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Abstract

Motivation: Constructing high-quality haplotype-resolved de novo assemblies of diploid genomes is

important for revealing the full extent of structural variation and its role in health and disease. Current

assembly approaches often collapse the two sequences into one haploid consensus sequence and,

therefore, fail to capture the diploid nature of the organism under study. Thus, building an assembler

capable of producing accurate and complete diploid assemblies, while being resource-efficient with

respect to sequencing costs, is a key challenge to be addressed by the bioinformatics community.

Results: We present a novel graph-based approach to diploid assembly, which combines accurate

Illumina data and long-read Pacific Biosciences (PacBio) data. We demonstrate the effectiveness of

our method on a pseudo-diploid yeast genome and show that we require as little as 50� coverage

Illumina data and 10� PacBio data to generate accurate and complete assemblies. Additionally, we

show that our approach has the ability to detect and phase structural variants.

Availability and implementation: https://github.com/whatshap/whatshap

Contact: sgarg@mpi-inf.mpg.de or t.marschall@mpi-inf.mpg.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

There are two homologous copies of every chromosome, one from

each parent, in human and other diploid eukaryotic genomes.

Determining the two genome sequences of those organisms per

chromosome is important in order to correctly understand allele-

specific expression and compound heterozygosity, and in order to

carry out many analyses in the genetics of common diseases and in

population genetics (Glusman et al., 2014; Tewhey et al., 2011).

Furthermore, separate determination of the two haplotype sequen-

ces can in principle avoid genotyping errors in complex regions of

the genome caused by simplistic models that treat variants at nearby

sites as being independent.

The process of assembling two distinct genome sequences from

sequencing reads in a haplotype-aware manner is known as diploid

or haplotype-aware genome assembly and the assembled sequences

are known as ‘haplotigs’. However, next generation sequencing

(NGS) reads are generally of short length and contain errors; there-

fore, solving the diploid genome assembly problem is fundamentally

challenging. Additional challenges inherent in the genome assembly

problem include dealing with short and long genomic repeats, han-

dling general rearrangements present in the genome, and scaling effi-

ciently with input size, genome size and hardware availability.

Over the last decade, the development of various NGS technolo-

gies has impacted the assembly problem. In theory, the problem of

de novo assembly—computing the consensus of two or more

sequences—is NP-hard, when the problem is modeled either with

string graphs or with de Bruijn graphs (Medvedev et al., 2007). In

the past decades, a multitude of heuristic approaches to haploid de

novo assembly have been proposed (Idury and Waterman, 1995;

Myers, 1995, 2005; Nagarajan and Pop, 2009, 2013; Pevzner et al.,

2001; Sovi�c et al., 2013).

However, even with Sanger (reads of the order of 800–1000 base

pairs) and Illumina sequencing, which deliver short reads with low

error rates, assembly of heterozygous diploid genomes has been a dif-

ficult problem (Levy et al., 2007; Vinson et al., 2005). In practice,

there are several short-read assemblers based on Illumina data for
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heterozygous genomes (Bankevich et al., 2012; Li, 2015b; Kajitani

et al., 2014; Pryszcz and Gabaldón, 2016; Simpson and Durbin,

2012). The assemblies that they produce are accurate, but contain

gaps and are composed of relatively short contigs and scaffolds. Third

generation sequencing technologies such as methods available from

Pacific Biosciences (PacBio) and Oxford Nanopore Technologies

(ONT) deliver much longer reads, but with high error rates. There are

now several long-read assemblers (Berlin et al., 2015; Chin et al.,

2013; Hunt et al., 2015; Koren et al., 2017; Lin et al., 2016; Vaser

et al., 2017; Xiao et al., 2016) that use these long-read data for de

novo assembly. The assemblies that are delivered from these assem-

blers are more contiguous, with longer contigs and scaffolds. Finally,

there are hybrid assemblers that take advantage of long-read data

(with its high error rate) and short-read data (with its low error rate)

(Antipov et al., 2016; Bashir et al., 2012; Zimin et al., 2017) and at-

tempt to combine the best aspects of both. These hybrid assemblers

have the potential to deliver highly accurate, repeat-resolved

assemblies.

However, across the short, long and hybrid categories, most

assemblers require collapsing the two genome sequences of a diploid

sample into a single haploid ‘consensus’ sequence (or primary con-

tig). The consensus sequence is obtained by merging the distinct

alleles at regions of heterozygosity into a single allele, and therefore

losing a lot of information. The resulting haploid de novo assembly

does not represent the true characteristics of the diploid input

genome.

Current approaches to reconstruct diploid genomes usually rely

on collapsing assembly graphs to haploid contigs in intermediate

steps (contig-based assembly) (Chin et al., 2016; Mostovoy et al.,

2016; Pendleton et al., 2015; Seo et al., 2016), or on using a refer-

ence genome to partition the reads by haplotype (reference-guided

assembly) (Chaisson et al., 2017b; Glusman et al., 2014; Martin

et al., 2016). In both types of approaches, the reads are first aligned

(either to the reference genome or the contigs). Second, variants

such as SNVs are called based on the aligned reads. Finally, the

detected variants are phased using long reads from either the same

or a different sequencing technology. Because these methods repre-

sent the genome with haploid sequences in some processing steps,

we refer to them as linear approaches.

For both reference-guided and contig-based assembly, this third

step—solving the phasing problem—has been formulated as the

minimum error correction (MEC) optimization problem (Cilibrasi

et al., 2007; Lippert et al., 2002). The reviews by Rhee et al. (2016)

and Klau and Marschall (2017) provide introductions to this formu-

lation. There are several disadvantages to reference-guided assem-

bly; for example, the reads are initially aligned to the reference

genome and therefore the process contains reference bias. Also, this

approach can fail to detect sequences or large structural variants

(SVs) that are unique to the genome being assembled.

