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ABSTRACT: Lipids play important modulatory and structural roles for
membrane proteins. Molecular dynamics simulations are frequently used to
provide insights into the nature of these protein−lipid interactions. Systematic
comparative analysis requires tools that provide algorithms for objective
assessment of such interactions. We introduce PyLipID, a Python package for
the identification and characterization of specific lipid interactions and binding
sites on membrane proteins from molecular dynamics simulations. PyLipID
uses a community analysis approach for binding site detection, calculating
lipid residence times for both the individual protein residues and the detected
binding sites. To assist structural analysis, PyLipID produces representative
bound lipid poses from simulation data, using a density-based scoring
function. To estimate residue contacts robustly, PyLipID uses a dual-cutoff
scheme to differentiate between lipid conformational rearrangements while
bound from full dissociation events. In addition to the characterization of protein−lipid interactions, PyLipID is applicable to
analysis of the interactions of membrane proteins with other ligands. By combining automated analysis, efficient algorithms, and
open-source distribution, PyLipID facilitates the systematic analysis of lipid interactions from large simulation data sets of multiple
species of membrane proteins.

■ INTRODUCTION

Cell membranes typically contain hundreds of different lipid
species, asymmetrically distributed between two membrane
leaflets.1,2 These lipid molecules are locally organized into
lateral domains of distinct composition.3,4 The combination of
these various chemical structures and microdomains results in
a diverse lipid landscape that is fully exploited by membrane
proteins, especially those involved in cellular signaling.5,6 The
regulatory roles of membrane lipids include ion channel
activation7,8 and allosteric modulation of G-Protein Coupled
Receptors (GPCRs) and other receptors.9−13 Lipid molecules
may also strengthen domain and/or subunit interactions in
more complex membrane proteins.14,15 It is therefore of
importance to characterize protein−lipid interactions in order
to reach an understanding of the dynamics and functions of
membrane proteins.
A number of biophysical techniques can reveal the presence

of protein−lipid interactions; e.g., see refs 16 and 17. In
particular, following recent advances in single-particle cryo-
EM18 including the use of nanodiscs to preserve a lipid bilayer
environment,19 increasing numbers of membrane proteins
structures have been determined at near atomic resolution with
bound lipids present in the structures.20 These membrane
protein structures provide gateways for understanding how

lipids may modulate protein function but also pose challenges
regarding the identification of interacting lipid species.
Computational approaches, especially molecular dynamics

(MD) simulations, have played an increasingly important role
as a high throughput “computational microscope”21 for the
identification of protein−lipid interactions. Thanks to ongoing
increases in computer power, development of improved
atomistic and coarse-grained force fields,22 and development
of tools to automate setup of membrane simulations,23,24 MD
simulations have been applied to many membrane proteins and
lipids, providing invaluable structural and mechanistic insights
into their protein−lipid interactions.25−28 While there is not
space here to extensively review simulation studies of
membrane protein−lipid interactions, one might recall
pioneering studies including the interaction of polyunsaturated
fatty acids and cholesterol with rhodopsin,29−31 the interaction
of cholesterol and other lipids with class A GPCRs,32−34 and
more recently development of a range of methods for
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estimation of the free energy of interactions of lipids with
membrane proteins via simulation.35−37

For the study of protein−lipid interactions, CG force fields
can explore lipid binding sites in an unbiased fashion with
sufficient sampling due to the decreased degrees of freedom of
the underlying model. The Martini force field38−40 is widely
used for biomembrane applications. Simulations using Martini
have identified lipid binding sites on a range of proteins41−43

and have assisted the interpretation of lipid-like density in
cryo-EM maps.44 Some simulation studies have adopted a
serial multiscale approach in which CG simulations are used to
probe the lipid binding sites and bound lipid identities
followed by atomistic simulations to study residue-level
protein−lipid interactions. The conversion of Martini models
to atomistic ones can be achieved by resolution back-mapping
tools.45−50

With the increasing number of membrane protein structures
determined at high resolution by cryo-EM and the increasing
complexity of simulated membranes, the use of MD
simulations to study protein−lipid interactions is accompanied
by two challenges:

(1) How to automatically determine lipid binding sites from
simulations? Some simulation studies have used the
average lipid density to approximately locate lipid
binding sites and subsequently manually assigned
bound poses. Such an approach includes an element of
subjectivity and may be a bottleneck for large scale
comparative simulations. So, can we determine the lipid
binding sites automatically via a statistically robust
method? Additionally, can we systematically produce
representative bound poses from the trajectories for
further analysis?

(2) How to optimally quantify and characterize lipid
interactions? Simulation studies have used, e.g., average
lipid occupancies or the fraction of trajectory frames in
which lipid contacts are formed to a given residue to
measure lipid interactions. Can we rigorously calculate
lipid interactions with binding sites in addition to
individual residues to allow for more direct comparison
with experiments?

