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Improved dynamic imaging 
of multiphase flow by constrained 
tomographic reconstruction
Peter Winkel Rasmussen1*, Henning Osholm Sørensen2,4, Stefan Bruns3,4, 
Anders Bjorholm Dahl1,4 & Anders Nymark Christensen1*

Dynamic tomography has become an important technique to study fluid flow processes in porous 
media. The use of laboratory X-ray tomography instruments is, however, limited by their low 
X-ray brilliance. The prolonged exposure times, in turn, greatly limit temporal resolution. We have 
developed a tomographic reconstruction algorithm that maintains high image quality, despite 
reducing the exposure time and the number of projections significantly. Our approach, based on 
the Simultaneous Iterative Reconstruction Technique, mitigates the problem of few and noisy 
exposures by utilising a high-quality scan of the system before the dynamic process is started. We 
use the high-quality scan to initialise the first time step of the dynamic reconstruction. We further 
constrain regions of the dynamic reconstruction with a segmentation of the static system. We test 
the performance of the algorithm by reconstructing the dynamics of fluid separation in a multiphase 
system. The algorithm is compared quantitatively and qualitatively with several other reconstruction 
algorithms and we show that it can maintain high image quality using only a fraction of the normally 
required number of projections and with a substantially larger noise level. By robustly allowing fewer 
projections and shorter exposure, our algorithm enables the study of faster flow processes using 
laboratory tomography instrumentation but it can also be used to improve the reconstruction quality 
of dynamic synchrotron experiments.

For many years the primary technique to determine fluid flow properties of rocks was to perform classical core 
plug scale tests, where fluids, e.g. gases or liquids, were injected into natural porous media. The absolute perme-
ability could then be established from Darcy’s  law1. During the last 15 years, methods have been developed that 
estimate rock permeability by conducting computational fluid dynamics simulations of single or multiphase 
 flow2–6. These simulations are typically based on three-dimensional pore-scale models of the rocks obtained by 
X-ray tomography. In recent years in situ X-ray tomography has become one of the most popular methods to 
directly study dynamic processes in  rocks7–9 such as fluid flow  properties10–15 and reactive transport in  rocks16–20. 
To capture these phenomena in situ, X-ray tomography has to be performed at high spatial and temporal resolu-
tion. Therefore, most studies have been performed using synchrotron sources, which provide an extremely high 
X-ray beam brilliance, many magnitudes above laboratory X-ray  sources21. Unfortunately, beamtime at synchro-
tron facilities is scarce and performing dynamic experiments require extensive preparation and a substantial 
amount of auxiliary equipment. Therefore, it is desirable to be able to perform some of the dynamic experiments 
using laboratory CT instrumentation.

The low photon flux of laboratory instruments leads to a compromise between image quality and the temporal 
resolution. Temporal resolution can be increased at the expense of image quality by decreasing scanning time. 
Scanning time is decreased by either reducing the exposure time of each projection, which decreases the signal-
to-noise ratio or by reducing the number of projections gathered resulting in artefacts in the  reconstruction9,22. 
Bultreys et al.9 have built a laboratory instrument for in situ microtomography, where they managed to have an 
impressive time scale of just 12 seconds, by using a very short exposure time combined with a reduced number 
of  projections9,23.
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Figure 1 shows how three different data-deficiencies: limited exposure (high noise); a limited number of 
projections; and limited temporal resolution, affect the resulting reconstruction of a dynamic data set. The model 
system shown in Fig. 1 consists of a rock matrix (white) and two immiscible fluid phases, oil (dark grey) and 
water (light grey), that spontaneously separate over time. From this, we see that short exposures lead to a noisy 
reconstruction, few projections to line artefacts and long exposures to smeared fluid boundaries.

The most commonly used reconstruction techniques, filtered back projection (FBP) and its cone beam coun-
terpart the Feldkamp, Davis, and Kress algorithm (FDK) are unsuited for data with the previously mentioned 
 deficiencies24–26.

This is because a good reconstruction using this type of algorithm requires a rather large number of projec-
tions Nproj , preferably Nproj � Npixπ/2 where Npix is the number of detector  pixels26. This means that thousands 
of low noise radiographs are needed to provide high-quality 3D reconstructions, eventually leading to high scan 
times – often in the order of  hours27.

It has previously been shown that iterative reconstruction techniques perform substantially better than FBP 
methods when the Nproj is limited—especially when prior knowledge about the object is  leveraged26.

Prior knowledge can be used to constrain the solution of the reconstruction algorithm to behave in a certain 
way. For instance, a solution can be encouraged to have a noise-free appearance by penalising the norm of the 
derivative of the reconstruction, which is the case in e.g. total variation  regularisation28.

Some simple examples of using prior knowledge are non-negativity constraints and box constraints. Non-
negativity stems from the fact that attenuation coefficients are theoretically always positive. This can be extended 
to also include an upper limit to the values allowed in the reconstruction, i.e. box constraints. Setting the upper 
limit requires that the largest attenuation coefficient in the sample is known.