However, there are also several reasons why the set of sequences/

contigs produced by contig-based assembly is not ideal. First, the

contigs produced by haploid assemblers ignore the heterozygous

variants in complex regions, opting instead to break contiguity to

express even moderate complexity. Second, the contigs do not cap-

ture end-to-end information in the genome; the ordering or relation-

ships between contigs are critical in order to generate end-to-end

chromosomal-length assemblies.

One example of a newer diploid assembly method is Weisenfeld

et al. (2017), where 10� genomics-linked read data is used to deter-

mine the actual diploid genome sequence. Their approach is based

on de Bruijn graphs and applies a series of graph simplifications,

where simple bubbles are detected and phased by using (short) reads

that stem from the same (long) input molecule, which is determined

through barcoding. There is also a recent study by Chin et al.

(2016), who follow a linear phasing approach to generate diploid

assemblies (haplotigs) for diploid genomes by using PacBio reads.

1.1 Contributions
We propose a graph-based approach for generating haplotype-

aware assemblies of single individuals. Our contribution is two-fold.

First, we propose a hybrid approach, integrating accurate Illumina

and long PacBio reads in order to generate diploid assemblies. The

Illumina reads are used to generate an assembly graph that serves as

a backbone for subsequent PacBio-based steps. Second, we general-

ize the diploid assembly problem to encompass constructing the dip-

loid assembly directly from the underlying assembly graph and

thereby avoid ‘flattening’ the assemblies to linear sequences at any

time. The two haplotype sequences can be seen as two paths over

the regions of heterozygosity in the assembly graph.

Phasing using an assembly graph has several advantages over lin-

ear approaches. In particular, it allows us to represent and phase

heterozygous SVs, which are represented by bubbles in the assembly

graph. A bubble is defined as a set of disjoint paths that share the

same start and end nodes. Figure 1 illustrates how such bubbles can

represent both small variants (which we define as SNVs and indels

up to 50 base pairs in length) and larger SVs. Handling small var-

iants and SVs in a unified way facilitates phasing larger blocks be-

cause haplotype reconstruction is not disrupted by SVs. Figure 2

illustrates this conceptual advantage. The figure shows four SNVs

separated by two large SVs, and six reads spanning these variants.

Out of those reads, the two reads r3 and r4 span the two SVs, but do

not cover any of the two SNVs. Conversely, the reads which cover

the SNVs on either side do not cover the SVs. In this case, Falcon

Unzip generates a primary contig that spans from one end to the

other, but generates incomplete and fragmented haplotigs (phased

primary contigs in the language of Falcon Unzip) covering only the

SNVs. In contrast, our graph-based approach attempts to phase

across all types of variation, including SVs.

We demonstrate the feasibility of our approach by performing a

haplotype-aware de novo assembly of a whole pseudo-diploid yeast

(SK1þY12) genome. We show that we generate more accurate and

more contiguous phased diploid genomes compared to Falcon

Unzip. Through empirical testing with different input coverage lev-

els, we demonstrate that we require only 50� short-read coverage

and as little as 10� long-read coverage data to generate diploid

assemblies. This illustrates that our hybrid strategy is a cost-effective

way of generating haplotype-resolved assemblies. Finally, we show

that we successfully detect and phase large SVs.

SVSNV

Fig. 1. Based on reads (middle) from the two sequences (top), the bubbles in

the graph (bottom) show three different heterozygous variants; the first one

is an SNV, the second one is an SV, and the third one is an indel
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2 Diploid assembly pipeline

Our assembly workflow uses short read (e.g. Illumina) and long

read (e.g. PacBio) data in combination, as illustrated in Figure 3. We

describe the details of this process below.

2.1 Sequence graph
Our first step is to construct a sequence graph using short read data

with a low error rate, as provided by the Illumina platform.

Definition 1 (Sequence graph). We define a sequence graph Gs

Ns;Esð Þ as a bidirected graph, consisting of a set of nodes Ns and a

set of edges Es. The nodes ni are sequences over an alphabet

A ¼ fA;C;G;Tg. For each node ni 2 Ns, its reverse-complement is

denoted by n0i. An edge ei0 j connects the nodes n0i to nj. Nodes may be

traversed in either the forward or reverse direction, with the se-

quence being reverse-complemented in the reverse direction.

In words, edges represent adjacencies between the sequences of

the nodes they connect. Thus, the graph implicitly encodes longer

sequences as the concatenated sequences of the nodes along walks

through the graph.

To illustrate this, we consider an example sequence graph Gs in

Figure 4. It consists of a node set Ns ¼ f1; 10;2; 20;3; 30; . . .g and an

edge set Es ¼ f1! 2; 1! 30 . . .g.

To generate the sequence graph Gs, we first employ SPAdes

(Bankevich et al., 2012), which constructs and simplifies a de Bruijn

graph, and we subsequently remove the overlaps between the nodes

in the resulting graph in a process we call bluntification, explained

in the Supplementary Material.

2.2 Bubble detection in sequence graphs
To account for heterozygosity in a diploid genome, we perform bub-

ble detection. The notion of bubble we use is closely based on the

ultrabubble concept as defined by Paten et al. (2017). Briefly, bub-

bles have the following properties:

• Two-node-connectivity. A bubble is bounded by fixed start and

end nodes. Removing both the start and end nodes disconnects

the bubble from the rest of the graph. Note that a bubble can be

viewed in either orientation. If the graph is traversed in one dir-

ection, and a bubble is encountered that starts at a node ni and

ends at a node n0j, then that bubble can also be described as the

bubble with start node nj and end node n0i, as it would be encoun-

tered when traversing the graph in the opposite direction.
• Directed acyclicity. A bubble is directed and acyclic.
• Directionality. All paths through the bubble flow from start to end.
• Minimality. No vertex in the bubble other than the start node ni

(with proper orientation) forms a pair with the end node n0j (with

proper orientation) that satisfies the above properties. Similarly,

no vertex in the bubble other than n0j forms such a pair with ni.