To provide a unified solution to the above-mentioned
problems, we have developed a Python package, PyLipID, to
assist analysis of protein−lipid interactions from MD
simulations. PyLipID identifies binding sites by calculating
the community structures in the interaction network of protein
residues. This method was initially applied to the analysis of
cholesterol51 and other lipid43 binding sites on the Kir2.2
channel. On the basis of the identified binding sites, PyLipID
can find representative bound poses for each site. This is
achieved by evaluating all the bound poses using an empirical
scoring function of the lipid density in the chosen binding site.
This functionality allows for further structural analysis of the
protein−lipid interactions and makes it possible to automate
pipelines for converting bound lipids poses in CG models into
atomistic ones for use in multiscale simulation studies.
PyLipID can also cluster the bound poses for binding sites
to provide a more in-depth analysis of the lipid interactions. To
describe lipid interactions, PyLipID calculates residence times,
in addition to other commonly used metrics such as averaged
interaction duration, lipid occupancy, and the average number
of surrounding lipids, for both individual protein residues and
the calculated binding sites. The calculation of residence times
reveals the dynamical behavior of bound lipids, and
calculations based on binding sites allow for improved
characterization of the binding events. Notably, PyLipID uses
a dual-cutoff scheme to deal with the “rattling in a cage” effect
sometimes seen in protein−lipid simulations.
In the following sections, we first introduce the methodo-

logical details of PyLipID. Then, we illustrate the PyLipID
analysis pipeline using cholesterol binding to a panel of GPCRs
as an example. Subsequently, we present two cases of the
application of PyLipID to interactions of membrane proteins
with phospholipids illustrating the potential application of
PyLipID to assist the interpretation of lipid-like densities in
cryo-EM maps. Finally, we demonstrate the application of
PyLipID to nonlipid molecules, using it to characterize ethanol
binding to the cytoplasmic domain of the Bacillus subtilis (B.
subtilis) McpB chemoreceptor as seen in atomistic simu-
lations.52

Figure 1. PyLipID package design: api module structure. api is the outer layer module and its main class LipidInteraction handles the
analysis workflow. The class object LipidInteraction loads the trajectory data, and the methods of this class object carries out the analysis
for protein residues (yellow boxes) and for binding sites (red boxes). This class object also has an attribute dataset, which is a spreadsheet
object storing interaction data and allows for further manipulation. PyLipID has another three modules, func, plot, and util, which provide
functions for doing the computationally intensive analysis, as used by LipidInteraction (SI Figure S1).
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■ METHODS

PyLipID is an open-source package available on GitHub
(https://github.com/wlsong/PyLipID). The documentation
and tutorials can be found at the ReadtheDocs server
https://pylipid.readthedocs.io. A tutorial script that runs the
PyLipID analysis can be found at the documentation Web site.
Overview of Code. The current PyLipID package contains

four modules: api, func, plot, and util. api is the
outer layer module that handles the analysis workflow and
provides some convenient functions for plotting and saving
data (Figure 1), whereas the remaining modules provide
functions that are deployed by api for the heavy lifting in the
analysis (Supporting Information (SI) Figure S1). Such a
structure allows for extension of PyLipID functionalities with
minimal changes to the code base. PyLipID reports results in
various forms.
api. This module contains the main Python class

LipidInteraction that reads trajectory information,
analyzes lipid interactions, and writes/plots interaction data.
The PyLipID analyses are carried out by the class methods of
LipidInteraction, which can be divided into two
groups: methods for analysis of interactions with protein
residues and with the calculated binding sites. Each group has a
core function to collect/calculate the required data for the rest
o f t h e f u n c t i o n s i n t h a t s e g m e n t , i . e . ,
collect_residue_contacts() that builds a lipid
index for residues as a function of time for residue analysis and
compute_binding_nodes() that calculates the binding
sites using the interaction correlation matrix of the residues.
The remainder of the methods in each group are independent
of each other and calculate different properties of lipid
interactions and of the binding site. LipidInteraction
also has an attribute dataset which stores the calculated
interaction data in a spreadsheet as a pandas.DataFrame,
and updates automatically after each of the calculations. It
records interaction data for protein residues by row, including
interaction residence times, averaged durations, occupancy,
and lipid count, and the associated interaction data for the
binding site to which the residue belongs. This pandas.-
DataFrame data structure allows for convenient checking of
the interaction data and provides users with maximum
flexibility to further process PyLipID outputs. For the
computationally intensive functions, e.g., calculation of koff,
bound poses or binding site surface areas, PyLipID uses a
Python multiprocessing library to speed up the calculations.
Users can specify the number of CPUs these functions can use;
otherwise, all available CPUs will be used by default.
func. This module comprises the following four

submodules: interaction that contains functions for
calculation of continuous contacts using a double-cutoff
scheme; kinetics for calculation of koff and residence
time; binding_site for calculation of binding sites using
the Louvain method53 as well as the analysis of bound poses
and surface area; and clusterer for clustering the bound
poses.
plot. This module provides convenient functions to

visualize the interaction data, e.g., plots of koff, interaction as
a function of residue index, the correlation matrix of lipid
interactions for residues, and binding site data.
util. This is the location of housekeeping functions. For

example, trajectory contains functions for obtaining
topology information from trajectories.

Technical Features. PyLipID is written in Python and
compatible with versions 3.6+. It uses MDtraj54 to handle
trajectories and coordinates, and thus it is compatible with all
major simulation packages. PyLipID reads the molecule
topology from trajectories and uses a distance-based method
to measure contacts; it is therefore applicable to the calculation
of binding characteristics for any type of molecule. In the
following section, we will introduce the technical features of
PyLipID and their implementation in the code.

