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Abstract

The present survey describes the state-of-the-art techniques for dynamic cardiac magnetic resonance image
reconstruction. Additionally, clinical relevance, main challenges, and future trends of this image modality are
outlined. Thus, this paper aims to provide a general vision about cine MRI as the standard procedure in functional
evaluation of the heart, focusing on technical methodologies.
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Key points

� Cardiovascular diseases remain the first cause of
death, morbidity, and disability worldwide.

� Cine MRI is the standard image modality for
cardiac function evaluation.

� Cardiac MRI is a hot topic with prospects of
continuing to grow.

� Review of the state-of-the-art reconstruction
techniques for dynamic cardiac MRI.

Introduction
Magnetic resonance imaging (MRI) has undeniably in-
volved a revolution in medicine [1]. MRI is simultaneously
a well-established and evolving area of cardiovascular
medical imaging [2]. Diagnosis of cardiac diseases requires
accurate assessment of function and morphology of the
heart [3]. Cardiac MRI (CMRI) satisfies these require-
ments. Several features make CMRI a reference standard
for the practice of cardiology. Its advantages are, among
others, versatility, high reproducibility, and accuracy,
which are unmatched by any other individual imaging
modality [4]. CMRI is completely non-invasive, and it does
not use ionizing radiation. Moreover, it provides high
spatial resolution, wide field-of-view, and good soft tissue
contrast [5, 6]. Furthermore, CMRI can provide a

complete cardiovascular assessment of a patient in a single
setting. Figure 1 illustrates the standard cardiac MRI
planes used commonly in clinical practice to visualize the
anatomy of the heart.
However, despite the aforementioned advantages,

CMRI is still not a first-line study [1, 2]. It is often ob-
tained when unanswered questions persist after other
studies, such as echocardiography, radionuclide imaging,
angiocardiography, or cardiothoracic CT [6]. This is
owing to the expense of MRI technology, the lack of
widespread availability, the absence of trained staff, the
unfamiliarity of clinicians, and patient compliance. Note
that CMRI is not always the most appropriate study for
some patients. As an example, claustrophobic, unco-
operative, and pediatric patients hinder the CMRI exam-
ination. In many cases, the administration of some kind
of sedation is needed. Moreover, quality of MRI may be
degraded due to artifacts induced by some kinds of me-
tallic implants and foreign devices [4]. In particular, MRI
is contraindicated in patients with certain aneurysm
clips, cochlear implants, cardiac pacemakers, and
cardioverter-defibrillator devices [4, 6]. However, CMRI
is completely safe in patients with prosthetic cardiac
valves or coronary stents.
The abovementioned positive factors, coupled with the

high prevalence of cardiovascular diseases (CVDs)
around the world [8], make CMRI a hot topic for both
medical and technological research areas with prospects
of continuing to grow. Taking this into account, the goal
of this paper is to remark the key aspects, main
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challenges, and future trends on CMRI. More specific-
ally, we focus on cine CMRI with a particular interest in
fast acquisition and reconstruction procedures. In this
sense, real-time cine imaging deserves a special mention
because of its exceptional requirements for very fast re-
construction. With the present document, the authors
aim to provide the reader with a general outlook of the
state-of-the-art techniques in the field of cine CMRI.

CMRI modalities
There are several modalities of CMRI with particular
properties and applications. CMRI is used for the evalu-
ation of many cardiac disorders: congenital heart dis-
eases, cardiomyopathies, myocardial disease, cardiac
masses and tumors, vascular diseases, and valvular and
pericardial heart diseases, among others. A brief over-
view on MRI modalities used in cardiology is introduced
below. For a detailed description of specific clinical indi-
cations, see references [1, 9].
Dynamic image sequences (cine) are required to ac-

quire a complete information of the heart function
throughout the cardiac cycle [2]. In fact, cine imaging is
the most common technique in CMRI, and it is consid-
ered the gold standard for cardiac function evaluation
[1]. Cine CMRI is especially useful for quantifying glo-
bal and regional left and right ventricular function by
measuring parameters such as stroke volume, ejection
fraction, end-diastolic and end-systolic volumes, and
masses [1, 3, 5].
Coronary MR angiography (MRA) is a promising imaging

technique for detection of coronary artery disease (CAD).
MRA allows to evaluate the anatomy and grade of stenosis
of the arterial vessels and shows insensitivity to calcified pla-
ques. First-pass cardiac MR perfusion imaging is also effect-
ive for the early diagnosis of CAD. Perfusion imaging allows
monitoring blood circulation through the myocardium using
a contrast agent. Therefore, it provides valuable information
about the health of myocardial tissue [10].
Phase contrast (PC) sequences are special sequences

that enable accurate evaluation of the blood flow at any
location of the cardiovascular system, e.g., across the
cardiac valves or cardiac shunts [11].