A bubble can represent a potential sequencing error or genetic

variation within a set of homologous molecules. We represent bub-

bles as collections of alternative paths.

Definition 2 (Path). We define path ai as a linear ordering of

nodes ai ¼ n1; . . . nm.

A bubble is a collection of paths with the same start and end

node and can be defined as follows:

Definition 3 (Bubble). Formally, a bubble is represented as a col-

lection of allele paths lk ¼ fa1; a2 . . .g where

a1 ¼ n1;n2; . . . nmð Þ; a2 ¼ n1; n3 . . . nmð Þ

and so on.

For example, Figure 4 shows a set of two bubbles L ¼ fl1; l2g,
and the set of allele paths for the bubble l2 is fa1; a2; a3g, where

a1 ¼ 6; 7; 80; 11ð Þ; a2 ¼ 6; 9;11ð Þ; a3 ¼ 6; 10; 11ð Þ.

2.3 PacBio alignments
For phasing bubbles, we consider long reads from third generation

sequence technologies such as PacBio. We align these long reads to

r5

r4

assembly graph

Phased PacBio reads

SNV1 SNV2 SV1 SV2 SNV3 SNV4

PacBio reads

haplotigs
primary contig

Falcon Unzip
graph-based

Falcon Unzip

graph-based

r1
r2 r3 r6

Fig. 2. Input: an assembly graph (top) (consisting of four SNVs and two SVs)

and the PacBio reads r1; r2 ; r3; r4; r5; r6 (gray). Output: the phased reads (col-

ored in blue and red) and haplotigs (bottom) using Falcon Unzip and our ap-

proach. Our graph-based approach also phases the central region. Contrarily,

Falcon Unzip does not phase it, and so the region does not contribute to the

total haplotig size

Fig. 3. Overview of the diploid assembly pipeline

r3rr

10: TACC

11: ATAT
1: ACTA

2: A

5: TGA 6: AACT

9: CG

8: T

7: A

3: C

4: TG

r1

r4
r2

Fig. 4. For a subgraph of Gs, the example shows two bubbles l1 and l2, and

their corresponding alleles. Reads r1; r2; r3; r4 traverse these bubbles
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the sequence graph Gs to generate paths through the graph. We per-

form graph alignment using a banded version of the algorithm

described by Rautiainen and Marschall (2017), which is a general-

ization of semi-global alignment to sequence-to-graph alignment

(https://github.com/maickrau/GraphAligner).

There are several advantages of aligning PacBio reads to graphs

instead of to a reference genome or contigs. SNPs often occur near

larger variants such as insertions and deletions. SNPs are thus often

missed in these regions when reads contain large mismatches with

respect to the linear sequences they are aligned against. Graph align-

ment allows the alignment of reads to variants appropriate to each

read’s phase, and to other types of complex events.

Definition 4 (Alignment). We define a set of read alignments as

R ¼ fr1; r2; . . . ; rjg, where each read alignment rj is given by a path

of oriented nodes in graph Gs, written rj ¼ n1; . . . ; nmð Þ.

For example, in Figure 4, R ¼ fr1; r2; r3; r4g and the read align-

ment path r1 can be written as r1 ¼ 1; 2; 5;6;7; 80;11ð Þ

2.4 Bubble ordering
The next stage of our algorithm is to obtain an ordering of the bubbles

L ¼ l1; l2; . . . lkð Þ, which we refer to as a bubble chain. For example, in

Figure 4, L ¼ l1; l2ð Þ is a bubble chain. A general sequence graph Gs is

cyclic, due to different types of repeats present in the genome that cre-

ate both short and long cycles. Ordering bubbles in such a graph is

closely related to resolving repeats, which is a challenging problem. In

this study, we rely on the Canu algorithm (Koren et al., 2017) to pro-

vide a bubble ordering by aligning Canu-generated contigs to our se-

quence graph. Furthermore, we detect repetitive bubbles—that is,

bubbles that would need to be traversed more than once in a final as-

sembly—based on the depth of coverage of aligned PacBio reads, and

remove such bubbles. We deem a bubble repetitive if the number of

PacBio reads aligned to its starting node is greater than a coverage

threshold specified by the user over the genome. For example, given a

30� (¼ c) dataset and a repeat that occurs 20 (¼ r) times in the gen-

ome, then the coverage at the bubble on average is 600 (¼ r � c).

2.5 Graph-based phasing
Given a sequence graph Gs, ordered bubbles L, and PacBio align-

ments R, the goal is to reconstruct two haplotype sequences

fh0; h1g, called haplotigs, along each chain of bubbles.

Definition 5 (Haplotype path). Formally, a pair of haplotype

paths (h0, h1) can be defined as two paths through a bubble chain in

the sequence graph and denoted as:

h0 ¼ ns;n2; . . . neð Þ

h1 ¼ ns;n3; . . . neð Þ

where h0 and h1 may differ at the heterozygous regions defined by

bubbles, and ns and ne are the start and end of the bubble chain.

The two genome sequences can be seen as two walks through the

bubbles L in the sequence graph Gs that are consistent with the

PacBio alignments R. In maximum likelihood terminology, the goal

is to find the most likely haplotype paths given the alignment paths

traversing through the bubbles. For example, in Figure 4, given bub-

bles (l1, l2) and PacBio alignments R ¼ fr1; r2; r3; r4g, the goal is to

find two maximum likelihood haplotype paths fh0; h1g such that

each PacBio alignment is assigned to one of the haplotypes.