Lipid Topology. The lipid topology information is read from
trajectories, and contacts are calculated on the basis of the
minimum distance of the lipid molecule to the protein. A lipid
molecule is considered as being in contact with a residue when
the distance of any atoms of the lipid molecule to any atoms of
the residue is smaller than the provided distance cutoff.
PyLipID also allows for selection of lipid atoms used for
defining contacts. This option can be useful for cases in which
excluding some atoms (e.g., the tails of phospholipids) could
generate improved definition of binding sites. Given how lipid
contact is calculated, PyLipID does not need to store or define
any lipid topology information in the code, which allows
PyLipID to calculate the contact of any kind of object with a
protein on the basis of their distances.

Dual-Cutoff Scheme. Due to the smoothened potentials
and/or shallow binding pockets, CG simulations may show a
“rattling in a cage” effect, in which lipid molecules undergo
rapid changes in protein contacts without full dissociation from
a given site, such that the minimum distances between the two
contacting objects may experience sudden jumps. This is to be
expected when using a single cutoff to define a boundary
between two states that do not have a simple clear barrier
between them. For example, it has also been observed in
atomistic simulations of loosely bound cholesterol molecules.55

To deal with these frequently encountered rapid fluctuations in
the bound pose, PyLipID adopts a dual-cutoff scheme, which
uses a lower and upper distance cutoff to measure the status of
contact (SI Figure S2). The duration of a continuous contact is
determined from the time point when a molecule moves closer
than the lower distance cutoff until the time point when the
molecule moves beyond the upper cutoff distance. The SI
provides a more detailed discussion of cutoff values and their
impact on binding site calculations (Section S1 and Figures
S3−S9). In addition to the contact duration, PyLipID provides
three other metrics for characterization of lipid contacts: lipid
duration, which is the average duration of the collected
contacts; lipid occupancy, which is the percentage of frames in
which any lipid contact is formed; and lipid count, which is the
number of surrounding molecules of the specified lipid species.
Both lipid occupancy and lipid count are calculated using the
lower distance cutoff.

Residence Time. The residence time provides useful
insights56 into the dynamic behavior of bound lipids which,
due to their interaction with the protein, are no longer
diffusive.41,43 Indeed, both prolonged interactions and
transient contacts are observed for lipids on the protein
surface. The residence time, which is calculated from a survival
time correlation function, describes the relaxation of the bound
lipids and can be divided into long and short decay periods,
which correspond to specific interactions and transient
contacts, respectively. PyLipID calculates the survival time
correlation function σ(t) as follows:
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Figure 2. Illustration of PyLipID analysis outputs, using simulations of the β2AdR in the presence of cholesterol as an example. PyLipID can save
interaction data in the B-factor column of a PDB file of the protein coordinates using save_coordinate(). Such a coordinate file can be
loaded into visualization software and colored on the basis of B-factor to show the interaction hotspot (A). PyLipID can generate a Python script
that maps the binding site information to a receptor structure in a PyMOL session, in which residues from the same binding site are shown in
spheres in the same color and the sphere scales correspond to their interaction with the lipid. This is accomplished by save_pymol_script-
() (B). The method of analyze_bound_pose() can find the representative bound pose for a binding site (C), and cluster all the bound
poses in a binding site (D). This method can also calculate the RMSDs of the bound poses for a binding site and provide a convenient plot of the
RMSDs (E). The method compute_surface_area() calculates binding site surface area as a function of time and plots the surface area
data (F). PyLipID calculates interaction residence times for residues using compute_residue_koff() and for binding sites using
compute_site_koff(). Both methods generate koff plots, in which the durations of the collected contacts are plotted in a sorted order in the
left panel and the normalized survival function together with the fitted data are plotted in the right panel (G). The plot() method can draw the
interaction data as a function of residue index (H).
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where T is the length of the simulation trajectory, Nj is the
total number of lipid contacts, and ∑ν=0

T−t ñj(v, v + t) is a binary
function that takes the value 1 if the contact of lipid j lasts from
time ν to time ν + t and 0 otherwise. The values of σ(t) are
calculated for every value of t from 0 to T ns, for each time step
of the trajectories, and normalized by dividing by σ(0), so that
the survival time-correlation function has value 1 at t = 0. The
normalized survival function is then fitted to a biexponential to
model the long and short decays of lipid relaxation,
respectively:

σ ∼ + ≤− −t A B k k( ) e e ( )k t k t
1 2

1 2

PyLipID stores the fitting parameters for both exponential
components, reporting those for the slower decay. Thus,
PyLipID takes k1 as the dissociation constant, koff, and
calculates the residence time from τ = 1/koff. PyLipID
measures the r2 of the biexponential fitting to the survival
function to show the quality of the koff/residence time
estimation. In addition, PyLipID bootstraps the contact
durations and measures the koff /residence time of the
bootstrapped data, to report how well lipid contacts are
sampled from simulations. The lipid contact sampling, the
curve-fitting, and the bootstrap results can be conveniently
checked for individual residues and the calculated binding sites
via the koff plots generated by PyLipID (see Figure 2 and
discussion below for further details).
Calculation of Binding Sites. Binding sites are defined on

the basis of a community analysis of protein residue-interaction
networks that are created from the lipid-interaction correlation
matrix. Given the basic definition of a lipid binding site,
namely, a cluster of residues that bind to the same lipid
molecule at the same time, PyLipID creates a distance vector
that records the distances to all lipid molecules as a function of
time for each residue and constructs a lipid-interaction
network in which the nodes are the protein residues and the
weights are the Pearson correlation coefficients of pairs of
residues that are calculated from their distance vectors (SI
Figure S10). PyLipID then decomposes this interaction
network into subunits or communities, which are groups of
nodes that are more densely connected internally than with the
rest of the network. For the calculation of communities,
PyLipID uses the Louvain algorithm53 that finds high
modularity network partitions effectively. Modularity, which
measures the quality of network partitions, is defined as57

