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Respiratory syncytial virus (RSV) causes serious respiratory tract infection worldwide. The relatively low RSV
load makes it difficult to detect in frail, elderly, and severely immune-compromised patients. In the present
study, we developed a locked nucleic acid–-based 1-tube nested real-time RT-PCR (OTNRT-PCR) assay with
the advantages of extremely high sensitivity, facile operability, and less likelihood of cross-contamination. The
sensitivity, specificity, and clinical performance of the OTNRT-PCR assay were compared in parallel with a
conventional TaqMan probe-based real-time PCR (qRT-PCR) assay and a traditional 2-step nested RT-PCR
assay. The limit of detection of the OTNRT-PCR assay was 1.02 × 10−1 TCID50/mL, equivalent to the traditional
2-step nested RT-PCR assay and 25-fold lower than the qRT-PCR assay. Of 616 nasopharyngeal aspirates tested,
143 RSV-negative samples by qRT-PCR were confirmed as positive by sequencing the OTNRT-PCR products.
We therefore conclude that OTNRT-PCR is more sensitive than qRT-PCR for detection of RSV in clinical samples.
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1. Introduction

Human respiratory syncytial virus (RSV) is a frequent cause of respi-
ratory infections worldwide, especially severe bronchiolitis and pneu-
monia in infants and young children, resulting in a comparatively long
period of disease (Garg et al., 2016; Sato et al., 2005; Simoes, 1999).
Frail, elderly, and severely immune-compromised patients and adults
with cardiopulmonary disease are also at high risk of infection by RSV,
with relatively low viral load, making it difficult to detect, and RSV con-
stitutes a major cause of morbidity and mortality in these populations
(Falsey et al., 2005; van Elden et al., 2003; Yunus et al., 2010). Therefore,
a highly sensitive, rapid, accurate, and cost-effective assay for detection
in patients infected by RSV is extremely important.

Molecular-based diagnostic methods for detecting RSV are commonly
used, including traditional real-time PCR (qRT-PCR) (Do et al., 2012; Hu
et al., 2003) and multiplex real-time PCR (Bonroy et al., 2007; Brittain-
Long et al., 2008; Sanghavi et al., 2012), which are sensitive and specific
for detection of RSV. However, the detection limit of these assays for RSV
is not yet adequate for assessing clinical specimens with a low viral load
of RSV infection, resulting in false-negative diagnosis. The conventional
2-step nested RT-PCR assay (Bellau-Pujol et al., 2005; Coiras et al., 2003;
Lam et al., 2007) has sufficient sensitivity but is nevertheless labor-
intensive, time-consuming, and susceptible to cross-contamination,
making it unsuitable for wide application in clinical settings.

In the present study, we developed a locked nucleic acid (LNA)–
based 1-tube nested real-time RT-PCR (OTNRT-PCR) assay using melt-
ing curve analysis with the advantages of extremely high sensitivity,
easy performance, and less likelihood of cross-contamination. The
clinical performance of the OTNRT-PCR assay was also compared in
parallel with a conventional TaqMan probe-based real-time PCR (qRT-
PCR) assay and a traditional 2-step nested RT-PCR assay using clinical
samples.

2. Materials and methods

2.1. Virus stock and clinical samples

RSV A (strain CC12-10) with an infectivity titer of 2.00 × 105 50%
tissue culture infective doses (TCID50)/mL was kindly provided by the
National Laboratory for Poliomyelitis, Disease Control and Prevention,
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Chinese Center for Disease Control and Prevention, and was used as a
reference virus to evaluate the sensitivity of the OTNRT-PCR assay.

In total, 616 nasopharyngeal aspirates (NPAs) were collected from
hospitalized patients with respiratory infection admitted to the
Children's Hospital of Hebei, China, during September–November,
2017. The definition of respiratory infection is as follows: the patients
presented with fever (temperature equal to or greater than 38 °C) and
runny nose, in addition to 1 or more of the following symptoms:
cough, myalgia, nasal congestion, headache, sore throat, and earache,
within 5 days of the symptomonset. Of those, 251 (40.75%)were female
and 365 (59.25%) were male, and ages ranged from 30 days to 11 years.
A total volume of 0.5mLNPAwas collected in 3.5-mL transportmedium
and stored at−80 °C.