For a linear chain of bubbles L, the task of finding these two haplo-

type paths is equivalent to picking one allele path per haplotype for

each bubble. To this end, we note that an alignment path rj for a given

read can be viewed as a sequence of allele paths traversed in consecutive

bubbles. We represent this association of reads to allele paths in the

form of a bubble matrix F 2 f0; 1; . . . m;�gjRj�jLj, where jRj is the

number of reads, jLj is the number of bubbles along a chromosome,

and m ¼ maxkjlkj is the maximum number of paths (or alleles) in any

bubble lk 2 L. The entry F j;kð Þ 2 f0; 1; . . . m;�g represents the allele

path index in bubble lk that read rj is aligned to, where a value of ‘–’

indicates that the read does not cover the bubble. In Figure 4, note that

the read alignment path r4 does not cover all the nodes in any of the al-

lele paths in l2 and hence we set the corresponding value F 4;2ð Þ to ‘–’.

As a result, this read covers only one bubble, which renders it unin-

formative for phasing, and we do not consider it further. The remaining

phasing-informative reads in Figure 4 are represented as:

F ¼

l1 l2

r1

r2

r3

0 0

2 2

1 2

0
BBBBBB@

1
CCCCCCA

(1)

Corresponding to F , we have a weight matrix W 2W jRj�jLj�m.

Each entry in W j; kð Þ is a tuple storing a weight for each allele,

which can for instance reflect ‘phred-scaled’ (i.e. �10 log pð Þ) proba-

bilities that the read supports a given allele. The weight of ‘0’ at the

i-th entry in the tupleW j;kð Þ encodes that the read rj is aligned to al-

lele path index i in bubble lk. The remaining non-zero values in tuple

W j; kð Þ store the confidence scores of switching the aligned read rj to

other alleles in bubble lk.

For example, the corresponding weight matrix W j;kð Þ for F (1)

is given by:

W ¼

l1 l2

r1

r2

r3

0;q1; q2½ � 0;q3; q4½ �

q9;q8; 0½ � q11; q5;0½ �

q10; 0; q7½ � q5;q6; 0½ �

0
BBBBBB@

1
CCCCCCA

(2)

where the entry W 1; 1ð Þ value 0;q1; q2½ � means that the read r0 is

aligned to allele a0 at bubble l1. Additionally, the cost of flipping it

to other alleles is q1 for a1 and q2 for a2.

We are now ready to present the problem formulation. The main

insight is that solving phasing for bubble chains is similar to solving

the phasing problem for multi-allelic SNVs in reference-based haplo-

type reconstruction. Therefore, we build on the previous formulation

of the MEC problem (Lancia et al., 2001) and its weighted version

(wMEC) (Lippert et al., 2002; Patterson et al., 2014) and further

adapt it to work on a subgraph consisting of a chain of bubbles, defin-

ing the Minimum Error Correction for graphs (gMEC) problem.

Problem 1 (wMEC for bubble chains (gMEC)). Assume we are

given a bubble chain L ¼ l1; . . . ; ljLj
� �

and a set R of aligned reads rj

that pass through these bubbles, with F j; kð Þ indicating the index of

the allele in bubble lk that the alignment of read rj passes through, or

‘–’ if it does not pass through lk, and thatW j;k; ið Þ is the cost of flip-

ping F j;kð Þ to new value i. We want to find two paths through L,

each of which consists of a sequence of allele indices specifying

which allele the path takes in each bubble lk, and then to flip entries

of F such that each row is equal to one of the paths for all non-dash

entries while the incurred costs are minimized.

Note that the wMEC problem constitutes a special case of

gMEC, where the input graph is a chain of bi-allelic bubbles. Next,

we describe how to solve gMEC via dynamic programming (DP).
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In the WhatsHap algorithm (Patterson et al., 2014), wMEC is

solved in an exact manner for bi-allelic variants using a dynamic

programing approach. It runs in O 2c � jLjð Þ time, where jLj is the

number of variants to be phased and c is the maximum physical

coverage. The basic idea is to proceed column-wise from left to right

over a set of active reads. Each read remains active from its first

non-dash position to its last non-dash position in F . In column k,

we denote the set of active reads as A(k), particularly,

c ¼ maxkfjA kð Þjg. The algorithm now considers all bipartitions of

A(k), that is, all pairs B ¼ P;Qð Þ of disjoint sets P and Q such that

P [Q ¼ A kð Þ. We fill a DP table column wise and for each column

k of F , we fill a DP table column C k; �ð Þ with 2jA kð Þj entries corre-

sponding to these bipartitions of A(k). Each entry C(k, B) is equal to

the cost of solving wMEC on the partial matrix consisting of col-

umns 1 to k of F such that the bipartition of the full read set A 1ð Þ
[ . . . [ A kð Þ extends B according to the below definition.

Definition 6 (Bipartition extension). For a given set A and a sub-

set A0 � A, a bipartition B ¼ P;Qð Þ of A is said to extend a biparti-

tion B0 ¼ P0;Q0ð Þ of A0 if P0 � P and Q0 � Q.

Once all entries of the DP table have been computed, the min-

imum of the last column minBfC jLj;Bð Þg indicates the optimal

wMEC cost and the optimal bipartition can be obtained by back-

tracing. We refer the reader to Patterson et al. (2014) for a more

detailed explanation of this algorithm.

Solving gMEC for bubble chains

The basic idea is to now extend the dynamic program to consider all

possible path-pairs through each bubble. In the bi-allelic case, we have

only two paths in every bubble and, therefore, there is only one pair of

distinct paths. In the multi-allelic case, we consider all possible path

pairs in each bubble. The goal is to find an optimal pair of paths from

the sequence graph Gs. Analogously to the WhatsHap algorithm for

wMEC, we proceed from left to right using dynamic programming.