∑ δ= −
Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ
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ÑÑÑÑÑÑÑÑÑÑ
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c c

1
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,

where Aij is the weight of the edge between node i and node j;
ki is the sum of weights of the nodes attached to the node i, i.e.,
the degree of node; ci is the community to which node i is
assigned; δ(ci,cj) is 1 if i = j and 0 otherwise; and = ∑m Aij ij

1
2

,

i.e., the number edges. In the modularity optimization, the
Louvain algorithm orders the nodes in the network and, then,
one by one, removes and inserts each node in a different
community ci until there is no significant increase in
modularity. After modularity optimization, all the nodes that
belong to the same community are merged into a single node,
of which the edge weights are the sum of the weights of the

comprising nodes. This optimization−aggregation loop is
iterated until all nodes are collapsed into one. PyLipID allows
for filtering of the communities on the basis of their sizes, i.e.,
filtering the binding sites on the basis of the number of
comprising residues. By default, PyLipID returns binding sites
of at least four residues. This filtering step is particularly helpful
for analysis of a small number of trajectory frames, in which
false correlation is more likely to happen among two or three
residues. The output from this calculation is a list of binding
sites containing sets of binding site residue indices.

Calculation of Representative Bound Poses. PyLipID
evaluates bound poses using an empirical density-based scoring
function and writes out the most sampled bound poses for
each binding site. The scoring function of a lipid pose at a
binding site is defined as

∑= · ̂W f Dscore ( )
i

i i H,

where Wi is the weight given to atom i of the lipid molecule, H
is the bandwidth, and fî,H(D) is a multivariate kernel density
estimation of the position of atom i based on the positions of
all bound lipid poses in that binding site. The position of atom
i is a p-variant vector, [Di1,Di2,...,Dip], where Dip is the
minimum distance to the residue p of the binding site. PyLipID
uses the Gaussian kernel function and, by default, a bandwidth
of 0.15. The multivariant kernel density estimation is
implemented by statsmodels.58 Higher weights can be given
to, e.g., the headgroup atoms of phospholipids, to generate
better defined binding poses, but all lipid atoms are weighted
equally by default. In the density estimation, PyLipID uses the
relative positions of lipid atoms in the binding site, which
makes the analysis of a binding site independent of local
protein conformational changes. Lipid poses with the highest
scores are considered as the representative bound poses for
their binding site and can be written out, along with the
protein conformation to which it binds, in any format
supported by MDTraj (e.g., pdb and gro). See SI Section S1
for more detailed discussion on the choice of cutoff values and
representative bound poses/clustered poses.

Clustering of Bound Lipid Poses. PyLipID can cluster the
bound lipid poses of a binding site into a user-specified
number of clusters using KMeans, in a “supervised” fashion or
cluster the poses using a density-based cluster, DBSCAN, in an
“unsupervised” fashion. In the former case, the KMeans
function from scikit-learn59 is used to separate the samples into
n clusters of equal variances, via minimizing the inertia, which
is defined as

∑ −
= ∈

x umin( )
i

n

u C
i i

0

2

i

where ui is the “centroid” of cluster i. KMeans scales well with
a large data set but performs poorly with clusters of varying
sizes and densities, which are often the case for lipid poses in a
binding site.
When the number of clusters is not provided by the user,

PyLipID uses the DBSCAN algorithm implemented in scikit-
learn to find clusters of core samples of high density. A sample
point p is a core sample if at least min_samples points are
within distance ε of it. A cluster is defined as a set of sample
points that are mutually density-connected and density-
reachable; i.e., there is a path ⟨p1,p2,...,pn⟩ where each pi+1 is
within distance ε of pi for any two p in the set. The values of
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min_samples and ε determine the performance of this cluster.
PyLipID sets the ε as the knee point of the k-distance graph.
Once ε is set, the clustering results with all possible
min_samples are checked using the Silhouette coefficient:

= −
s

b a
a bmax( , )

where a is the mean distance between a sample and all other
points in the same cluster and b is the mean distance between a
sample and all other points in the next nearest cluster. The
Silhouette coefficient is between −1 and 1, and higher scores
suggest better defined clusters. The clustering result with the
highest Silhouette score is returned as the optimal clustering
results. For writing out the cluster poses, PyLipID randomly
selects one pose from each cluster in the case of using KMeans
or one from the core samples of each cluster when DBSCAN is
used and writes the selected lipid pose with the protein
conformation to which it binds using MDTraj. The relative
position of lipid poses in the binding site, i.e., [D1,D2,...,Di],
where Di is the distance vector of atom i to the residues in the
binding site, is used as the pose coordinates for clustering.
Principal component analysis is used to decrease the lipid
coordinate dimension before the clustering.
Calculation of Pose RMSD. The root-mean-square

deviation (RMSD) of a lipid bound pose in a binding site is
calculated from the relative position of the pose in the binding
site compared to the average position of the bound poses.
Thus, the pose RMSD is defined as

=
∑ − ̅= D D

N
RMSD

( )i
N

i1
2

where Di is the distance vector of atom i to the residues in the
binding site, D̅ is the average of the distance vectors of atom i
from all bound poses in the binding site, and N is the number
of atoms in the lipid molecule.
Calculation of Binding Site Surface Area. The accessible

surface area is calculated using the Shrake−Rupley algorithm.60

PyLipID strips the protein coordinates out of the simulation
system and obtains the accessible surface area of a binding site
by summing those of its comprising residues. The surface areas
of protein residues are calculated by the shrake_rupley
function of MDTraj.