All aspects of the study were performed in accordance with national
ethics regulations and approved by the Institutional Review Boards of
National Institute for Viral Disease Control and Prevention, Center for
Disease Control and Prevention of China. Children's parents were
apprised of the study's purpose and of their right to keep information
confidential. Written informed consent was obtained from parents or
caregivers.

2.2. Nucleic acid extraction

Reference RSV stock and clinical samples were extracted using a
QIAamp Viral RNA Mini Kit (QIAGEN, Hilden, Germany) according to
the manufacturer's instructions. Extracts were eluted in 50 μL of nucle-
ase-free water and stored at−80 °C until needed.

2.3. Design of outer and inner primers for OTNRT-PCR

OTNRT-PCR primers designed for RSV were derived from previously
published 2-step seminested primers (Bellau-Pujol et al., 2005) with
basemodifications (Fig. 1 shows the schematic description of the primer
design). The sequences of both the inner and outer primers used in the
OTNRT-PCR assay were the same as those of the 2-step seminested
assay, while only the outer primers of the OTNRT-PCR assay were mod-
ified by LNA. A ‘+’ symbol is added in front of modified bases in Table 1.
The advantages of LNAmodification include increasedmaximumprimer
annealing temperature without affecting specific matching between
complimentary strands and increased probe signal with limiting primer
or Taq DNA polymerase. Primers modified by LNA also have higher ana-
lytical sensitivity and efficiency for DNA amplification (Ballantyne et al.,
2008; Burbano et al., 2010; Chen et al., 2016; Latorra et al., 2003; Levin
et al., 2006; Suresh and Priyakumar, 2013).

2.4. Determination of primer maximal annealing temperature

Gradient PCR was conducted with annealing temperatures ranging
from 52 °C to 72 °C to determine the maximum range at which the
outer primer, inner primer, and LNA-outer primer could operate. Gradient
PCR was performed individually in volumes of 25 μL containing 3.20
× 102 TCID50/mL RSV stock, outer, inner, or LNA-outer primers, and
One Step RT-PCR EnzymeMix (QIAGEN, Germany) on a Mastercycler
Fig. 1. Schematic description of primer design for the OTNRT-PCR assay. Detailed primer
information is listed in Table 1.
Nexus Gradient PCR Amplifier (Eppendorf, Germany) under the follow-
ing conditions: a 30-min reverse transcription step at 50 °C, a 15-min
denaturation step at 95 °C, and 40 cycles at 94 °C for 1min for annealing
at various temperatures for 1min, extension at 72 °C for 1min, followed
by a final extension at 72 °C for 10 min.

2.5. OTNRT-PCR and melting curve analysis

The OTNRT-PCR assay was performed in a 25-μL reaction system
containing 5 μL of 5× PCR buffer, 2 μL of One Step RT-PCR Enzyme Mix
(QIAGEN), 1 mM dNTP mix, 0.6 μM SYTO9 (Life Technologies, USA),
0.1 μL of RRI, 0.5 μL of LNA-outer primer mix (0.5 μM), 3 μL of inner
primer mix (5 μM), and 2 μL of template nucleic acid using a CFX96
Real-Time PCR System (Bio-Rad, USA) under the following conditions:
a 30-min reverse transcription step at 50 °C, a 15-min denaturation
step at 95 °C, and 15 cycles at 94 °C for 30 s, 64 °C for 40 s, and 72 °C
for 40 s, followed by 35 cycles at 94 °C for 30 s, 52 °C for 30 s, and
72 °C for 30 s. Assays for dissociation were performed by incubating
the reaction mixture at 65 °C for 5 s then increasing the temperature
to 95 °C over a period of 20 min. Positive and negative controls were
included in each run. PCR products were analyzed and confirmed by
agarose gel electrophoresis (3.0% agarose gels; TSINGKE) to ensure
that no undesirable DNA bands were observed, and that only the
product of the predicted size was obtained.