To explain the dynamic programming algorithm that we use,

consider a toy example with the weight matrix (2):

W ¼

l1 l2

r1

r2

r3

0; 10; 5½ � 0; 5;8½ �

7; 6;0½ � 5; 2;0½ �

2; 0;4½ � 4; 3;0½ �

0
BBBBBB@

1
CCCCCCA

(3)

DP cell initialization

Along similar lines as Patterson et al. (2014), we first compute the local

cost incurred by bipartition B ¼ R; Sð Þ in column k, denoted DC k;Bð Þ,
and later combine it with the corresponding costs incurred in previous

columns. The cost Wi
k;R of flipping all entries in a read set R to an allele

index i 2 f0; 1; . . . jlkjg is given by

Wi
k;R ¼

X
j2R

F j; kð Þ 6¼ i½ �½ � � W j; k; ið Þ;

In the same manner, we can compute costs Wi
k;S for read set S to an

allele index i.

To compute the cost incurred by a bipartition in a particular col-

umn k, we minimize over all possible pairs of alleles in bubble lk.

There are
jlkj
2

� �
such pairs. So given the corresponding column

vectors F kð Þ and W kð Þ of the bubble matrix and of the weight

matrix, respectively, and the bipartition B ¼ R; Sð Þ of active reads

A(k), the cost DC k;Bð Þ is computed by minimizing over all pairs of

alleles A ¼ f x; yð Þ 2 lk � lkjx 6¼ y;x < yg:

DC k;Bð Þ ¼ min
p0 ;p1ð Þ2A

minfWp0

k;S þWp1

k;R;W
p1

k;S þWp0

k;Rg
n o

; (4)

where the outer minimization considers all allele pairs and the inner

minimization considers the two possibilities of assigning those two

alleles to the two haplotypes.

DP column initialization

We initialize the first DP column by setting C 1;Bð Þ :¼ DC 1;Bð Þ for

all possible bipartitions B. We enumerate all bipartitions in Gray

code order, as done previously in Patterson et al. (2014). This

ensures that only one read is moved from one set to another in each

step, facilitating constant time updates of the values Wi
k;S.

For a bubble matrix (1) and its corresponding weight matrix (3),

the DP column cell for bipartition B ¼ R; Sð Þ is given by

DC k; R; Sð Þð Þ ¼ min
n

W0
k;R þW1

k;S;W
1
k;R þW2

k;S;

W0
k;R þW2

k;S;W
1
k;R þW0

k;S;

W2
k;R þW1

k;S;W
2
k;R þW0

k;S

o

Now, plugging values from (3) into the above equation for different

bipartitions, DC 1; :ð Þ can be filled as follows:

DC 1; fr1; r2; r3g;1ð Þð Þ ¼

minf9þ 0; 16þ 0;9þ 0; 16þ 0;9þ 0;9þ 0g ¼ 9

Similarly, we can compute DC 1; :ð Þ for other bipartitions fr1; r2g;ð
fr3gÞ; fr1; r3g; fr2gð Þ; 1; fr1; r2; r3gð Þ; fr3g; fr1; r2gð Þ; fr2g;ð fr1; r3gÞ:

Due to the use of the Gray code order, we can perform this oper-

ation for one DP column in O jlkj
2

� �
� 2jA kð Þj

� �
time.

DP column recurrence

Note that C(k, B) is the cost of an optimal solution of Problem 1 for in-

put matrices restricted to the first k columns under the additional con-

straint that the solution’s bipartition of the full read set extends B. Since

column k lists all bipartitions, the optimal solution to the input matrix

consisting of the first k columns would be given by the minimum in that

column. To compute entries in column C kþ 1; �ð Þ, we add up local

costs incurred in column kþ1 and costs from the previous column (see

Algorithm 2). To adhere to the semantics of C kþ 1;Bð Þ described

above, only entries in column k whose bipartitions are compatible with

B are to be considered as possible ‘predecessors’ of C kþ 1;Bð Þ.

Definition 7 (Bipartition compatibility). For bipartitions

B ¼ P;Qð Þ of A and B0 ¼ P0;Q0ð Þ of A0, B and B0 are compatible if

P \ A \ A0 ¼ P0 \ A \ A0 and Q \ A \ A0 ¼ Q0 \ A \ A0, denoted by

B ’ B0

For example, consider the second column from (1) and (3). Let

us compute C 2; :ð Þ for different bipartitions using recurrence in

Algorithm 2:

C 2; fr1; r2; r3g;1ð Þð Þ ¼minf9þ0;10þ0;9þ0;10þ0;8þ0;8þ0g

þminfC 1; fr1; r2; r3g;1ð Þg ¼ 8þ9¼ 17ð

To fill DP column C 2; :ð Þ, we can analogously compute this

for the remaining bipartitions fr1; r2g; fr3gð Þ, fr1; r3g; fr2gð Þ;
1; fr1; r2; r3gð Þ; fr3g; fr1; r2gð Þ, and fr2g; fr1; r3gð Þ.
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Backtracing

We can backtrace from the last column C jLj; �ð Þ to compute an opti-

mal bipartition B ¼ R; Sð Þ of all input reads. Given this bipartition,

we obtain minimum-cost haplotypes as follows: Let Bk ¼ Rk; Skð Þ
with Rk ¼ R \ A kð Þ and Sk ¼ S \ A kð Þ be the induced bipartition in

column k. We then set

h0 kð Þ ¼ ai with i :¼ argmin
i02f0;1;...jlk jg

Wi0

k;Rk
;

h1 kð Þ ¼ aj with j :¼ argmin
j02f0;1;...jlk jg

Wj0

k;Sk
;

where ai and aj refer to the corresponding allele paths of bubble k

(see Definition 2).

Time complexity

Computing one DP column takes O
�

m
2

�
� 2jA kð Þj

� �
time, and the

total running time is O
�m

2

�
� 2jA kð Þj � jLj

� �
for jLj bubbles, where

m is the maximum number of alleles in any bubble from L. Running

time is independent of read-length and, therefore, the algorithm is

suitable for the increased read lengths available from upcoming

sequencing technologies.