CMRI with magnetization tagging is useful to assess
the mechanical function of individual portions of the
heart [12], e.g., a quantitative evaluation of the intramyo-
cardial contractile function.
The unique capability for tissue characterization is an

important feature of CMRI. By means of late gadolinium
enhancement (LGE) CMRI, it is possible to characterize
myocardial scarring and inflammation. This is useful to
assess the prognosis of myocardial infarction or nonis-
chemic cardiomyopathies [11]. T1 and T2 mapping also
provide reliable tissue characterization. T1 mapping is a
robust and highly reproducible index that provides
meaningful measurements reflecting important myocar-
dial properties [13]. On the other hand, T2 mapping
technique can accurately and reliably detect areas of
myocardial edema. It is considered more beneficial than
other modalities in patients with recent-onset heart fail-
ure and reduced left ventricular function [13].

Challenges in cine CMRI
Dynamic CMRI is a technically challenging imaging mo-
dality. One of the main goals in this field of study is the
improvement of efficiency in the acquisition procedure.
Therefore, the challenge consists in accelerating the in-
herently slow data acquisition without compromising
the high resolution and image quality requirements. As a
direct consequence of its slowness, MRI traditionally
shows significant limitations in imaging moving organs
[1]. In fact, motion during the MRI scan process consti-
tutes the major source of image degradation. Any move-
ment, even in the case of small displacements, gives rise
to characteristic artifacts in the reconstructed images
due to the alteration in the k-space data. Among those
undesired effects are image blurring, ghosting, and mis-
registration [14]. This aspect is particularly problematic
in cine CMRI, where dealing with motion induced by
heart beating and patient breathing remains one of the
main challenges. Furthermore, other sources of motion
should be considered, such as bulk motion resulting
from voluntary or involuntary patient repositioning at
the scanner. Thus, it can be assumed that the overall
motion of the heart consists of three components: heart

Fig. 1 Cardiac MRI planes [7]. a Axial plane. b Vertical long-axis plane. c Horizontal long-axis plane. d Short-axis plane. e Four-chamber plane
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pumping, respiration, and any patient movement due to
the lack of comfort during the scan.

Respiratory motion
Breathing is the main source of motion and, therefore, of
image degradation in CMRI [15]. The contraction and re-
laxation of the diaphragm and the intercostal muscles in-
duce the heart to move rigidly throughout the respiratory
cycle. The relationship between the heart motion and the
superior-inferior displacement of the diaphragm is ap-
proximately linear, although there is a high intra- and
inter-subject variability [14, 15]. For simplicity, respiration
is usually considered a periodic process. However, it is
well known that the respiratory-induced heart motion is
different in inspiration and expiration due to lung hyster-
esis. Generally, the largest component of motion is in the
inferior direction during inspiration [14]. As discussed
below in the “Facing the challenges” section, a simple so-
lution to deal with respiratory motion in CMRI consists in
applying breath-holding (BH) acquisition protocols. It is
important to note that these routines also affect the heart
dynamics, leading to changes in the heart rate, which in-
creases toward the end of the breath hold.

Cardiac motion
As commented above, the motion induced by the own
heart activity is another cause of image quality worsening
in CMRI. The movement of the pumping chambers of the
heart throughout the cardiac cycle is really complex [15].
More specifically, the left ventricle motion in the course of
systole mainly comprises a longitudinal shortening, a ra-
dial contraction, and opposed rotations at the level of apex
and base [14]. In current CMRI clinical protocols, k-space
data are usually acquired along different cardiac cycles.
For this reason, synchronization with the cardiac-induced
motion is required. The electrocardiogram (ECG) signal is
usually employed to this aim. It is common to assume that
cardiac motion is periodic. However, this hypothesis is an
excessive simplification, since many factors affect heart
rate and motion differs between heartbeats. In this
sense, it is worth mentioning that irregular cardiac
rhythms (i.e., arrhythmias) hinder synchronized data
acquisition and result in poor quality images or in-
complete scans [1, 4, 6].

Facing the challenges
Firstly, we consider the case of motion induced by the
cardiac activity. Usually, the cardiac cycle is split into
short frames to minimize the effect of the motion within
each cardiac phase. ECG signal is commonly used for
data synchronization purposes in a reliable way. This is
known as ECG gating, and it can be carried out pro-
spectively or retrospectively. In prospective cardiac
gating, data are acquired over multiple cardiac cycles

using the R wave from the ECG to trigger the acquisi-
tion. A set of k-space projections covering between 80
and 90% of the cardiac cycle is acquired repeatedly in each
R-R interval, until enough k-space samples have been ac-
quired [16]. This is done to deal with variations of the
heart rate. The principal drawback of prospective ECG
gating lies in the fact that a portion (10–20%) of the car-
diac cycle is not included in the acquisition window. On
the other hand, in retrospective cardiac gating, the k-space
data are acquired in a continuous way and are time-
stamped to allow a posterior synchronization with the
ECG signal. Regarding the ECG signal, it can be moni-
tored and recorded during the scan or estimated from the
acquired MR data. In this last case, the process is known
as cardiac self-gating [17–19]. As stated above, image deg-
radation may occur in patients with irregular cardiac
rhythms due to the difficulty of achieving a proper cardiac
gating [6]. For this reason, some reconstruction methods
include protocols to deal with arrhythmias. As an ex-
ample, Chitiboi et al. simultaneously reconstruct different
arrhythmic cycles in a five-dimensional image space [20],
in which a classification of irregular cardiac cycles consti-
tutes an extra dimension. However, the simplest solution
consists in discarding atypical cardiac cycles [21], a prac-
tice that worsens the efficiency of the MRI protocol
because of the rejected data.
Simple solutions to deal with respiratory motion are ei-