2.6. Sensitivity of the OTNRT-PCR assay

Five-fold serial dilutions of viral RNA preparation from a reference
RSV isolate ranging from 8.00 × 103 TCID50/mL to 2.05 × 10−2

TCID50/mL were analyzed by the OTNRT-PCR assay as described
above. Meanwhile, a traditional 2-step seminested RT-PCR assay and
traditional TaqMan probe-based real-time PCR (qRT-PCR) were also
performed in parallel using the same amount of template according to
the published protocols (Bellau-Pujol et al., 2005; Sanghavi et al.,
2012). The qRT-PCR results were defined as positive if the cycle thresh-
old (Ct) value was not higher than 35.

2.7. Specificity of the OTNRT-PCR assay

The specificity of the OTNRT-PCR assay for RSV was evaluated using
315 out of 616 clinical specimens OTNRT-PCR detected RSV-negative in
this study. These clinical samples were retrospectively tested using a
Respiratory Pathogen 13 Detection Kit (13× kit, Health Gene Technolo-
gies, Ningbo, Zhejiang, China) (Zhao et al., 2017), which enables
simultaneous detection of 13 respiratory pathogens including
human rhinovirus (HRV), influenza virus types A (FluA), FluA-H1N1,
FluA-H3, influenza virus types B (FluB), adenovirus, human Bocavirus,
metapneumovirus (HMPV), parainfluenza virus (PIV), coronavirus
(COV), respiratory syncytial virus (RSV), and mycoplasma pneumonia
(MP) and Chlamydia (including CP and CT) in a single reaction.

2.8. Detection of clinical samples

The OTNRT-PCR assay for the detection of RSVwas evaluated using a
total of 616 NPAs selected from children hospitalized with respiratory
infection. For comparison, traditional 2-step seminested RT-PCR and
qRT-PCR assays were also performed in parallel. Sequencing of
OTNRT-PCR products was performed to resolve discrepant results
among the 3 assays. For detection of potential mixed infection, all the
samples were retrospectively tested by 13× kit (Zhao et al., 2017).

2.9. Statistical analysis

IBM SPSS Statistics, version 21 (IBM Corporation, NY) was used to
perform statistical analysis. The results of clinical detection by OTNRT-
PCR assay, 2-step seminested RT-PCR, and qRT-PCR were analyzed



Table 1
Primers used for the OTNRT-PCR assay, the 2-step seminested RT-PCR assay, and the qRT-PCR assay.

Reference method Sequence (5′ to 3′) Primer length (bp) Size (bp) Product Tm (°C) Gene References

OTNRT-PCR

Fa:GGAACAAGT+TGTT+GA+GGTTTATGAATATGC 30

N
This study

Ra:TTCTGCTGT+CAA+GTCT+AGTACACTGTAGT 29 279
F:GGAACAAGTTGTTGAGGTTTATGAATATGC 30 (Bellau-Pujol et al., 2005)
R:GGTGTACCTCTGTACTCTC 19 180 78.5±0.5

Two-step seminested RT-PCR F:GGAACAAGTTGTTGAGGTTTATGAATATGC 30 N (Bellau-Pujol et al., 2005)
R:TTCTGCTGTCAAGTCTAGTACACTGTAGT 29 279
F:GGAACAAGTTGTTGAGGTTTATGAATATGC 30
R:GGTGTACCTCTGTACTCTC 19 180

qRT-PCR
F:CACWGAAGATGCWAATCATAAATTCA 26

N (Sanghavi et al., 2012)R:GTATYTTTATRGTGTCTTCYCTTCCTAACC 30
P:FAM-TAATAGGTATGTTATATGCKATGTC-BHQ 25

a A ‘+’ symbol in front of nucleotides indicates an LNA monomer substitution.
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using Kappa and McNemar's tests, and a value of P b 0.05 was consid-
ered statistically significant.
3. Results