There have been several different attempts to leverage prior knowledge to improve the quality of reconstruc-
tions through iterative methods. Lin et al.27 introduced a regularisation term during their minimisation similar 
to that of total variation regularisation. The Huber function is applied instead of the seminorm used in total 
variation, which preserves boundaries between different phases in the  reconstruction28. Lin et al.27 tested their 
algorithm on a microCT data set of a Bentheimer sandstone, saturated with a mixture of brine and oil. They 
reported that their suggested algorithm provided a much-enhanced contrast between the reconstructed phases. 
Another approach was suggested by Myers et al.29, who limited the number of unknowns in the equation by sub-
tracting projections recorded on the initial static system from the projections of the dynamic system. This means 
that only the dynamic component is reconstructed. They used Simultaneous Iterative Reconstruction Technique 

Figure 1.  The reconstructions resulting from a tomographic experiment is highly affected by the experimental 
parameters. To visualise the potential effects that might occur in dynamic tomography, we have performed 
reconstructions of three data sets that are each limited in one experimental parameter. (a) The “ideal” 
reconstruction of the system, which is carbonate rock (white) filled with a fluid mixture of oil (dark grey) 
and water (light grey). (b) A reconstruction performed on data limited in the signal-to-noise ratio, i.e. short 
exposure or low X-ray brilliance. (c) A reconstruction from a data set with a low number of projections. (d) A 
reconstruction performed on data with high signal-to-noise (long exposure) and high number of radiographs, 
i.e. long data collection leading to low temporal resolution.
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(SIRT) to reconstruct the difference projection data. Additionally, they encourage spatial localisation of changes 
between time steps, voxels within the static region are set to a fixed value and voxel values in the reconstruction 
are binarised, i.e. voxels are set equal to one of two values. In their case, this corresponds to either be empty or 
filled. Hence the reconstruction will also be automatically segmented.

That method was further developed into a Bayesian framework by Myers et al.30. The Bayesian framework 
iteratively updates a solution such that the maximum a posteriori estimate of the solution is found. The solution 
is modelled as a sum of conditional probabilities, which ensures data fidelity, the physics of the system such as 
noise and correlations across time. Additionally, it is possible to add terms, which constrain the dynamic solution 
by using a static reconstruction, that directly segments the solution and terms that regularise it. The Bayesian 
algorithm presented in Myers et al.30 is equivalent to the one presented in Myers et al.29 if the assumptions such 
as binarisation and spatial localisation are applied to the Bayesian algorithm.

Binarisation or discretisation of attenuation values is commonly used to improve the reconstruction qual-
ity for samples with only a few unmixed well-defined phases. The discrete algebraic reconstruction technique 
(DART) and its extension total variation regularised discrete algebraic reconstruction technique (TVR-DART), 
presented by Batenburg et al.31 and Zhuge et al.32, are designed for such systems.

Van Eyndhoven et al.33 has introduced a method, rSIRT-PWC, similar to the method by Myers et al.29 i.e. 
they separated the dynamic system into two regions – a static and a dynamic. However, they take special care 
to handle pixels along the border of the dynamic and static regions. The attenuation value of pixels within the 
static region is set to zero while the attenuation value of pixels which are either partially or fully in the dynamic 
region is modelled as piecewise constant functions. This assumption is appropriate for their use case where a 
single fluid phase is propagating through a porous media. However, it is not appropriate for two-phase fluid flow 
cases, where the value of a voxel might change multiple times during the dynamic process.

In this paper, we present a method that is developed with the aim to reconstruct dynamic data from two-phase 
fluid flow experiments, but it can be used for any dynamic experiment, where it is possible to obtain a high-
quality static data set of the initial system before initiating the dynamic experiment. This could for example be a 
core flooding experiment where projection images could be obtained from many angles and with long exposure 
times before the actual flooding experiment. With this large amount of low-noise data, a detailed image of the 
different parts of the sample such as rock-matrix and voids could be obtained. The information gathered from a 
high-quality reconstruction of the static system is the crux of our reconstruction algorithm. It is used to initialise 
an iterative reconstruction method, which will bring the algorithm closer to a desirable solution. The reconstruc-
tion of each time is initialised by the solution of the former step. Additionally, we constrain the solution with a 
segmentation of the static data set.

We have investigated the performance of our proposed approach by comparison to other SIRT based algo-
rithms as well as the commonly used filtered-back projection (FBP) algorithm. The SIRT based algorithms we 
compare to are simpler versions of the algorithm we have developed. We compare the results of the different 
algorithms qualitatively by visual inspection and quantitatively using the ℓ2-norm of the residual between the 
reconstructions and the ground truth. Furthermore, we assess the resulting image contrast by comparing histo-
grams of reconstructed voxel values.