ther BH procedures or navigator-based acquisitions.
Breath holding requires patient cooperation to replicate
the same position between successive BH to avoid mis-
alignment and artifacts in the images. Even if the BH re-
producibility is adequate, the diaphragm can drift
considerably at the end of long apneas. Improvements in
MRI technology and acquisition sequences have enabled
to complete the CMRI study in a single BH, although SNR
and spatiotemporal resolution of the images may be com-
promised. For this reason, the acquisition is commonly
performed along multiple BH. In addition, BH procedures
are severely hindered by non-cooperating patients, either
children or pathological patients with apnea difficulties.
The alternative is to use respiration monitoring by means
of a chest belt with pressure sensors, or the acquisition of
navigator pulses as in [22]. Both BH and navigator-based
procedures compromise the scan efficiency. Thus, free-
breathing (FB) acquisition procedures, with retrospective
respiratory gating and motion estimation and compensa-
tion (ME-MC) approaches, are of great interest. As in the
case of cardiac gating, respiratory motion can be ex-
tracted from the acquired MR data, i.e., respiratory
self-gating [21, 23–25].
Another option to avoid the problems of traditional

breath-holding approaches is real-time cine CMRI. How-
ever, common real-time sequences lead to a worsening
of the quality of the images. Normally, the spatial and
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temporal resolution is compromised, and signal-to-noise
ratio (SNR) is lower, since acquisition must be carried
out during time intervals of 100 ms or less to avoid
intra-scan motion. Because of its great clinical benefit,
many reported studies have tried to overcome these
drawbacks in FB real-time techniques.

Cardiac and respiratory self-gating approaches
Among the proposed cardiac self-gating approaches,
Crowe et al. present a self-gated rectilinear TrueFISP
cine sequence [18]. The retrospectively gated TrueFISP
sequence is modified to acquire a short second echo
after the readout and phase gradients are rewound. The
gating signal is then derived from this second echo. Kra-
mer et al. combine golden-ratio radial acquisition with
retrospective cardiac gating provided by a 1D navigator
acquired at fixed intervals [19]. Meanwhile, Larson et al.
propose three strategies to extract the cardiac signal dir-
ectly from the MR data using radial sampling: echo peak
magnitude, kymogram, and 2D correlation [17].
Larson et al. also propose a respiratory self-gating

strategy [26] based on radial sampling. In this case, the
interleaved radial k-space sampling provides low-
resolution images in real time during the FB acquisition.
These images are compared to target expiration images,
and only the raw data producing images with high cor-
relation to the target images are included in the final
high-resolution reconstruction. Uribe et al. derive the
breathing motion using a center k-space profile, which is
repeatedly acquired, and adjust the acquisition scheme
to reacquire motion-corrupted data [23]. Peters et al.
[22] propose the use of two navigators (NAVs), one
placed prior to the QRS and another 500ms after the
QRS complex, after systole. In [24], Piccini et al. propose
a respiratory self-gating method based on 3D spiral phyl-
lotaxis sampling with superior-inferior (SI) projections
acquired at the beginning of each interleave. The blood
pool is detected from the 1D-FFT of these SI projections
by means of a segmentation procedure, and its motion is
computed using cross-correlation. A different approach
is suggested in [25, 27], where Usman et al. introduce
manifold learning to estimate the respiratory signal dir-
ectly from undersampled radial MR data.
In addition to the abovementioned approaches, there

are also proposals that estimate both cardiac and re-
spiratory signals. In [28], Liu et al. use multiecho hybrid
radial sampling with Cartesian mapping of the k-space
center along the slice encoding direction. This sampling
scheme provides intensity-weighted position informa-
tion, from which both respiratory and cardiac motions
are derived. Pang et al. [21] propose simultaneous car-
diac and respiratory self-gating through SI readouts
inserted at regular intervals during acquisition. The

signals are estimated by means of the PCA of the 1D-
FFT of the SI projections.