3.1. Analysis of maximal primer annealing temperature

The results showed that the highest annealing temperatures of outer
primers, inner primes, and LNA-outer primers were 65.8 °C, 60.8 °C, and
72.0 °C, respectively, using RNA from a 3.20 × 102 TCID50/mL RSV stock
(Fig. 2). The annealing temperature of the LNA-outer primer was dra-
matically increased compared with that of outer primer even though
both primers had the same sequence. The optimal temperature selected
for OTNRT-PCR was 52 °C for the inner primer and 64 °C for LNA-outer
primer, with a difference of more than 10 °C between them, in an at-
tempt to prevent competition between inner and outer primers during
different PCR cycles in the OTNRT-PCR assay.
Fig. 2. Range of annealing temperature for outer primers, inner primers, and LNA-outer
primers from 52.0 °C to 72.0 °C in gradient PCR using RNA from a 3.20 × 102 TCID50/mL
RSV stock as template. A, The highest annealing temperature of outer primers was
65.8 °C, yielding a 279-bp PCR product. B, The highest annealing temperature of inner
primers was 60.8 °C, yielding a 180-bp PCR product. C, The highest annealing
temperature of LNA-outer primers was 72.0 °C, yielding a 279-bp PCR product. M =
100-bp DNA markers.
3.2. Sensitivity and specificity of the OTNRT-PCR assay

Five-fold serial dilutions of RNA from the reference RSV (equal to
8.00 × 103 TCID50/mL to 2.05 × 10−2 TCID50/mL) were tested in
triplicate to ascertain the endpoint dilution atwhich the positive ampli-
fication signal (peak in the dissociation plot) was obtained in the
OTNRT-PCR assay. As shown in Fig. 3, the limit of detection for the
OTNRT-PCR assay was 1.02 × 10−1 TCID50/mL, equal to that of the
traditional 2-step seminested RT-PCR assay and approximately 25-fold
lower than that of the qRT-PCR assay (2.56 × 100 TCID50/mL). Analysis
of the melting curves of amplification products showed that positive
samples (180-bp product from inner PCR) generated an obvious peak
in the dissociation plot at 78.5 ± 0.5 °C, while negative controls pro-
duced a peak at 73.5 °C (primer dimers). Additionally, an extra melting
peak (primer dimers) at 73.5 °Cwas observedwhen using template at a
lower concentration. Both the OTNRT-PCR assay and traditional 2-step
seminested RT-PCR assay products were further visualized by gel
electrophoresis on a 3% agarose gel, and a single band (180 bp) was
observed in the presence of a higher concentration of template, but
primer dimer (b100 bp) was also generated in the presence of a lower
concentration of template. The negative control (nuclease-free water)
only yielded the primer dimer.

A total of 616 clinical samples were tested by OTNRT-PCR, of which
315 were negative for RSV. The negative specimenswere used to deter-
mine the specificity of OTNRT-PCR in this study. These samples were
retrospectively tested (Zhao et al., 2017) and confirmed to be positive
for a variety of other respiratory pathogens including HRV, PIV, myco-
plasma pneumonia (MP), human Bocavirus, adenovirus, COV, Chla-
mydia, FluA, influenza virus FluA-H3, HMPV, FluA-H1N1, and FluB. No
unspecific amplification or detection by OTNRT-PCR was observed for
these specimens, indicating high specificity for the OTNRT-PCR assay.

3.3. Clinical evaluation using the OTNRT-PCR assay

The OTNRT-PCR assay, 2-step seminested RT-PCR assay, and qRT-
PCR assay were individually tested to demonstrate the clinical perfor-
mance for RSV RNAdetection. A total of 616 clinical sampleswere tested
in parallel, of which 315 were negative by the OTNRT-PCR assay and 2-
step seminested RT-PCR assay. As shown in Table 2, both the OTNRT-
PCR assay and the 2-step seminested RT-PCR assay detected 301
(48.86%, 301/616) of RSV samples, while only 158 (25.65%, 158/616)
samples were RSV positive, with Ct values ranging from 18.01 to 34.48
by the qRT-PCR assay. The distribution of numbers of specimens with
different Ct values analyzed by qRT-PCR for a total of 616 clinical
samples was displayed in Fig. 4. The results were further analyzed
statistically using Kappa and McNemar's tests. The results revealed
discrepancies between the OTNRT-PCR assay and the qRT-PCR assay
according to the Kappa coefficient, with Kappa values of 0.531
(P b 0.001). Furthermore, in McNemar's tests, the 2 methods showed
significant differences (χ2 = 141.007, P b 0.001). The 143 samples
that were positive by OTNRT-PCR but negative by qRT-PCR were