■ RESULTS
PyLipID Analysis Outputs, Illustrated for CG Simu-

lations of the Interactions of the β2AdR with Choles-
terol. Before describing in detail application cases of PyLipID,
we provide a brief overview of PyLipID analysis and outputs
(Figure 2). As an example, we use cholesterol interaction with
the β2AdR (a GPCR). A more detailed account of GPCR−
cholesterol interactions is provided in a subsequent section.
We carried out PyLipID analysis using simulation data from
three repeats. Therefore, the reported durations, occupancies,
and lipid counts, for both residues and binding sites, by
PyLipID were averaged over the repeats and the residence
times were calculated from the durations of lipid contacts
collected from all repeats. We also recommend evaluating the
impact of different dual cutoffs on binding sites and interaction
durations, prior to using PyLipID, to find the optimal values
(see SI Section S1 and Figures S4−S9). For the case of analysis
of cholesterol interactions with GPCRs, we chose to use 0.475
and 0.80 nm for the dual cutoffs.

PyLipID outputs result in different forms to assist different
analyses. Each analysis is carried out by a method of the class
LipidInteraction. Users may select specific analysis to
implement or use the demonstration script provided on the
PyLipID Web site to run all of the analysis once. We first
calculated cholesterol interaction, i.e., interaction residence
times in this case, with receptor residues via the method
compute_residue_koff(). To visualize the residue-
w i s e i n t e r a c t i o n s , w e u s e d t h e m e t h o d
save_coordinate() to generate a Protein Databank
(PDB) file of the receptor coordinates in which the interaction
data are saved in the B-factor column, enabling us to check the
locations of interaction hotspots (Figure 2A).
We then calculated the binding sites using the method

compute_binding_nodes(). After this step, the
cholesterol interactions, i.e., residence times in this case, with
t h e s e b i n d i n g s i t e s w e r e c a l c u l a t e d u s i n g
compute_site_koff(). To assist the visualization of
t h e s e b i n d i n g s i t e s , w e u s e d t h e m e t h o d
save_pymol_script() to generate a Python script
that maps the binding site information to receptor structure in a
PyMOL session, in which residues from the same binding site
are shown as spheres in the same color and the sphere scales
correspond to their interactions with the lipid (Figure 2B).
This binding site visualization, combined with a binding site
summary that was generated by write_site_info(),
helped to filter through binding sites and find ones of interest.
To analyze the structural details of cholesterol interactions, we
used analyze_bound_pose() to find the representative
bound pose for a given binding site (Figure 2C) and to cluster
all the bound poses in a binding site (Figure 2D). In addition,
we also calculated other properties of the binding sites/bound
poses, including the RMSDs of bound poses via
analyze_bound_poses() (Figure 2E) and the surface
areas of the binding site via compute_surface_area()
(Figure 2F).
Importantly, when calculating the residence times using

e i t h e r c o m p u t e _ r e s i d u e _ k o f f ( ) o r
compute_site_koff(), PyLipID can also generate the
koff plots, in which the durations of the collected contacts are
plotted in a sorted order along with the normalized survival
function, fitted biexponential curve, and bootstrapped data
(Figure 2G). The quality of the sampling of binding events,
which can be checked by the bootstrapping data, and the
quality of the evaluation of residence times, which can be
checked by r2 of the curve fitting, were checked when we
filtered the binding sites.

Comparative Analysis of Cholesterol Binding Sites on
Selected Class A and B GPCRs. The application of PyLipID
through Python scripts allows for a high throughput and
systematic analysis of large protein−lipid interaction data sets.
Here we demonstrate how PyLipID, in conjunction with CG
MD simulations, was used to characterize cholesterol binding
sites on GPCRs. We performed 3 × 10 μs CG simulations for
each of 10 species of GPCR (see SI Section S1 and Table S1
for simulation details), embedded within a membrane
containing 35% cholesterol and applied PyLipID analysis to
study the cholesterol interactions with these receptors.
Combining the residence time profiles and molecular

visualization, we found that cholesterol interactions were
consistently found between transmembrane helices. However,
the strength of the interactions (measured as residence times)
varied depending on the receptor and the interhelical location.
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We saw stronger cholesterol interactions with β2AdR and D3R
at locations around, e.g., TM1, TM7, TM3, and TM4, whereas
much weaker interactions were seen in, e.g., C−C chemokine
receptors and P2Y1 (SI Figures S2 and S3), suggesting the
affinities for cholesterol may vary among receptors and sites.
We then analyzed the lipid bound poses in the binding sites.