Methodology
Reconstruction. An iterative reconstruction technique is used for this work. Typically, iterative reconstruc-
tion techniques attempt to solve the linear system

where x ∈ R
n is the reconstructed volume stored as a vector, b ∈ R

m is the projection data or radiographs also 
stored as a vector, A ∈ R

m×n is the forward projection operator or the system matrix. Determining an x that 
solves the equation is typically an ill-posed problem because there is either no solution or the solution is not 
unique. Hence, a direct inversion of Eq. (1) is not  possible34. We, like others, have chosen to employ the iterative 
reconstruction method, SIRT, because it is a robust technique and it allows us to incorporate prior knowledge 
when solving the linear set of  equations29,33,35,36.

The basic principle behind the SIRT algorithm is that it uses the residual between the forward projection of 
the current reconstruction and the radiographs to update the solution. The update step of the SIRT algorithm 
is given by

where x(k) ∈ R
n is the image obtained at the kth iteration, AT ∈ R

n×m is the backward projection operator, 
C ∈ R

n×n is a diagonal matrix containing the inverse column sums of A i.e. cjj = 1/
∑

i aij , and R ∈ R
m×m is a 

diagonal matrix of the inverse row sums of A i.e. rii = 1/
∑

j aij
37.

The starting point of the reconstruction x(0) can be initialised with an arbitrary vector of real numbers. 
However, a vector where each element has the same value (normally zero) is generally  used29,32,33. In the present 
example, the rock matrix does not change during the experiment. Hence, all the voxels in the rock matrix should 
have constant intensity independent of the time step, and these voxels make up a large part of the sample. This 
means that we can initialise the first time step of the dynamic reconstruction with the high-quality reconstruc-
tion of the static sample. Additionally, for a time series of data, we suggest initialising x(0) for time step, t, with 
the solution of the previous time step, t − 1 , since that reconstruction is expected to be closer to our solution 
than a vector of zeroes.

(1)b = Ax ,

(2)x(k+1) = x(k) + CA
T
R

(
b− Ax(k)

)
,
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As mentioned the rock matrix should not change during the experiment. Hence, we can also use the high-
quality static reconstruction to constrain our solution. We can determine the rock matrix voxels via segmentation 
of the high-quality static reconstruction, which we can use to force the algorithm to keep the voxel values of the 
rock matrix constant. Mathematically, this operation is equivalent to projecting the right hand side in Eq. (2) onto 
a convex set C , which only contains allowed values, using the projection operator PC

38. The projection operator is 
also used to apply the box constraints mentioned in the “Introduction” section, where the set would be given by

with µmin being the smallest attenuation value in the sample and µmax being the largest.
The set we project our solution onto depends on the classification of each voxel, which is derived from the 

segmentation. We obtain the segmentation by thresholding the static reconstruction to identify regions of either 
rock or fluid. Voxels with a value above the threshold are defined as rock and fixed at the expected value while 
voxels below the threshold might be fluid. A voxel is only defined as fluid if its value is between the attenuation 
values of oil and water. This leaves us with voxels which have a larger attenuation value than water but smaller 
than rock. Voxels within this interval cannot be uniquely assigned to either fluid or rock and are therefore sub-
jected to regular box constraints shown in Eq. (3). Using this technique, the iterative updating step is given by

The SIRT algorithm from the ASTRA toolbox is used because it provides highly optimised C++ and CUDA 
code that can be called via a Python (or Matlab) interface. This enables the use of one or more GPUs to perform 
the reconstructions, which is substantially more effective than using  CPUs39–41. The projection operation PC is 
performed with NumPy in Python.

Stopping criteria. A general problem associated with iterative reconstruction methods is to determine 
when the optimal solution is obtained. Ideally, we would like to stop iterating when the minimal ℓ2-norm of the 
residual between the ground truth and the reconstruction is reached i.e. we wish to minimise

where x̄ is the ground truth. Due to noise in the projection data, the solution x(k∗) , which minimises the figure 
of merit, might not be where Eq. (4) converges to as k → ∞38.

The ground truth, x̄ , is not known in a real experiment, so we have to find a way to minimise Eq. (5) without 
being able to compute it directly. Multiple stopping rules have been proposed in the literature, however, using the 
normalised cumulative periodogram (NCP) of the residual, r(k) = b− Ax(k) ∈ R

n , seems to stop the algorithm 
close to the optimal  solution42–45.

The NCP stopping rule is based on the assumption that the residual, r(k) , will have an NCP similar to the 
NCP of white noise when Eq. (5) is minimised, because there should only be white noise left in the residual at 
this point. This means that all information have been extracted from the projection data and the reconstruction 
can therefore be terminated.