Speeding up CMRI
Fast acquisition
Considerable efforts are carried out to make CMRI faster.
As commented above, the objective is to achieve a high
imaging speed while a good image quality is preserved. In
this sense, ultrafast imaging refers to efficient scan tech-
niques that use a high percentage of the scan time for data
acquisition [29]. The improvement of patient comfort is
the most important benefit of fast acquisitions. Moreover,
motion effects during a shorter scan are minimized.
Therefore, it may be possible to make the scan sessions
more effective and comprehensive.
Parallel imaging (PI) can be used to improve acquisition

times [30, 31]. The information about coil sensitivities can
be incorporated to enhance the results. Furthermore, the
use of efficient k-space sampling strategies has been
widely investigated to reduce acquisition time and gener-
ate high SNR images. Useful trajectories are echo planar
imaging (EPI) [32] and a variety of non-Cartesian sam-
pling patterns, such as golden-angle radial schemes [33],
stack-of-stars (SoS) [34], or spirals phyllotaxis [35]. These
non-Cartesian trajectories with denser sampling at the
center of k-space have shown certain advantages for self-
gating approaches, as well as robustness against motion
artifacts. However, a gridding procedure is required to
interpolate non-Cartesian data onto a rectangular grid for
the posterior application of the FFT in the reconstruction
process. This step increments substantially the reconstruc-
tion times [36]. To overcome this drawback, different
pseudo-radial trajectories have been recently proposed,
such as VDRad [37], G-CASPR [38], CASPR-Tiger [39],
and ROCK [40], among others. These trajectories acquire
data along radial-like projections on a Cartesian grid and
have the advantage of low computational complexity [39].
Figure 2 shows some of the aforementioned 3D radial
sampling schemes.
Compressed sensing (CS) [41] is also applied to MRI

in order to speed up the acquisition procedure [42].
These accelerated methods are based on the incoherent
subsampling of the k-space data. Then, the reconstruc-
tion procedure is formulated by means of an uncon-
strained nonlinear optimization problem. As for the
sampling patterns, CS procedures have shown better re-
sults for trajectories with more density of samples in the
central region of k-space [43].
Low-rank procedures are an alternative to CS. Low-rank

matrix completion extends the idea of CS to matrices, en-
abling recovery of missing or corrupted entries under low-
rank and incoherence conditions [44]. Thus, sparse
images can be represented by low-rank matrices and
undersampling becomes possible.
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Fast reconstruction
Not only the reduction of the scan times is important,
but also the shortening of reconstruction times [45].
Specifically, fast reconstruction is essential in real-time
CMRI. Coil array compression is crucial to reduce the
computational cost of reconstructions [46–48]. Dedi-
cated computing devices, graphics processing units
(GPUs) in particular, provide significant efficiency boosts
and, therefore, improve the reconstruction speed [49,
50]. Moreover, there are several frameworks and librar-
ies with efficient and specialized reconstruction pack-
ages, such as the Gadgetron [51], the Berkeley advanced
reconstruction toolbox (BART) [52], and the recently pro-
posed OpenCLIPER [53]. Another discipline to consider
in this field due to its high potential and generalization
capabilities is machine learning, deep learning (DL) more
specifically. Some recent studies have shown promising
achievements using DL approaches [54–58]. More details
about DL-based reconstruction methods are included in
the “Deep learning and beyond” section.

Classification and reconstruction techniques
Multi-slice 2D cine CMRI
A review of the most relevant reconstruction techniques
proposed in 2D cine CMRI is included below.

Multiple-BH methods
Classical approaches in cine CMRI reconstruction at-
tempt to increase data acquisition speed by reducing the
amount of acquired data. In [59], two model-based
methods for accelerated dynamic CMRI reconstruction
are proposed, namely, k-t BLAST (broad-use linear
acquisition speed-up technique) and k-t SENSE (SENSi-
tivity Encoding) for single or multiple receiver coils,
respectively. Data correlations in both k-space and time
domains are exploited to recover unacquired data. In the
same line, the idea of GRAPPA combined with sliding
window techniques is applied in k-t GRAPPA [60] to

interpolate the missing data in k-t space, in this case,
without requirement for acquisition of training data and
calculation of sensitivity maps.
Lustig et al. [61] suggest k-t SPARSE, a CS-based method

exploiting both spatial and temporal sparsity of the dy-
namic CMRI sequences, which leads to a 7-fold frame-rate
acceleration. Specifically, the wavelet and Fourier trans-
forms are used in the spatial and temporal dimension, re-
spectively. Among CS-based techniques, k-t FOCUSS [62,
91] proposes a ME-MC approach based on the use of a
high-quality reference frame and a block matching algo-
rithm applied independently to each frame. Temporal
discrete Fourier transform is used to achieve sparse repre-
sentation of the temporal variations in cardiac images. In
contrast, the motion-adaptive spatiotemporal regularization
method (MASTeR) [67] does not require a reference frame.
Spatial sparsity is modeled by means of wavelet transform,
whereas motion-adaptive transforms are used to model the
temporal sparsity in images. Motion between adjacent
frames is estimated in forward and backward directions
from an initial reconstruction.
An alternative to these pairwise approaches for ME is

presented in [78], where Royuela-del-Val et al. propose a
more robust group-wise (GW) approach. Specifically, a
non-rigid GW registration method based on a B-spline
deformation model is suggested. Thus, the whole se-
quence is registered at once to compensate for the nat-
urally induced motion of the heart. Departing from an
initial reconstruction, the groupwise CS (GW-CS)
method obtains refined reconstructed images and esti-
mated motion information in an iterative way. This
methodology was subsequently refined by introducing a
new sparse regularization term, the Jacobian weighted
temporal total variation (JW-tTV) [82].
A different CS-based reconstruction method is presented

in [73]. In this proposal, Wang et al. incorporate a diction-
ary learning (DicL) approach. Mohsin et al. [83] suggest a
patch smoothness regularization procedure (PRICE) for