On average, 14−17 cholesterol binding sites were revealed per
receptor and, in total, 153 cholesterol binding sites from the 10
receptors. Aligning the representative bound poses from the 10
tested receptors to the β2AdR structure revealed that

cholesterol molecules can be found in most of the interhelical
spaces (Figure 3A). This is in agreement with a recent analysis
of the locations of bound cholesterols in GPCR structures,
which reports that cholesterol binding sites lack consensus
motifs.61 This also lends support to the suggested wedge-like
role of cholesterols in stabilizing GPCR conformations.34

We next calculated the binding site residence times and
cholesterol occupancies. Most of the cholesterol binding sites
had interaction residence times < 3 μs (Figure 3B). For these
sites there was little, if any, correlation between residence time

Figure 3. Cholesterol binding sites on GPCRs. (A) Representative cholesterol bound poses of all the binding sites on the 10 GPCRs. The binding
sites/poses from all 10 GPCRs are aligned on the β2AdR structure. (B) Binding site residence times and (C) binding site occupancy calculated
from the 10 GPCRs.

Figure 4. Geometry of cholesterol binding sites on GPCRs. (A) Binding site surface area and (B) the buried surface area of the cholesterol bound
in the binding sites on GPCRs. The 3 μs residence time cutoff used to separate nonspecific/annular from specific/tight binding interactions is
shown as a gray broken line, and the latter two classes are indicated by the green and red ellipses, respectively, in B.
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and occupancy (Figure 3C). The high frequency of cholesterol
binding and the relatively short residence times suggest that
these cholesterol molecules act as annular lipids around
GPCRs, forming a cholesterol solvation shell. However, we
also detected a number of binding sites with residence times >
3 μs (on β2AdR, D3R, S1PR, and GCGR). With one exception
these all had an occupancy of >90% (Figure 3C). This suggests
that at these sites cholesterol can form longer and more
specific interactions.
We then set out to analyze whether there are sequence or

structural motifs that determine the length of interaction
residence times (i.e., the strength of cholesterol interactions).
We first checked whether the size of the binding site affects the
interaction. We calculated the binding site surface areas and
the buried area, i.e., contacting the surface area of bound
cholesterols with the receptor. The stronger cholesterol
binding sites (i.e., those with residence time > 3 μs) have
mid-range sizes, with surface areas between 5 and 12 nm2

(Figure 4A). Visual inspection revealed that the larger binding
sites on GPCRs were often flat, shallow, and featureless. The
calculation of the buried surface area of cholesterols in the
binding sites showed a similar picture, and the bound
cholesterols could clearly be separated into two groups (Figure
4B). For the weaker (nonspecific or annular) sites there was
perhaps a weak correlation between residence time and buried
surface area. For the stronger (specific) sites the contacting
surface area did not correlate with the residence times. This
suggests that specific binding is more subtly determined than
simply the area of the cholesterol binding site on a GPCRs.
To explore this further, we analyzed the amino acid residue

composition of the cholesterol binding sites, looking to see
whether longer residence times resulted from a specific
composition of the binding sites. We again set a residence
time cutoff of 3 μs to separate weaker and strong binding sites,
selected from a plot of the sorted residence times (SI Figure
S13). We calculated the amino acid composition for each

Figure 5. Amino acid composition of cholesterol binding site on GPCRs. (A) Violin plot of the amino acid composition of eight specific binding
sites that showed cholesterol residence times longer than 3 μs. (B) Violin plot of the amino acid composition of the 145 binding sites that showed
shorter duration cholesterol interactions. (C) Comparison of the binding site amino acid compositions between the bootstrapping values from the
145 nonspecific binding sites (box plot) and the averages from the eight specific binding sites (yellow dot). Data for amino acid compositions are
color-coded on the basis of the amino acid chemical property: data for nonpolar amino acids are colored in brown, for polar amino acids in yellow,
for acidic amino acids in red, and for basic amino acids in blue. The red asterisks indicate residues where there is a clear difference in composition
between the nonspecific and specific site amino acid compositions.
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binding site in the two classes (Figure 5A,B). To compare the
two sets of data, which have very different sizes, we
bootstrapped the data from the nonspecific binding sites.
Here, we randomly selected eight binding sites and compared
their average amino acid composition to the eight strong
binding sites. This comparison revealed that the strong
cholesterol binding sites have increased occurrence of Leu,
Ala, and Gly residues (Figure 5C). This is broadly consistent
with a recent structural analysis,61 which failed to reveal
distinct sequence motifs for cholesterol binding to GPCRs but
which reported cholesterol microenvironments enriched in
Leu, Ala, Ile, and Val residues.
We subsequently examined the representative cholesterol

bound poses for these strong binding sites. These bound poses
revealed two types of binding modes that are likely to have
contributed to the stronger interactions in these binding sites.
The first type features polar−charged interactions with the
hydroxyl group of cholesterol, as seen in BS (binding site) id 5
of GCGR and at BS id 7 and 4 of β2AdR (Figure 6A and SI
Figure S14). These polar−charged interactions may be the
main stabilizing feature for strong cholesterol binding since the
rest of the cholesterol molecule does not show extensive
contacts with the receptor in these binding sites. The second
type exhibits Leu side chains at the rim of the sites that form a
tight grip on the bound cholesterol molecule (Figure 6B and SI
Figure S14). These residues might stabilize the cholesterol
molecule between the helices.
Taken together, PyLipID has allowed us to analyze

cholesterol interactions efficiently and systematically with a
set of 10 GPCRs. The analysis of 153 cholesterol binding sites
revealed that most cholesterols act as annular lipids around
GPCRs, forming transient and potentially nonspecific inter-
actions with the receptors. However, cholesterol may also form
longer and more specific interactions with GPCRs at certain
binding sites with distinctive structural features. The latter class

of sites offer great potential as possible allosteric modulatory
sites.