Seeing if the residual is consistent with white noise requires calculating the periodogram. A periodogram 
is defined as the absolute squared values of the discrete Fourier coefficients of a vector. The periodogram of the 
residual vector is given

DFT denotes the discrete Fourier transform and q = ⌈n/2⌉ . The reason why only approximately half of the ele-
ments of rr are used to calculate p̂ is because the Fourier coefficients in the power spectrum of a real vector are 
symmetric around the midpoint of the vector.

The normalised cumulative periodogram (NCP) is now defined as

Note that the first element of p̂ , known as the DC-component, is excluded from the definition such that it 
starts in (0, 0). The NCP value of white noise is expected to be a straight line ranging from (0, 0) to (q, 1). 
This line cwhite can be used for comparison with the NCP of the residual. This can be done using the ℓ2-norm 
rNCP = �c(r)− cwhite�2.

A detailed description of how the NCP stopping rule is used can be found  in45. A major benefit of this method 
is that it adapts to noise level in the projection data.

We terminate the reconstruction in our implementation when two iterations on either side of r(k)NCP are larger 
than r(k)NCP . We require two iterations to prevent small fluctuations of r(k)NCP from terminating the reconstruc-
tion prematurely. It was found that rNCP exhibited more than one minimum at low noise levels. The algorithm, 
therefore, iterates beyond the first detected minimum to inspect if the current is a local minimum, i.e. if there 
should exist a second rNCP minimum.

The NCP stopping rule is, computationally, fairly demanding since r(k) = b− Ax(k) has to be calculated along 
with its discrete Fourier transform after every iteration. r(k) is calculated by ASTRA during the SIRT update step, 
however, only the norm of it can be retrieved which makes it necessary to calculate it explicitly after a SIRT 

(3)C = [µmin,µmax]
n,

(4)x(k+1) = PC

(
x(k) + CA

T
R

(
b− Ax(k)

))
= PC

(
SIRT

(
x(k)

))
.

(5)Figure of merit = �x(k) − x̄�2 ,

(6)p̂i = |r̂i|
2, i = 1, 2, . . . , q with r̂ = DFT(r).

(7)cj(r) =
p̂2 + . . . p̂j+1

p̂2 + . . . p̂q+1
, j = 1, 2 . . . , q.
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update. CuPy is utilised to speed up the computation of the NCP via CUDA as the Fourier transform especially 
can benefit from  parallelisation46. The forward projection is calculated using the ASTRA toolbox.

The implementation of the reconstruction algorithm is shown in Algorithm 1. The algorithm starts with the 
initialisation of the current time step using either the static reconstruction or the reconstruction of the previous 
time step.

This is followed by a loop where the actual reconstruction is performed. The loop is limited to Nmax iterations 
to prevent the algorithm from failing to terminate. The stopping criterion is simplified as the actual implementa-
tion can handle cases where only one iteration is needed before convergence. Additionally, the implementation 
also continues iterating beyond the first detected minimum to ensure it is not stopping prematurely.

Reconstruction algorithms used. We have chosen four versions of the SIRT algorithm and the FBP 
method to test the performance of our algorithm. The latter will serve for comparison as it is the most commonly 
used algorithm for tomographic  reconstruction26. The SIRT algorithms are also compared to a FBP reconstruc-
tion and an ideal FBP which uses 720 projections and ρ = 0.25%.

The differences between the SIRT methods used are shown in Table 1. Box constraints means that the attenu-
ation coefficients of voxels in the reconstruction are truncated to the minimum and maximum values present 
in the sample. For the present case, this means a lower limit of 0 and an upper limit of 2.5. Initialisation refers 
to initialising time step t = 0 with the reconstruction of the static system and the remaining time steps with a 
reconstruction of the previous time step. Local box constraints refers to projecting the reconstruction onto the 
convex set C created with a segmentation of the static reconstruction as explained in the ““Reconstruction” sec-
tion. This means the attenuation value of voxels identified as chalk are set to the same attenuation value as that of 
chalk and the attenuation value of voxels identified as fluid are confined to be within the interval of oil and water.

Results and discussion
Comparison of the reconstructions. The method is tested on a synthetic data set that consists of a rock 
matrix with a homogeneous mixture of water and oil (Fig. 2), that separate over time as they are immiscible. The 
details of this simulation can be found in the “Methods” section. Working with simulated data enables quantita-
tive comparisons between the different reconstruction methods since we have the ground truth. We will, from 
now on, use the term residual as the difference between the ground truth and the reconstruction unless other-
wise stated. We have chosen to quantitatively examine the reconstruction methods in four ways:

Table 1.  An overview of the different approaches used for the four SIRT reconstruction algorithms that were 
tested. See text or the “Reconstruction” section for a detailed explanation.

Box constraints Initialisation Local box constraints

SIRT ✗ ✗ ✗

SIRT-BC ✓ ✗ ✗

SIRT-IC ✓ ✓ ✗

SIRT-LC ✓ ✓ ✓
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• The ℓ1-norm of the residual between ground truth and reconstruction. This can be found in the supplemen-
tary material.