Fig. 2 Examples of radial 3D k-space sampling schemes. a Stack-of-stars (SoS). b Spiral phyllotaxis. c Golden angle Cartesian acquisition with Spiral
Profile ordering (G-CASPR) [38]
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implicit inter-frame MC without requiring reference frames
or complex motion models.
In contrast to the schemes that rely on the sparsity in

Fourier space, Lingala et al. propose the k-t SLR method
[65], in which a compact representation of the data in the
Karhunen-Louve transform (KLT) domain is used to ex-
ploit the correlations in the dataset. The problem is posed
as a spectrally regularized matrix recovery problem.
In the group of low-rank procedures, k-t PCA method is

presented in [63], where Pedersen et al. suggest a
generalization of k-t BLAST/SENSE by constraining the
reconstruction using principal component analysis (PCA).
Christodoulou et al. [64] propose the use of anatomical
constraints to improve SNR and to reduce artifacts in par-
tially separable function (PSF) reconstructions. In [76], the
model consistency condition (MOCCO) technique is
introduced. Low-rank temporal signal models are pre-
estimated from training data and used in the reconstruc-
tion procedure.
Other proposals are based on a combination of low-

rank matrix completion and CS theories. In these
methods, the authors divide dynamic imaging in a low-
rank (L) component and a sparse (S) component (L+S
decomposition), also referred to as robust principal
component analysis (RPCA). The reconstruction is for-
mulated as an optimization problem minimizing a cost
function with a data fidelity term and different
regularization terms. Otazo et al. [44] formulate a multi-
coil L+S reconstruction, where the L component models
the temporally correlated background and the S compo-
nent models the organ motion. The nuclear norm and l1
norm are used as the convex surrogate functions for the
rank function and l0 norm, respectively, in the
optimization problem. In [72], k-t RPCA method is
proposed, which uses the Fourier transform as the spar-
sifying transform in the temporal direction and the alter-
nating direction methods of multipliers (ADMM)
framework to solve the minimization problem. Another
proposal is [84], in which the convex optimization prob-
lem is solved by a scalable and fast algorithm based on
the inexact augmented Lagrange multipliers (IALM). In
[85], Xu et al. introduce an alternating direction method
(NADM) for nonconvex RPCA low-rank matrix approxi-
mation. Roohi et al. [86] formulate a higher dimensional
L+S tensor reconstruction problem and also use ADMM
to solve the optimization problem. More recently,
Tolouee et al. [89] proposed an L+S decomposition
coupled with a registration algorithm for ME using a ref-
erence dataset free of respiratory motion. This reference
is derived from the measurements themselves.

Single-BH methods
A CS-based method is presented in [74] to acquire four
short axis (SA) and three long axis (LA) views of the

heart in a single BH. A Cartesian acquisition pattern is
used, which limits the spatiotemporal resolution and
produces aliasing problems along the phase encoding
direction. The temporal resolution determines the acqui-
sition and must be set before the scan.
Royuela-del Val et al. [75] proposed the kt-WiSE

method based on GW-CS with golden radial acquisition
pattern. In a posterior study [87], the authors adapt their
previously proposed JW-tTV methodology to golden ra-
dial k-space trajectories for application to whole-heart
Single-BH cine CMRI.
In [79], a locally low-rank (LLR) framework is combined

with temporal finite difference (FD) and PI. Golden-angle
radial sampling is used for acquisition of multiple 2D
slices in a single BH. However, the reconstructions show
spatiotemporal blurring. Authors attribute this effect to
the eddy current-induced image artifacts.

FB methods
In [69], a generalized motion correction formulation is
directly incorporated into the CS reconstruction for 2D
respiratory self-gated FB cine CMRI. Acquired FB golden
radial k-space profiles are binned into different motion
states, such that respiratory motion within each prede-
fined state is not significant so as to produce artifacts in
the reconstructed images. Separate motion compensated
CS (MC-CS) reconstructions are performed for every mo-
tion state. An extended version of this method was pre-
sented in [92], in which Usman et al. combine the
previously proposed MC-CS framework with parallel im-
aging to achieve further acceleration. In another contribu-
tion from the same research group [93], they introduce a
manifold learning method to estimate both cardiac and re-
spiratory navigator signals from the acquired data itself,
allowing retrospective self-gated cine reconstruction.
The XD-GRASP framework [80] has also been applied