Fig. 3. Comparison of the sensitivity of OTNRT-PCR, qRT-PCR, and 2-step seminested RT-PCR assays. A (top), Amplification curves of OTNRT-PCR assays using 5-fold serial dilutions of RSV
isolates. A (bottom), Amplification curves of qRT-PCR assays using 5-fold serial dilutions of RSV isolates. B (top), Melting curve of SYTO9-based OTNRT-PCR assays using 5-fold serial
dilutions of RSV isolates. B (bottom), Melting curves of the negative control with a melting peak at 73.5 °C (1), and the positive control (RSV isolate) with a melting peak at 78.5 ±
0.5 °C (2). C (top), OTNRT-PCR assay products tested by gel electrophoresis. C (bottom), Two-step seminested RT-PCR assay products tested by gel electrophoresis. Samples 1–9
represent the 5-fold serial dilution range (8.00 × 103, 1.60 × 103, 3.20 × 102, 6.40 × 101, 1.28 × 101, 2.56 × 100, 5.12 × 10−1, 1.02 × 10−1, and 2.05 × 10−2 TCID50/mL, respectively).
N = negative control; M = 100-bp DNA markers.
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confirmed as true positives by sequencing of OTNRT-PCR products.
Besides, mixed infections involved in RSV and any other pathogens
were found in 62 out of 158 (39.24%) qRT-PCR–positive samples and
in 123 out of 301 (40.86%) OTNRT-PCR–positive samples, respectively.
HRV was most frequently found in the mixed infection with RSV (data
not shown).

4. Discussion

LNA is a chemical modification which introduces a -O-CH2- linkage
in the furanose sugar of nucleic acids and locks the conformation in a
particular state (Rodriguez et al., 1994; Suresh and Priyakumar, 2013).
LNA can be incorporated into DNA or RNA oligonucleotides to induce
a local conformational change in the helix (Kaur et al., 2006). Upon
LNA modification, the stability and affinity for DNA molecules are
increased (Burbano et al., 2010), and the oligonucleotide melting
temperature is also reportedly increased by LNA (Latorra et al., 2003).
LNA modification has been used in many applications including
single-nucleotide polymorphism analysis (Karmakar and Hrdlicka,
2013), real-time PCR probes (Osterback et al., 2013; Sun et al., 2007),
antisense oligonucleotides (Wahlestedt et al., 2000), microarray probes
(Castoldi et al., 2008), and PCR primers (Chen et al., 2016; Latorra et al.,
2003). However, LNA modification has not been used in OTNRT-PCR by
melting curve analysis. In the current study, we adapted andmodified a
previously described 2-step seminested RT-PCR process (Bellau-Pujol
et al., 2005) and developed an LNA-based OTNRT-PCR assay.

In the OTNRT-PCR assay, the outer primers weremodified by LNA to
substantially increase the annealing temperature, resulting in a signifi-
cant difference in the annealing temperature (64 °C for LNA-outer
primers vs. 52 °C for inner primers), potentially allowing independent
reaction during the amplification. In the initial cycles of the OTNRT-
Table 2
The clinical performance of OTNRT-PCR and qRT-PCR compared with 2-step seminested RT-PC