• The ℓ2-norm of the residual.
• The distribution of voxel values in the reconstructions.
• The distribution of the residual. This can be found in the supplementary material.

Only the voxels within the sample area are used for the quantitative analysis i.e. the air surrounding the sample 
is ignored.

Visual appearance of the reconstructions. Figure 3 shows two reconstruction series, one in the top 
row with low noise ( ρ = 0.25% ) and a large number of projections ( Nproj = 360 ) and one in the bottom row 
with high noise ( ρ = 5.0% ) and a low number of projections ( Nproj = 45 ). Nproj refers to the number of projec-
tions in a data set and ρ refers to the relative noise level in a data set. A detailed explanation of the noise in the 
data sets can be found in the “Noise” section. The remaining reconstructions series can be found in Section S1 of 
the supplementary material. It is obvious from visual inspection that all reconstruction techniques used perform 
well when applied to the data set with a large number of low noise projections in the top row. In this case, the 
primary concern becomes computational speed.

For the other extreme, we have a data set with high noise (5%) and few projections (45), shown in the bot-
tom row of Fig. 3, a significant difference is found in the obtained image qualities. Here the FBP reconstruction 
becomes very noisy. Almost to the point where it is impossible to differentiate between the two fluid phases. SIRT 
and SIRT-BC perform similarly, which indicates the addition of box constraints in SIRT-BC does not improve 
the reconstruction significantly. A major improvement is found when the reconstruction is initialised using the 
high-quality static data as described in the Reconstruction, which can be seen for the SIRT-IC and SIRT-LC 
reconstructions. The fluid phases are clearly visible using both, but SIRT-IC exhibits a fair bit of noise, which is 
eliminated by the local box constraints used in SIRT-LC.

ℓ
2
-norm of the residual. The performance of the algorithms has been quantified by calculating the ℓ2-

norm of the residual between the reconstructions and the ground truth for each time step in the simulation. This 
has been plotted as a function of time in Fig. 4. The figure confirms that all algorithms provide good and similar 
results for data set reconstructed using the low noise ρ = 0.25% and a high number of projections, 360. Notice-
ably, they all perform almost as well as the FBP reconstruction with 720 projections and ρ = 0.25% , the data set 
that represents a reconstruction under “ideal” conditions. It is apparent that FBP solution quickly deteriorates as 
noise increases and the number of projections is reduced. The same is partly true for SIRT and SIRT-BC, but it is 
not as significant. The addition of box constraints does improve the ℓ2-norm of the residual noticeably. However, 
this effect becomes increasingly less pronounced as the data degrades. The addition of initialisation substantially 
improves the reconstruction when the data quality degrades.

The ℓ2-norm for both SIRT-IC and SIRT-LC vary across time due to the initialisation which links the current 
time step with the previous. Both reconstructions initially improve slightly in the best data case after which their 
performance slightly degrades. This behaviour gets less pronounced as the quality of the data deteriorates. We 
performed SIRT reconstructions on a special data set where the simulation was frozen such that the first time 
step in the simulation was repeated for all time steps. The noise in each time step is unique. This was done to 
ensure that the deterioration of performance seen in Fig. 4 of SIRT-IC and SIRT-LC across time is not because 

Figure 2.  3D visualisation of the simulation. The rock matrix have been removed from the upper part of the 
simulation along with upper front part of the fluid phase. The rock is brown, the water is blue and the oil is light 
grey. This figure is created with  ParaView47.
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the algorithms diverge. This test showed that SIRT-IC and SIRT-LC improves across time. The results from this 
test can be found in Fig. S8 in the supplementary material.

NCP stopping criteria and convergence. The challenge when using iterative techniques to solve the 
linear set of equations is to determine when the optimal solution has been obtained. Here we will analyse the 
performance of the NCP criteria, which is used to terminate the iterative algorithms. In Fig. 4 we observed that 
the ℓ2-norm increased for later time steps. This behaviour seems to be related to the performance of the NCP 
stopping rule, which terminates prematurely for low noise data. In general, the method seems less suited for low 
noise data. This is especially true for the initialised algorithms. The number of iterations taken before the NCP 
stopping rule is met for each time step is shown in Fig. 5.

A general trend for all methods is that the number of iterations needed decreases as the quality of the data 
decreases. This is because the residual will resemble white noise more quickly as the noise level increases. The 
necessary number of iterations depends more on the noise level than the number of projections. This can be 
deduced by examining Fig. S11 in the supplementary material which shows the iterations needed for all the 
iterative algorithms on all data sets.

SIRT-IC and SIRT-LC show some variability in the number of iterations required compared to the two other 
algorithms. Initially, we see a sharp increase in the number of iterations required which is followed by a long 
decay. When starting, few iterations are needed because the algorithms are initialised with a reconstruction that 
already has converged according to the NCP criterion. The simulation changes most rapidly for the first time 
steps which means more iterations are needed in this period of the simulation compared to later on where the 
dynamics of the simulation slow down.