2.6 Generation of final assemblies
To generate final assemblies, for every connected component in

the base sequence graph Gs, we traverse along the haplotype paths

(h0, h1) running through that component. For the nodes in each

path, we concatenate together the nodes’ sequences from the base se-

quence graph Gs (in either in their forward or reverse-complement

orientations, as specified by the path) in order to generate the final

haplotig sequences.

3 Datasets and experimental setup

To evaluate the performance of our method, we consider the real

data available from two haploid yeast strains SK1 and Y12 (Yue

et al., 2017), which we combine to generate a pseudo-diploid yeast.

Both the SK1 and Y12 yeast strains are deeply sequenced using

Illumina and PacBio sequencing. The Illumina dataset is sequenced

to an average coverage of 469�with 151 bp paired end reads. We

randomly downsample the dataset to a lower average coverage of

50�. The PacBio data is sequenced to an average coverage of

334�with an average read length of 4510 bp. For coverage analysis,

we randomly downsample the PacBio reads to obtain datasets of dif-

ferent coverages 10�; 20� and 30� with their average read-lengths

of 4482, 4501 and 4516 bp respectively.

3.1 Pipeline implementation
3.1.1 Sequence graph

The first step in our pipeline is to perform error correction on the

Illumina data by using BFC (Li, 2015a), which, in our experience,

retains heterozygosities well for diploid genomes. BFC is used with

default parameters and provided with a genome size of 12.16 Mbp.

The second step is to generate a sequence graph that includes hetero-

zygosity information. To construct such a graph, we first construct

the assembly graph by using a modified version of SPAdes v3.10.1

(Bankevich et al., 2012). We modify the original SPAdes to skip the

bubble removal step and retain the heterozygosity information in

the graph, and run it with default parameters plus the ––only-

assembler option. It uses the short Illumina reads to generate a De

Bruijn-based assembly graph without any error correction. We then

convert the assembly graph to a bluntified sequence graph using VG

(Garrison et al., 2017). After graph simplification, the resulting se-

quence graph has 158 567 nodes and 190 767 edges.

3.1.2 Bubble detection

In the next stage, we use VG’s snarl decomposition algorithm (Paten

et al., 2017) to detect the regions of heterozygosity, or snarls, in the

sequence graph. This results in 29 071 bubbles.

3.1.3 PacBio alignments

After bubble detection, we align different coverage levels (10�,

20� and 30�) of long read PacBio data to the generated sequence

graph using GraphAligner (https://github.com/maickrau/

GraphAligner). This resulted in 21 868, 43 459 and 73 129 PacBio

alignments for input coverages of 10�; 20� and 30�, respectively.

3.1.4 Bubble ordering

To obtain an ordering of bubbles, we perform de novo assembly

using Canu v1.5 (Koren et al., 2017) on each PacBio dataset.

As suggested by Giordano et al. (2017), we use Canu v1.5

with the following parameter values: corMhapSensitivity¼
high, corMinCoverage¼2, correctedErrorRate¼0.10,
minOverlapLength¼499, corMaxEvidenceErate¼0.3.
Next, we align these Canu contigs to the sequence graph to obtain

the bubble ordering, which we define as the sequence of bubbles

encountered by each aligned contig. Note that we use Canu solely

for bubble ordering. In this paper, we restrict ourselves to phasing

bubbles only in unique, non-repetitive regions. We detect repetitive

bubbles based on the coverage depth of the PacBio alignments and

remove them from downstream analyses. The coverage depth

threshold used is 1.67 times the average coverage. This results in

Algorithm 1 DP COLUMN INITIALIZATION

Input: Set A(1) of reads covering bubble l1.

Output: Cð1; :Þ
for all bipartitions B of column k do

Compute DCðk;BÞ using Equation 4 and store in C(1, B).

end

Algorithm 2 DP TABLE

Input: Cð1; :Þ for all bipartitions of bubble k.

Output: Cðk; :Þ for all the columns k up to the last column jLj
for all columns k 2 f2 . . . jLjg do

for all bipartitions B 2 BðAðkÞÞ do

Compute DCðk;BÞ using Equation 4.

Combine it with cost from column k – 1 to obtain cost

for column k:

Cðk;BÞ ¼ DCðk;BÞ þ min
B02BðAðk�1ÞÞ:B’B0

Cðk� 1;B0Þ

end

where BðAðkÞÞ denotes the set of all bipartitions of A(k).

end
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148, 80 and 71 bubble chains, and 26 576, 27 556 and 27 741 bub-

bles, at coverages of 10�; 20� and 30� respectively.

3.1.5 Graph-based phasing

For each of the coverage conditions, we take as input the ordered

bubbles, the long-read PacBio alignments and the sequence graph,

and solve the gMEC problem by assuming constant weights in the

weight matrixW. The optimal bipartition is computed via backtrac-

ing and the final haplotigs are generated by concatenating the node

labels of the two optimal paths. These steps have been implemented

in our WhatsHap software as a subcommand phasegraph.

3.2 Running Falcon Unzip
The main goal of this study is to measure the performance of phas-

ing using a graph-based approach, and, in particular, the quality of

haplotypes at heterozygous sites achievable by using this method

with low coverage PacBio data. Therefore, we compared our graph-

based approach to the state-of-the-art contig based phasing method

Falcon Unzip, which also generates diploid assemblies.

The Falcon Unzip (Chin et al., 2016) algorithm first constructs a

string graph composed of ‘haploid consensus’ contigs, with bubbles

representing SV sites between homologous loci. Sequenced reads are

then phased and separated for each haplotype on the basis of hetero-

zygous positions. Phased reads are finally used to assemble the back-

bone sequence (primary contigs) and the alternative haplotype

sequences (haplotigs). The combination of primary contigs and hap-

lotigs constitutes the final diploid assembly, which includes phasing

information dividing single-nucleotide polymorphisms and SVs be-

tween the two haplotypes.