Assay No. of clinical samples detected

+/+ +/−

OTNRT-PCR vs. 2-step seminested RT-PCR 301 0
qRT-PCR vs. 2-step seminested RT-PCR 158 0
PCR assay, LNA-outer primerswere annealed at a higher annealing tem-
perature (64 °C), enabling hybridization of only the outer primers, and
later cycles were carried out at a lower annealing temperature (52 °C),
enabling hybridization of both the inner primers to the amplicons and
the antisense oligonucleotides to the outer primers. The working
concentration of each primer, the reaction parameters, and the running
conditions of the OTNRT-PCR assay were optimized, and this enabled
the detection of RSV with extremely high sensitivity while maintaining
good specificity. Limiting the concentration of outer primers in PCR has
been described as a way to improve the efficiency of 1-tube nested PCR
(Erlich et al., 1991). In our study, LNA-outer primerswere employed at a
lower concentration than inner primers to minimize primer competi-
tion. The sensitivity of the commercial qRT-PCR kit in our study was
2.56 × 100 TCID50/mL with a Ct value of 34.48 (Fig. 3A), which is com-
mensuratewith the reported values (Sanghavi et al., 2012). Meanwhile,
the sensitivity of the developed OTNRT-PCR assay was 1.02 × 10−1

TCID50/mL, which is equal to that of the 2-step nested RT-PCR assay
and 25-fold more sensitive than qRT-PCR. The high specificity of the
OTNRT-PCR assay for RSV was also retrospectively evaluated using
315 RSV-negative clinical specimens that were positive for other respi-
ratory pathogens.

This OTNRT-PCR assay was further evaluated and compared with 2-
step seminested RT-PCR and qRT-PCR assays using 616 clinical samples.
As shown in Table 2 and Fig. 4, 143 clinical samples detect by OTNRT-
PCR assay were missed by qRT-PCR with CT N 35. Among them, 12
samples had a CT range of 35–40; 131 out of 446 samples were deemed
to be negative for RSV by qRT-PCR but positive by OTNRT-PCR assay.
This result suggests that the OTNRT-PCR assay is more sensitive than
the qRT-PCR assay and retains the sensitivity of the 2-step seminested
RT-PCR assay. It is possible that the higher sensitivity of the OTNRT-
PCR assay could aid in the detection of clinical samples from adult
R as the reference method.

Sensitivity Specificity

−/+ −/− (%) (%)

0 315 100 100
143 315 52.49 100



Fig. 4. The distribution of numbers of specimenswith different Ct values analyzed by qRT-
PCR for a total of 616 clinical samples.
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patients infected with RSV suffering severe disease and/or a lack of
immunity, resulting in possible low virus load of RSV (Walsh et al.,
2001). Thus, the OTNRT-PCR assay may not only benefit earlier
diagnosis of RSV infection in children but also prove effective for detec-
tion in cases of low virus load, thereby improving disease symptoms in
older patients.

PCR products could be readily detected by melting curve analysis
using SYTO9 (Gudnason et al., 2007; Monis et al., 2005). Some studies
have reported performing nested PCR in a single tube using fluorescent
probes, gel electrophoresis, or spatial separation of outer and inner
primer sets (Brisco et al., 2011; Dey et al., 2012; Hu and Arsov, 2014;
Moser et al., 2012). However, our OTNRT-PCR assay can effectively
prevent contamination and eliminate the need for post-PCR electropho-
resis or the use of a fluorescent probe, and complete detection takes
only 3 h. Furthermore, the running costs of the OTNRT-PCR assay are
10% less than the TaqMan probe qRT-PCR assay. The cost of the LNA-
outer primers (~$0.06/reaction) is similar to that of common primers,
and the SYTO9 reagent is much cheaper than a fluorescent probe.
Therefore, the proposed assay offers the advantages of being highly
sensitive, real time, rapid, cost-effective, and contamination-free.

In this study, we only collected NPAs from hospitalized children
as specimens; hence, a further evaluation of the performance of our
assay for different types of specimen from different populations is
needed in future work. In conclusion, the developed OTNRT-PCR
assay for detection of RSV using primers modified by LNA was
more sensitive than a corresponding qRT-PCR assay. Given the treat
of RSV epidemics, the OTNRT-PCR assay could be used to detect
RSV in patients earlier and could assist in the monitoring of therapy
and disease prognosis, thereby reducing mortality in patients. More-
over, this LNA modification-based design provides a powerful strat-
egy for converting existing 2-step nested PCR methods to OTNRT-
PCR assays for other infectious agents.
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