Figure 3.  An example of the five different reconstruction algorithms for the best (upper row) and worst (lower 
row) data cases. Slice 171/256 at time step 51/100 is shown in the figure. Note that scale bar is truncated to 
[0, 2.5]. This makes the effect of box constraints present in SIRT-BC, SIRT-IC and SIRT-LC less pronounced.

Figure 4.  The ℓ2-norm of the residual as function of the time step for the three different cases of noise and 
number of projections. The ideal FBP reconstruction ( ρ = 0.25% , 720 projections) is shown for comparison. 
Notice that the y-axis range is different on the three plots.
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This is confirmed by reversing the dynamics and performing the reconstruction on this reversed data set. 
The iterations needed for the reversed reconstruction is shown in Fig. 6, where we see the number of iterations 
needed gradually increase as the dynamics of the simulation increase.

The availability of the ground truth makes it possible to evaluate how well the NCP algorithm is at terminating 
at correct iteration number. This is done by comparing the solution achieved using the NCP stopping criteria 
with an “ideal” solution which minimises Eq. (5). The comparison consists of calculation the differences between 
the number of iterations used by the two stopping criteria and the difference between the ℓ2-norm of the two 
stopping criteria. This is shown for the first 20 time steps of the simulation using 120 projections with a noise 
level of 1.0% in Fig. 7 for the SIRT and SIRT-LC algorithms. In plot a we see that the NCP criteria with SIRT in 
general overestimates the number of iterations needed which results in a slight increase in the ℓ2-norm when 
compared to the ideal case which can be seen in plot b of Fig. 7. The SIRT-LC algorithm initially underestimates 
the number of iterations needed after which it remains fairly close to the ideal solution. In general, the NCP 
stopping criteria works best when the noise level is 1.0% or above and the number of projections is 120 or below. 
The behaviour of SIRT and SIRT-BC is very similar and the same is true for SIRT-IC and SIRT-LC.

Histograms of voxel values. A more direct way to compare the performance of the reconstruction algo-
rithms is to examine the distribution of reconstructed voxel values compared to the actual voxel values in the 
simulation across all time steps. Some of these results are shown in Fig. 8.

The black line represents the distribution of voxel values found in the simulation. There are three distinct 
peaks which correspond to three phases, oil at 1.0, water at 1.7 and rock at 2.5. Values between 1.0 and 1.7 are 
primarily related to the mixture of oil and water, however, it can also be related to the partial volume effects at 
the interface between fluid and mineral, which can range from 1.0 to 2.5.

The plot in Fig. 8 a shows the ideal data case and confirms that all algorithms give similar results for this 
data set as was found analysing Figs. 3 and 4. The effect of box constraints is noticeable as both FBP and SIRT 
have a high amount of voxels with values that far exceed the upper limit of 2.5. We also see that SIRT-IC has a 
tail towards 0 in plot c that could be a result of the limited amount of iterations used by the algorithm for that 
specific data set. Looking at the worst data case in c SIRT-IC and SIRT-LC are the only algorithms that keep 
having noticeable peaks, although SIRT-LC does appear a bit sharper. This increase in contrast fits well with the 
difference in visual appearance between in SIRT-IC and SIRT-LC as seen in Fig. 3.

Challenging regions in the reconstructions. In Fig. 9 the residual is shown for the best and worst data 
case for slice 171 at time step 51. In the upper row, we see that FBP and SIRT has most of their errors spread out 
compared to the remaining algorithms. SIRT-BC has most of its errors at the transition between the rock and 
fluid phase. In contrast SIRT-IC and SIRT-LC do fairly well in general. There are, however, large regions within 
the fluid phase in both of the reconstructions that are either overestimated or underestimated. This is again 
caused by the underestimation of iterations needed.

The bad data case shows there is no discernible area which the FBP fails to reconstruct, unlike the SIRT 
algorithms where there is a definite structure in the plots. SIRT-IC and SIRT-LC still handle the reconstruction 
fairly well with SIRT-LC being a bit more smooth.

Global performance of the algorithms. 
The ℓ1-norm and ℓ2-norm of the residual for the entire 4D reconstruction is shown in Table 2. The table shows 
that SIRT-LC is superior to the other algorithms in the bad data case and slightly inferior to SIRT-IC for the 
best data case for the ℓ2-norm. This was also expected based on Fig. 4 where the values for SIRT-IC are below 
the values of SIRT-LC. A table of all data cases is available in the supplementary material where it is seen that 
SIRT-LC is the best algorithm in general.