Two Examples of Characterization of Phospholipid
Interactions. We have also explored the application of
PyLipID to interactions of membrane proteins with two
(anionic) phospholipids, namely, cardiolipin (for bacterial
membrane proteins) and PIP2 (for mammalian membrane
proteins). A recent survey of the energetics of membrane
protein−lipid interactions as estimated by MD simulations28

has shown that anionic phospholipids interact more strongly
with membrane proteins (estimated free energies of −20 to
−40 kJ/mol) than is the case for cholesterol (−5 to −10 kJ/
mol). Thus, they are expected to exhibit longer residence times
and provide good test cases for PyLipID analysis.
We have recently applied PyLipID to analyze cardiolipin

interactions for a set of 42 Escherichia coli (E. coli) inner
membrane proteins based on CG-MD simulations using the
Martini 3 force field.62 Using PyLipID, 700 cardiolipin binding
sites were identified, analysis of which yielded a heuristic for
defining a high affinity cardiolipin binding site, based on two or
three basic residues in proximity, alongside the presence of at
least one polar residue and one or more aromatic residues.28

As an example of this analysis, we have selected formate
dehydrogenase-N (PDB id 1KQF), a trimeric membrane
protein, each subunit of which has five TM helices and a large
cytoplasmic domain. The cardiolipin binding site observed in
crystal structure was correctly identified by PyLipID as having
the longest residence time among the 16 possible binding sites
(Figure 7A and SI Figure S15). Analysis of residence times for
individual binding site residues revealed that K254, K258, T39,
and the main chain of P38 formed polar interactions or
hydrogen bonds with cardiolipin headgroup, contributing to
the main stabilizing force for the lipid bound poses in this
binding site (Figure 7B). F37 also stabilized the bound lipid by
hydrophobic stacking with the lipid tails.

Figure 6. Representative cholesterol bound poses in the eight specific binding sites. (A) Cholesterol bound poses with charge/polar interaction
with the hydroxyl group. (B) Cholesterol bound poses without charge−polar interactions. Cholesterols are shown in sticks and colored on the basis
of the receptors they are bound to. Protein residues within 0.5 nm of bound cholesterols are shown in green sticks. Text below each bound pose
show the receptor name, the binding site (BS) id, and the calculated binding site residence time.
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In a second application of PyLipID to anionic lipids, we
explored the interaction of PIP2 interaction with polycystin-2
(PC2), a TRP channel. A number of studies have implicated
PIPs in TRP channel regulations.12 On the basis of CG-MD
simulations in a membrane containing 10% PIP2 in the
cytoplasmic leaflet, six binding sites were identified from each
of the four subunits of PC2 (SI Figure S6). The PIP2 binding
site seen in the 3 Å resolution cryo-EM structure (PDB id
6T9N)44 was identified by PyLipID as the site with the longest
residence time. In addition, the representative bound pose of
PIP2 in this binding site fits nicely within the lipid-like density
in the cryo-EM map (Figure 7C). This again suggests that
when multiple possible binding sites are present, residence
time analysis using CG-MD simulations and PyLipID can be
potentially used to identify the strongest interaction sites
corresponding to lipid-like density observed by cryo-EM.

Application to Interactions of a Nonlipid Ligand with
a Membrane Protein. PyLipID can be readily applied to
characterize the binding of nonlipid molecules in conjunction
with atomistic simulations whenever sufficient binding/
unbinding events are sampled. It therefore may be particularly
useful for, e.g., fragment screening approaches to binding site
discovery63 (in particular, see ref 64 for an early application of
this approach to GPCRs and ref 65 for a recent application
using Martini 3).
To demonstrate the application of PyLipID to small

molecule/fragment binding, we analyzed the interactions of
ethanol with a bacterial chemoreceptor, McpB, for which
ethanol is a known attractant. The analyses were carried out on
previously conducted atomistic simulations (3 × 600 ns) of an
McpB cytoplasmic homodimer with 165 ethanol molecules
(0.316 M) included to reproduce experimental conditions.52