to 2D FB cine CMRI. It is based on the continuous acqui-
sition of k-space data following a golden-angle sampling
pattern. Instead of applying some kind of MC, dynamic
data is retrospectively sorted into extra cardio-respiratory
motion states. The resulting multidimensional dataset is
reconstructed by means of a CS approach, in which spars-
ity along both cardiac and respiratory dimensions is simul-
taneously enforced.
Among real-time cine CMRI techniques, in [94], a

denoising algorithm for SNR enhancement is proposed.
Hansen et al. [66] suggest a general reconstruction
framework of cine CMRI from a real-time acquisition,
with data acquired over multiple cardiac cycles during
FB. The proposed reconstruction method is based on a
temporal multi-resolution scheme and combines PI with
a MC strategy based on non-rigid registration. In a pos-
terior study [70], the same authors attempt to further
shorten the required acquisition time by employing a
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non-linear reconstruction step. Feng et al. propose the
application of k-t SPARSE-SENSE method [68], based
on a combination of k-t SPARSE and sensitivity encod-
ing, to real-time CMRI. Meanwhile, Schmidt et al. [71]
suggest a CS-based reconstruction with k-t regularization
for highly accelerated real-time cine CMRI as a potential
alternative providing high spatiotemporal resolution. Pod-
dar et al. [77] introduce a real-time acquisition and recon-
struction method termed SToRM (SmooThness
Regularization on Manifolds). In this case, image frames
are modeled as points on a smooth and low-dimensional
non-linear manifold. The entire dynamic dataset is recov-
ered by means of a manifold smoothness regularized re-
construction problem. Chen et al. present a parallel
scheme for online reconstruction in [81], where the first
frame is used to guide all the subsequent reconstructions
to exploit the temporal redundancy. Dynamic total vari-
ation (dTV) is introduced to exploit the sparsity in both
spatial and temporal domains. An accelerated reweighted
least squares algorithm is used to solve the reconstruction.
In [88], Wang et al. propose the combination of parallel
DicL and dTV (PDLDTV) for real-time dynamic CMRI
reconstruction and use a primal-dual algorithm to achieve
the required high reconstruction speed. Recently, a radial
acquisition with k-space variant reduced-FOV reconstruc-
tion is suggested by Li et al. in [90]. A correlation imaging
framework is introduced to convert PI reconstruction into
the estimation of correlation functions. Cartesian data is
directly calculated from the linear combination of its
neighboring radial samples in a k-space variant fashion.
Table 1 shows an overview of the above mentioned

methodologies to close the "Multi-slice 2D cine CMRI"
section.

3D cine CMRI
Next, a survey of reconstruction techniques for 3D cine
MRI is presented.

Single-BH methods
Wech et al. [95] propose a CS-based reconstruction
method using a 3D SoS undersampled trajectory for dy-
namic MRI of the whole heart in a single BH of 27 s, with
non-isotropic spatial resolution (2.1 × 2.1 × 8mm3) and
temporal resolution of 40.5ms. The authors conclude that
an acceleration factor (AF) of 10.7 with respect to a fully
sampled radial SoS acquisition (6.8 with respect to a Car-
tesian 3D acquisition on the according grid) could be
achieved without compromising the diagnostic relevance.
In [97], Jeong et al. perform a validation study of 3D

cine MRI of the heart in a single BH using kat-ARC,
which is an auto-calibrating PI method for Cartesian
sampling. It uses a motion-adaptive k-t synthesis kernel
that exploits spatial and temporal correlations and se-
lects a temporal window to reduce motion artifacts. The

reported results, with 2 × 2 × 5mm3 spatial resolution
and mean required apnea of 22 s, do not show clinically
significant differences with standard 2D cine CMRI.
Recently, Wetzl et al. [99] present a 3D Single-BH ap-

proach with a nearly isotropic resolution of 1.9 × 1.9 × 2.5
mm3, temporal resolution 42–48ms, and a BH duration
of 19 s for an acquisition covered just the left ventricle and
32 s for the whole heart. A Cartesian sampling pattern
based on the spiral phyllotaxis and a CS reconstruction
method are used to achieve high AFs.

FB methods
In 2010, Liu et al. introduce a FB 3D cine CMRI method
with both respiratory and cardiac self-gating based on a
SoS acquisition strategy [28]. Cardiac and respiratory mo-
tions are estimated from the acquired data itself. The esti-
mated signals are used in a retrospective double-gating
scheme, in which only 50% of data is used for the subse-
quent reconstruction. The same authors, in a posterior
study [101], explore an alternative respiratory self-gating
signal called the Z intensity-weighted position (ZIP).
In [39], Usman et al. propose a self-gated Cartesian ap-

proach for 3D cine CMRI with isotropic resolution and no
data rejection. Data is acquired continuously under FB
using CASPR-Tiger trajectory, CArtesian acquisition with
Spiral PRofile ordering and Tiny golden-angle step for
eddy current reduction. 4D volumes (3D + cardiac phase)
are reconstructed using a soft gating technique and itera-
tive SENSE with tTV. Han et al. also propose a self-gated
Cartesian methodology in [40]. Although it is originally
conceived for application to abdominal MRI, its applic-
ability to cine CMRI would be almost straightforward. It is
based on a 3D rotating Cartesian k-space (ROCK) reor-
dering method. This acquisition scheme allows for
respiratory motion estimation and retrospective data bin-
ning in multiple respiratory states. The reconstruction is
formulated as a CS-based method with spatial and tem-
poral regularization and PI.
Another free-running (i.e., self-navigated and FB) ap-