Figure 5.  The number of iterations required in each time step before the NCP stopping criteria is met for the 
three different data cases. SIRT-IC and SIRT-LC nearly coincides in all cases.
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Conclusions
We have developed a reconstruction algorithm for dynamic tomography, based on SIRT. Our algorithm targets 
experiments where it is possible the collect an initial high-quality tomography data set before the dynamic 
experiment is initiated. The reconstruction of the static system is used to initialise and constrain the reconstruc-
tions of the dynamic data via a segmentation of the static system in order to strongly regularise the solution. 
Additionally, we use the NCP stopping criterion to optimise the number of iterations used. We have shown 
using simulated data that this procedure significantly improves the quality of the reconstruction of data with a 
minimum number of projections and high noise levels to a point, where it is comparable to an ideal traditional 
reconstruction even when using poor data.

Methods
Computational fluid dynamics simulation. We test our reconstruction algorithm using a synthetic 
dynamic data set as the ground truth. The data set consists of a rock matrix with a homogeneous mixture of two 
immiscible fluids, modelled as an emulsion of water and oil, that separate over time while being driven upward 
by a small body force. The separation is initially fairly vigorous, i.e. the dynamics during this period of the 
experiment is much faster than later in the separation process, yielding a data set that mimics an experimental 
two-phase fluid system.

A segmented nanoCT data set collected on a piece of chalk, a fine-grained carbonate rock, provided a real-
istic environment for simulating a dynamic data set. The nanotomography measurements were performed at 
BL47XU, SPring-8,  Japan48, providing a voxel size of 38 nm. 1800 projections were recorded while rotating the 
sample 180◦ with an exposure time of 150 ms. The projection data were dark current and bright field corrected. 
The truncated sinogram, due to a smaller FOV than the sample dimension, were  completed49 and to avoid ring 
artefacts in the reconstructed image stripe artefacts were reduced in the  sinogram50 before the 3D volume was 
reconstructed using the GridRec algorithm in  TomoPy51. Noise in the 3D image was reduced using our iterative 
nonlocal means  method52. A cylindrical rock matrix was made by taking a subvolume of 2563 voxels whereafter 
voxels outside a radius of 124 voxels were removed slice by slice. We mirror the rock matrix along its vertical 
axis to allow for vertical periodic boundary conditions of the simulation domain, i.e. the resulting cylindrical 
volume has a diameter of 248 voxels and length of 512 voxels.

Multiphase flow simulations were conducted following the formulation of a phase-field Lattice Boltzmann 
method for isothermal and incompressible fluid systems as given by Fakhari et al.53,54 with a custom CUDA 
implementation. Implementation details and parameter settings, that have been used but are not essential to our 
findings here, are presented in Table S2 of the supplementary material.

The initial system contains a fluid mixture of equal amounts of oil and water in every wet node that separates 
into an equivolumetric mixture of two separate phases with a density ratio of about 4:3, a dynamic viscosity 
ratio of about 3:4 and a three-phase contact angle of 90◦ at the rock matrix interface. The differentiability of the 
phase-field over the course of the simulation was ensured by modelling fluid-fluid interfaces with a three voxel 
wide smooth transition. Snapshots of the multiphase dynamics were generated by exporting the phase-field first 
after running the simulation for 3000 steps and then after every additional 100 steps until 100 frames were col-
lected that are subsequently called time step 0 to 99. The top half of the simulation i.e. the “mirrored” part was 
excluded from the volume used for the simulation of the tomography experiment.

Figure 6.  The number of iterations required in each time step before the NCP stopping criteria is met for the 
case with ρ = 1.00% and Nproj = 120 for the SIRT-LC algorithm.
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The numerical value of the phase-field voxels exported from the simulation was set equal to values measured 
experimentally with a laboratory CT scanner in a two-phase system presented in Lin et al.27. However, they used 
a Bentheimer sandstone instead of a carbonate. Their scan was performed at 80 KeV and both the brine and the 
decane used to saturate the sandstone were doped with 3.5 wt% potassium iodide. Using these measured values 
ensures that the contrast between the different phases of the system is comparable to a real experiment. The 
interface between the rock and fluid was smeared using a Gaussian filter to emulate partial volume effects, i.e. 
voxels, which are composed of both rock and fluid. The first recorded time frame of the simulation can be seen 
in Fig. 2 where the rock matrix is shown in brown and the water and oil are shown in blue and white respectively. 
The top part of the rock matrix along with half of the fluid phase is transparent in the figure.

Simulation of a dynamic X-ray experiment. Forward projection. The fluid dynamic simulation is for-
ward projected using a parallel beam geometry with the ASTRA tomography toolbox. The forward projection 
operator of ASTRA does not reflect the energy spectrum of a laboratory X-ray source and can be viewed as per-
fectly monochromatic. Projection angles are distributed uniformly between 0 ◦ and 180◦ as angles between 180◦ 
and 360◦ are redundant when using a parallel beam setup. The detector response is modelled as perfect and with 
a width of 300 pixels, to ensure that the full sample width is covered.

