aversive	learning	were	slower	to	react	when	contingencies	
reversed,	relative	to	participants	who	did	not	provide	expec-
tancy	 ratings.	 Furthermore,	 our	 mediation	 analyses	 indi-
cated	that	subjective	expectations	directly	shape	autonomic	
responses	within	the	group	that	provided	ratings.	Although	
the	goal	of	learning	is	to	generate	predictions	and	expecta-
tions	about	outcomes	in	the	environment,	our	work	shows	
that	making	these	expectations	explicit	can	shape	the	dy-
namic	process	of	 learning	itself,	as	measured	by	dynamic	
changes	in	anticipatory	arousal.	Studies	of	threat	condition-
ing,	threat	related	processing,	and	learning	should	quantify	
the	extent	 to	which	concurrent	measures	 like	expectancy	
ratings	may	directly	alter	the	behavior	of	interest.
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