proach for 4D CMRI reconstruction is proposed in [96].
The data acquisition scheme is based on the 3D spiral
phyllotaxis trajectory and incorporates SI projections for
respiratory self-navigation. This technique provides high
isotropic spatial resolution allowing both functional im-
aging of the heart and coronary MRA, in which contrast
agent injection is not a requirement.
Recently, the XD-GRASP method has been extended to

reconstruct 5D cardiac and respiratory motion-resolved
whole-heart cine MRI [100]. In this case, the data acquisi-
tion scheme and respiratory motion extraction previously
proposed by Coppo et at. [96] are adopted. The 5D
domain refers to the three spatial variables plus cardiac
phase and respiratory phase. In [98], Menchón-Lara et al.
introduce a 3D GW cardio-respiratory ME-MC technique

Menchón-Lara et al. Insights into Imaging          (2019) 10:100 Page 7 of 16



Ta
b
le

1
Su
m
m
ar
y
of

re
co
ns
tr
uc
tio

n
te
ch
ni
qu

es
fo
r
2D

ci
ne

C
M
RI

A
ut
ho

rs
Ye
ar

M
od

e
M
et
ho

d
Sa
lie
nt

fe
at
ur
es

Pe
rfo

rm
an
ce

Ts
ao

et
al
.[
59
]

20
03

M
ul
ti-
BH

k-
t
BL
A
ST
,

k-
t
SE
N
SE

M
od

el
-b
as
ed

m
et
ho

d
ex
pl
oi
tin

g
da
ta

co
rr
el
at
io
ns

to
re
co
ve
r

un
ac
qu

ire
d
sa
m
pl
es
.C

ar
te
si
an

sa
m
pl
in
g

4-
fo
ld

ac
ce
le
ra
tio

n.
Sp
at
ia
lr
es
.,
2.
42

×
2.
52

m
m

2
(s
lic
e
th
ic
kn
es
s
10

m
m
).

Te
m
po

ra
lr
es
.,
26

m
s

H
ua
ng

et
al
.[
60
]

20
05

M
ul
ti-
BH

k-
t
G
RA

PP
A

G
RA

PP
A
co
m
bi
ne

d
w
ith

sl
id
in
g
w
in
do

w
te
ch
ni
qu

es
fo
r
m
is
si
ng

da
ta

in
te
rp
ol
at
io
n.
C
ar
te
si
an

sa
m
pl
in
g

A
F
=
7.
Re
du

ct
io
n
fa
ct
or
,5
.1
7.
Sp
at
ia
lr
es
.,
1.
77

×
1.
82

m
m

2
(s
lic
e
th
ic
kn
es
s,

6
m
m
).
N
um

be
r
of

ph
as
es
,1
4.
Re
co
ns
tr
uc
tio

n
tim

e,
4
s
pe

r
fra
m
e

Lu
st
ig

et
al
.[
61
]

20
06

M
ul
ti-
BH

k-
t
SP
A
RS
E

C
S-
ba
se
d
m
et
ho

d
ex
pl
oi
tin

g
sp
at
ia
la
nd

te
m
po

ra
ls
pa
rs
ity

of
da
ta
.C

ar
te
si
an

sa
m
pl
in
g

7-
fo
ld

fra
m
e-
ra
te

ac
ce
le
ra
tio

n.
Sp
at
ia
lr
es
.,
2.
5
×
2.
5
m
m

2
(s
lic
e
th
ic
kn
es
s,

9
m
m
).
Te
m
po

ra
lr
es
.,
40

m
s.
Re
co
ns
tr
uc
tio

n
tim

e,
1
h
pe

r
64

×
64

×
64

sc
en

e

Ju
ng

et
al
.[
62
]

20
09

M
ul
ti-
BH

k-
t
FO

CU
SS

C
S
m
et
ho

d
w
ith

M
E-
M
C
ba
se
d
on

bl
oc
k
m
at
ch
in
g.

C
ar
te
si
an

sa
m
pl
in
g

A
F
=
6.
Sp
at
ia
lr
es
.,
1.
25

×
1.
17

m
m
2
(s
lic
e
th
ic
kn
es
s,
5
m
m
).
25

ca
rd
ia
c
ph

as
es

Pe
de

rs
en

et
al
.[
63
]

20
09

M
ul
ti-
BH

k-
t
PC

A
G
en

er
al
iz
at
io
n
of

k-
t
BL
A
ST
/S
EN

SE
us
in
g
PC

A
te
m
po

ra
l

co
ns
tr
ai
nt
.C

ar
te
si
an

sa
m
pl
in
g

M
yo
ca
rd
ia
lp

er
fu
si
on

im
ag
es

ac
qu

ire
d
in

a
pi
g.