Figure 7.  Evaluation of the performance of the NCP stopping criteria. In plot (a) the difference between the 
number of iterations used with the NCP stopping criteria and the ideal number of iterations a function of time 
step in the simulation. In plot (b) the difference between the ℓ2-norm of residual when using the NCP stopping 
criteria and the ideal ℓ2-norm is shown as a function of time step in the simulation.

Figure 8.  Histograms of the voxel values on a logarithmic scale of the ground truth image and the 
reconstructions. Plots (a–c) show histograms for reconstructions of data sets with 360 number of projections 
with 0.25% noise, 120 number of projections with 1.00% noise and 45 number of projections with 5.00% noise 
respectively.
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Each time step of the simulation is forward projected independently, which mean that we approximate indi-
vidual steps as static. An alternative to this would be to include the dynamics in the forward projection such that 
the simulation develops between each projection. This would also make it possible to account for the time it takes 
for the gantry to rotate the sample which is negligible in our local CT scanner but considerable in other CT scan-
ners. Simulating the acquisition of radiographs makes it much harder to perform quantitative analysis as a time 
step in the reconstruction will be composed of multiple time steps in the simulation and is it therefore not done.

If we use the same geometric matrix, A , to perform the forward projection as for the reconstruction, we will 
commit the so-called inverse crime, i.e. that the use the exact same discretisation both  ways55. To avoid com-
mitting the inverse crime the forward projected data are rotated with respect to the grid of the reconstruction.

The number of projections needed for a good reconstruction using standard FBP should be larger than 
Npixπ/2

26. Our detector size of 300 pixels, means that at least 471 projections are required to perform an FBP 
reconstruction of high quality. To be a bit conservative 720 projections are used for both the high-quality static 
prior and an ideal FBP reconstruction. 45, 120 and 360 projections are used for the numerical experiments, which 
represent experiments with a low, a moderate and a high number of projections.

Noise. In real experiments, the recorded projection data will be affected by noise. The data obtained from an 
X-ray detector can often be assumed to follow Poisson statistics, i.e. the variance of the signal is equal to the 
signal itself. To do this b have to be converted from the negative logarithmic scale to photon counts (Step 3 in 
Algorithm 2). The next step of the algorithm is applying noise to the rescaled data. This is done by sampling a 
Poisson distribution where the intensity in each detector pixel is used as the mean of the distribution (Step 4 in 
Algorithm 2). Since the noise operation can only be applied on integers the floor function is applied first. The 
noisy projection data is scaled back to the negative logarithmic scale and returned along with the noise vector e.

Figure 9.  An example of the residual of the five different algorithms for the best (upper row) and worst (lower 
row) data cases. Slice 171/256 at time step 51/100 is shown in the figure. Pixel values are constrained to be 
within ±0.1 in the upper row and within ±0.5 in the lower row.

Table 2.  Table of the ℓ1 - and ℓ2-norms for the best and worst data case. Bold numbers indicate the best 
performing algorithm.

Nproj = 360 
ρ = 0.25%

Nproj = 45 
ρ = 5.00%

ℓ1

(

·107
)

ℓ2

(

·103
)

ℓ1

(

·107
)

ℓ2

(

·103
)

FBP 4.13 1.51 179.59 63.21

SIRT 4.76 1.70 32.49 11.49

SIRT-BC 2.78 1.54 25.77 11.06

SIRT-IC 2.74 1.34 8.68 3.69

SIRT-LC 2.31 1.43 6.25 3.34
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Modelling the noise as a single Poisson distribution is not entirely accurate as laboratory X-ray sources 
provide a wider spectrum of X-ray energies, which each differ in transmission through the sample. Hence, it in 
principle gives rise to multiple Poisson distributions with different means. Additionally, the X-ray detector will 
exhibit electrical noise which can be modelled as Gaussian  noise56–59.

The relative noise level in the projection data is calculated using

where e is the noise vector added to the forward projection of the ground truth Ax̄ . We have chosen to use three 
noise levels which represent low, moderate and high-level noise, which is equivalent to 0.25%, 1% and 5%. These 
levels were based on a qualitative comparison between the noisy simulated projection data and data acquired by 
our local CT scanner where a noise 0.25% is generally the noise level of a high-quality scan.

Simulated experiments. The numerical experiments were performed using the three different image 
noise levels (0.25%, 1% and 5%) and with three different number of projections (45, 120 and 360), i.e. nine simu-
lated experiments will be reconstructed.

The nine different data sets are reconstructed using the five algorithms described in the “Reconstruction 
algorithms used” section.

Data availability
All code used for the paper along with the data sets of the attenuation coefficients are available at https:// gitlab. 
gbar. dtu. dk/ pwra/ Numer icalE xperi ments and https:// doi. org/ 10. 11583/ DTU.c. 54485 94. All figures are created 
with  Matplotlib60 except where noted otherwise.
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