We ran Falcon Unzip using the parameters given in the official

parameter guide (http://pb-falcon.readthedocs.io/en/latest/parame

ters.html). We tried to run Falcon Unzip for lower coverages of

10� and 20�, but it did not generate output in these cases (and we

assume it is not designed for such low coverages). Therefore, we

only ran Falcon Unzip for 30� PacBio coverage. Primary contigs

and haplotigs were polished using the Quiver algorithm and cor-

rected for SNPs and indels using Illumina data via Pilon, with the

parameters ‘–diploid’ and ‘–fix all’ (Walker et al., 2014).

3.3 Assembly performance assessment
To evaluate the accuracy of the predicted haplotypes, we align refer-

ence assemblies of the two yeast strains SK1 and Y12 (Yue et al.,

2017) to the sequence graph. We emphasize that these reference

assemblies are only used for evaluation purposes and are not a part

of our assembly pipeline. We use the following performance meas-

ures for the evaluation of diploid assemblies:

3.3.1 Phasing error rate

Over the yeast genome, we compare the different diploid assemblies

with the ground truth haploid genomes of SK1 and Y12. As with the

reference assemblies, we align the haplotigs produced by Falcon

Unzip to our sequence graph. For each phased bubble chain, the pre-

dicted haplotype is expressed as a mosaic of the two true haplotypes,

minimizing the number of switches. This minimum then gives the

number of switch errors. The phasing error rate is defined as the

number of switch errors divided by the number of phased bubbles.

Figure 5 illustrates this calculation for a toy example. The top panel

shows the true references aligned to the sequence graph. At the bot-

tom, predicted haplotypes (from Falcon Unzip or our graph-based

approach) are aligned to the graph. Comparing the true and pre-

dicted haplotypes, we see one switch between SV1 and SV2, which

means that the switch error count is one. The number of phase con-

nections between consecutive bubbles is five and the resulting switch

error rate for this example is 1/5.

3.3.2 Average percent identity

We consider the best assignment of each haplotig to either of the

two true references, obtained by aligning the haplotig to the referen-

ces. For each whole diploid assembly, we compute the average of

the best-alignment percent identities over all haplotigs.

3.3.3 Assembly contiguity

We assess the contiguity of the assemblies by computing the N50 of

haplotig size.

3.3.4 Assembly completeness

We consider two assembly completeness statistics: first, the total

length of haplotigs assembled by each method, and second, the total

number of unphased contigs.

4 Results

In this section, we present the results of our analysis of the diploid

assemblies generated by our method and by Falcon Unzip on the

datasets described above.

4.1 Coverage analysis
To discover a cost-effective method for assembling a diploid gen-

ome, we consider PacBio datasets that vary in terms of coverage—

specifically, 10�, 20� and 30� coverage are considered. One of the

primary aims of our study is to compare two approaches—the

graph-based approach we implemented and the contig-based phas-

ing done by Falcon Unzip. In doing so, we quantify the agreement

between the diploid assemblies generated by both methods and the

true references. Table 1 shows the assembly performance statistics

for both of these methods. In order to assess the accuracy of the

competing diploid assemblies, we compute the phasing error rate

and the average percent identity at different PacBio coverages. For

the graph-based approach, we observe that as we increase the long

read coverage from 10� to 30�, the average identity of haplotigs

increases from 99.5% to 99.8% and the phasing error rate decreases

from 2.5% to 0.7%. In contrast, Falcon Unzip produces haplotigs

with an average identity of 99.4% and phasing error rate of 3.8% at

30� coverage. Overall, comparing the agreement between the

graph-based approach (at 10� coverage) and Falcon Unzip (at

30� coverage) to the true references, our graph-based approach

delivers better haplotigs with respect to all measures reported in

true
haplotypes

predicted 
haplotypes

SNV1 SNV2 SV1 SV2 SNV3 SNV4

SNV1 SNV2 SV1 SV2 SNV3 SNV4

Fig. 5. For a subgraph of Gs, this example shows the true (top) and predicted

(bottom) versions of two haplotype alignments (red and blue) through a ser-

ies of bubbles. When comparing the correspondingly-colored lines between

the two versions, we see one switch between SV1 and SV2: the prediction

contains one switch error. Six bubbles have been phased, for a total of five

phase connections between consecutive bubbles. Therefore, the phasing

error rate is 1/5
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Table 1. We believe that one reason for this is that we use an

Illumina-based graph as a backbone. Furthermore, optimally solving

the gMEC formulation of the phasing problem most likely contrib-

utes to generating accurate haplotigs. Overall, our analysis supports

the conclusion that our approach delivers accurate haplotype

sequences even at a long read coverage as low as 10�.

To analyse the effect of different coverages of the Illumina short-

read datasets on the quality of our haplotigs, we went back to the

original, high coverage Illumina dataset (which we had been down-

sampled to 50� coverage) and downsampled it to 100� coverage,

i.e. twice the amount of reads used above. We observed that increas-

ing the coverage did not have a drastic effect on the quality of haplo-

tigs. The average phasing identity rose to 99.81% and the total

haplotig size was 23.9 Mbp, which is virtually identical to the results

for 50� as reported in Table 1.

With an increase in average PacBio coverage from 10� to 30�,

the haplotype contiguity achievable by using our approach improves

from 40 kbp to 43 kbp. By way of comparison, Falcon Unzip deliv-

ers haplotigs with a N50 length of 32 kbp at the same coverage level.