As anticipated, ethanol molecules showed transient inter-

Figure 7. Application of PyLipID to phospholipids and nonlipid molecules. (A) Cardiolipin binding site with the longest residence time on formate
dehydrogenase-N. The protein and lipid are described by the Martini CG model. The protein backbone beads are shown in the white surface. The
lipid beads are shown in cyan spheres connected by orange sticks. (B) Zoomed-in view of the cardiolipin binding site of formate dehydrogenase-N.
The cardiolipin lipid is in the same representation as in panel A. Protein residues that showed the longest residence times in the binding site are
shown in sticks. (C) PyLipID calculated PIP2 binding site on the TRP channel PC2 overlapping well with the cryo-EM density. The PC2 cryo-EM
structure is shown in white cartoon. The PIP2 density in the cryo-EM map is shown in blue mesh. The PIP2 bound pose calculated by PyLipID is
shown in sticks in magenta. The binding site residues calculated by PyLipID are shown in sticks in green. This binding site showed the longest
residence time in the Martini CG simulations, as calculated by PyLipID. (D) Ethanol binding sites on McpB. The main ethanol binding sites and an
ethanol representative bound pose are shown. McpB is shown in white cartoon and ethanol in spheres. Key side chains are in green.
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actions with the receptor due to their small size and simple
structure. Using PyLipID a total of 50 ethanol binding sites
were identified on McpB, with residence times ranging from
sub-nanosecond to ∼40 ns (SI Figure S16). Notably, the
analysis highlighted several binding sites with longer residence
times located within the center of the coiled-coil bundle
(Figure 7D). It is suggested that these may facilitate
conformational changes induced by ethanol binding to be
transmitted to other parts of the receptor, thereby enabling the
signaling response. To test the sensitivity of PyLipID to minor
changes in protein sequence, we additionally analyzed
atomistic simulations (3 × 600 ns) of McpB carrying the
A431S mutation, which is known to considerably reduce taxis
to alcohols.52 While the 51 ethanol binding sites identified by
PyLipID largely overlap with those on wild-type McpB,
ethanol binding to the side chain of residue 431 was no
longer observed (SI Figure S16). This example suggests
therefore that PyLipID could be usefully employed as an
analysis tool within an MD-based fragment screening study.

■ DISCUSSION AND CONCLUSIONS
What Does PyLipID Allow Us to Do? We have described

PyLipID, an integrated package for analysis of protein−lipid
interactions from MD simulation data. PyLipID has the
following main features:

1. It calculates binding sites from simulation data using a
robust methodology.

2. It calculates the residence times for lipid interactions
with both the binding sites and individual amino acid
residues.

3. It generates bound lipid poses and outputs structural
representatives for each binding site.

4. It uses a dual-cutoff scheme to robustly quantify lipid
interactions in a manner suitable for dynamic
interactions in both coarse-grained and atomistic
simulations.

5. It outputs interaction data in a convenient format to
assist the ease and customization of subsequent large
scale data analysis.

Thus, PyLipID provides for systematic and standardized
analysis of protein−lipid interactions over large simulation data
sets from multiple membrane proteins, facilitating comparative
analysis of lipid binding sites. The inclusion of functions to
generate representative bound poses allows for in-depth
analysis alongside experimental structural data. PyLipID is an
open-source Python package which allows users to customize
the functions. It provides various portals for further
manipulation of the generated data. It can be readily
incorporated into analysis scripts, allowing for high throughput
analysis of big data sets.62

How Does PyLipID Compare with Other Software in
This Area? There are several frameworks developed for
analysis of membrane MD simulations, building on the
considerable expansion in this area of research over recent
years. The closest in spirit to PyLipID is ProLint.66 ProLint is
Web-based, but also available as a standalone Python package
prolintpy. ProLint provides feature-rich visualization and
analysis tools, leaving binding site interpretations up to the
user. In this respect it differs from PyLipID which automati-
cally defines and analyses lipid binding sites to facilitate
comparison with experiments and to provide more directly
pharmaceutically relevant structural insights. A somewhat

simpler membrane protein simulation analysis framework is
provided by MemProtMD,67 a database of CG-MD
simulations of all known membrane protein structures in a
model bilayer, which provides contact-based metrics for
protein−lipid interactions, and information local bilayer
thickness distortion by proteins. MemProtMD is now directly
linked to membrane protein entries by RCSB/PDB. There
have also been several recent packages developed which are
aimed at analysis of lipid bilayers. These include, e.g.,
LiPyphilic,68 which is a fast Python package for analyzing
complex lipid bilayer simulations (but not yet extended to
membrane proteins), and FATSLiM,69 also in Python, which
enables bilayer leaflet identification and bilayer thickness and
area per lipid calculations, and which works for various
(curved) membrane geometries and bilayers including
proteins. In terms of more detailed analysis of interactions at
binding sites, there are several more general approaches for
drug-target residence times via simulations, including, e.g.,
τRAMD,70 which may in principle be adaptable to protein−
lipid interactions.

What Can PyLipID Teach Us about Protein-Lipid
Interactions? We have described a couple of applications of
PyLipID. There is considerable literature on identifying and
characterizing GPCR−cholesterol interactions by MD simu-
lations (e.g., see refs 32, 71, and 72), and it is not our aim to
review these here (for recent reviews see, e.g., refs 12 and 73).
There have also been a number of GPCR structural studies,
e.g., combined with docking of cholesterol74 to generate a
database of predicted binding sites for cholesterol on
membrane proteins, or via analysis of crystal structures of
GPCRs with bound cholesterol molecules.61 PyLipID provides
some new insights into GPCR−cholesterol interactions. In
particular, the analysis of residence times has allowed us to
separate interactions/sites in annular and specific cholesterol
binding sites, the latter showing longer residence times and
having enriched interactions with Leu, Gly, and Ala residues.
Extending this approach to a couple of anionic phospholipids
suggests that long residence time binding sites correlate with
those observed experimentally in cryo-EM structures, indicat-
ing how PyLipID may be used to aid the assignment and
analysis of lipid-like density in newly determined structures.75
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Faustino, I.; Grünewald, F.; Patmanidis, I.; Abdizadeh, H.; Bruininks,
B. M. H.; Wassenaar, T. A.; Kroon, P. C.; Melcr, J.; Nieto, V.;
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