This highlights the fact that our approach generates more contigu-

ous haplotypes compared to Falcon Unzip. In terms of haplotype

completeness, our approach yields diploid assemblies of length 20.7,

21.1 and 23.9 Mbp at average PacBio coverages of 10�, 20� and

30�, respectively. At coverage 30�, Falcon Unzip delivers a total as-

sembly size of 16.6 Mbp, while the total length of both haplotypes

of the pseudo-diploid yeast genome is 24.3 Mbp. Our approach

therefore delivers more complete haplotypes at a long-read coverage

of 10� compared to Falcon Unzip at a coverage of 30�. There are 2

haplotigs that are not phased by our approach; this is due to the lack

of heterozygosity over those regions. In comparison there are 77

(out of 123) contigs that are not phased by Falcon Unzip. In sum-

mary, our graph-based approach delivers complete and contiguous

haplotype sequences even at a relatively low coverage of 10�.

4.2 Bubble characterization
We attempted to characterize the nature of the heterozygous genomic

variation encoded in the phased bubbles. There are 25 033 bi-allelic

bubbles phased by our approach when using 30� coverage PacBio

data. Of these bubbles, there are 15293 for which both allele sequen-

ces have a length of at most 1 bp, out of which 15258 are single base

pair substitutions (SNVs) and 35 are 1 bp indels. The remaining 9 740

bubbles either encode two or more small variants or more complex

differences. To differentiate these cases, we computed an alignment

between the two allele paths and refer to those bubbles for which the

alignment contains only substitutions but no indels as ‘pure substitu-

tions’. Figure 6a shows the joint distribution of length and

(Hamming) distance for these pure substitution bubbles. This analysis

reveals, on the one hand, that many longer pure substitions have a

low distance and hence encode multiple SNVs and, on the other hand,

that there also exists a population of more complex substitutions. For

the 1 489 bubbles not classified as pure substitutions, which we refer

to as ‘mixed bubbles’, Figure 6b shows the absolute length difference

between the two alleles. While this difference is small for most bub-

bles, there are 93 bubbles with a length difference of 21 bp or more.

Table 1. Comparison of two phasing methods, Falcon Unzip and

our graph-based approach, at different PacBio coverage levels

Statistics PacBio

coverage

Graph-based

approach

Falcon

Unzip

Diploid assemblies quality

Average identity (%) 10� 99.50 —

20� 99.61 —

30� 99.80 99.4

Phasing error rate (%) 10� 2.5 —

20� 1.5 —

30� 0.7 3.8

Contiguity

N50 haplotig size (bp) 10� 40k —

20� 42k —

30� 43k 32k

Completeness

Haplotig size (Mbp) 10� 20.7 —

20� 21.1 —

30� 23.9 16.6

# Unphased contigs 10� 2 —

20� 2 —

30� 2 77

Note: For computing the ‘haplotig N50’, we only consider those portions

of a contig for which two haplotypes are available, i.e. those regions where

Falcon reports both a primary contig and an alternative haplotig. For ‘haplo-

tig size’, we sum the length of contigs on both haplotypes (‘primary contigs’

plus ‘haplotigs’ in terms of Falcon’s output), so the target size is twice the gen-

ome size (24.3 Mbp in case of yeast).

(a) (b) (c)

Fig. 6. Structural variation analysis of phased bubbles from our graph-based approach. (a) Joint distribution of allele length and Hamming distance, for pure sub-

stitutions. (b) Distribution of size difference between the two alleles, for mixed bubbles and indels. Pure substitutions always have a size difference of 0, and are

not included in the figure. (c) Joint distribution of the length of the longer allele and the substitution rate, for mixed bubbles. With a higher substitution rate, the

bubble has more substitutions, and with a lower rate more indels
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To further elucidate the nature of the sequence differences, Figure 6c

presents the joint distribution of length of the longer allele and substi-

tition rate, which is defined as the fraction of substitutions among all

edit operations done to align the two sequences. That is, a pure inser-

tion or deletion has a substitution rate of 0.

5 Discussion

The Falcon Unzip method (Chin et al., 2016) is based purely on

PacBio reads which exhibit a high error rate; it is therefore not suit-

able for lower coverages. By using (costly) high coverage PacBio

data, Falcon Unzip can generate good quality assemblies with an

average haplotig identity of up to 99.99% (Chin et al., 2016).

However, it follows a conservative approach for phasing genomic

variants. As sketched in Figure 2, Falcon Unzip generates long pri-

mary contigs, but tends to phase them only partially.

To address the above problems, we have created a novel

graph-based approach to diploid genome assembly that combines

different sequencing technologies. By using one technology produc-

ing shorter, more accurate reads, and a second technology delivering

long reads, we produce accurate, complete and contiguous haplo-

types. Our method provides a cost-effective way of generating high

quality diploid assemblies. By performing phasing directly in the

space of sequence graphs—without flattening them into contigs in

intermediate steps—we can phase large SVs, which is not possible

using linear approaches. We have tested our approach using real

data, in the form of a pseudo-diploid yeast genome, and we have

shown that we deliver accurate and complete haplotigs.

Furthermore, we have shown that we can detect and phase SVs.

In this study, our main focus was on phasing unique regions of

the genome. As a next step, we plan to develop techniques for phas-

ing repetitive regions as well. Resolving repeats and polyploid phas-

ing are closely related problems, as pointed out by Chaisson et al.

(2017a). Therefore, we will aim to solve heterozygous variants and

repeats in a joint phasing framework, in order to obtain even more

contiguous diploid genome assemblies that include both types of fea-

tures. That would also remove the need to run an external assembler

(Canu) for bubble ordering. Finally, our framework allows, in prin-

ciple, for incorporating additional data from other sequencing tech-

nologies, such as chromatin conformation capture (Burton et al.,

2013), linked read sequencing (Weisenfeld et al., 2017), and single-

cell template strand sequencing (Strand-seq; Porubsk�y et al., 2016).

In previous studies on reference-based haplotyping, we have shown

such integrative approaches to be very powerful for reconstructing

chromosome-scale haplotypes (Chaisson et al., 2017b; Porubsky

et al., 2017); we believe similar results can be obtained for de novo

diploid genome assemblies.
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