8-
fo
ld

ac
ce
le
ra
tio

n.
Sp
at
ia
l

re
s.,
1.
25

×
1.
25

m
m

2
(s
lic
e
th
ic
kn
es
s,
10

m
m
).
64

fra
m
es

C
hr
is
to
do

ul
ou

et
al
.

[6
4]

20
10

M
ul
ti-
BH

PS
F

Pa
rt
ia
lly

se
pa
ra
bl
e
fu
nc
tio

n
re
co
ns
tr
uc
tio

n
w
ith

an
at
om

ic
al

co
ns
tr
ai
nt
s

D
at
a
of

ra
t
he

ar
ts
.S
pa
tia
lr
es
.,
39
0
μm

in
-p
la
ne

(s
lic
e
th
ic
kn
es
s,
1.
5
m
m
).

Te
m
po

ra
lr
es
.,
15

m
s

Li
ng

al
a
et

al
.[
65
]

20
11

M
ul
ti-
BH

k-
t
SL
R

Lo
w
-r
an
k
st
ru
ct
ur
e
us
in
g
KL
T
to

ex
pl
oi
t
th
e
sp
ar
si
ty
.C

ar
te
si
an

sa
m
pl
in
g

C
ar
di
ac

pe
rfu

si
on

M
RI

da
ta
.A

F
=
11
.M

at
rix

si
ze
,9
0
×
19
0

H
an
se
n
et

al
.[
66
]

20
12

FB
re
al
-

tim
e

–
Te
m
po

ra
lm

ul
ti-
re
so
lu
tio

n
sc
he

m
e
co
m
bi
ni
ng

PI
w
ith

M
C

ba
se
d
on

no
nr
ig
id

re
gi
st
ra
tio

n.
C
ar
te
si
an

an
d
go

ld
en

-a
ng

le
ra
di
al
sa
m
pl
in
g

2-
fo
ld

PI
ac
ce
le
ra
tio

n.
Sp
at
ia
lr
es
.,
1.
4–
1.
5
×
1.
9–
2
m
m

2
(C
ar
te
si
an
),
1.
4–
1.
5
×

1.
4–
1.
5
m
m

2
(g
ol
de

n
an
gl
e
ra
di
al
),
sl
ic
e
th
ic
kn
es
s,
6
m
m
.T
em

po
ra
lr
es
.,
30

m
s

A
si
f
et

al
.[
67
]

20
13

M
ul
ti-
BH

M
A
ST
ER

C
S
w
ith

M
E-
M
C
ba
se
d
on

m
ot
io
n-
ad
ap
tiv
e
sp
at
io
-t
em

po
ra
l

re
gu

la
riz
at
io
n.
C
ar
te
si
an

sa
m
pl
in
g

Re
tr
os
pe

ct
iv
e
do

w
ns
am

pl
in
g
w
ith

re
du

ct
io
n
fa
ct
or

up
to

10
.S
pa
tia
lr
es
.,

1.
56

×
1.
37

m
m

2
(s
lic
e
th
ic
kn
es
s,
12

m
m
).
16

ca
rd
ia
c
ph

as
es

Fe
ng

et
al
.[
68
]

20
13

FB
re
al
-

tim
e

k-
t
SP
A
RS
E

SE
N
SE

C
om

bi
na
tio

n
of

C
S
an
d
PI

fo
r
re
al
-t
im

e
im

ag
in
g.

C
ar
te
si
an

sa
m
pl
in
g

8-
fo
ld

ac
ce
le
ra
tio

n.
Sp
at
ia
lr
es
.,
2.
3
×
2.
3
m
m

2
(s
lic
e
th
ic
kn
es
s,
8
m
m
).
Te
m
po

ra
l

re
s.,
43
.2
m
s.
O
ffl
in
e
re
co
ns
tr
uc
tio

n
tim

e,
4.
6
m
in

pe
r
sl
ic
e

U
sm

an
et

al
.[
69
]

20
13

FB
M
C-
C
S

G
en

er
al
iz
ed

M
C
in

C
S
re
co
ns
tr
uc
tio

n.
Re
sp
ira
to
ry

m
ot
io
n
se
lf-

ga
tin

g
by

lo
w

re
so
lu
tio

n
vi
rt
ua
l2
D
na
vi
ga
to
r
im

ag
es
.G

ol
de

n
an
gl
e
ra
di
al
sa
m
pl
in
g

A
F
=
4–
6.
Sp
at
ia
lr
es
.,
1.
5–
2
×
1.
5–
2
m
m

2 .
20

ca
rd
ia
c
ph

as
es
.T
em

po
ra
lr
es
.,

30
–4
0
m
s.
Re
co
ns
tr
uc
tio

n
tim

e,
2–
2.
5
h.

Xu
e
et

al
.[
70
]

20
13

FB
re
al
-

tim
e

–
SP
IR
iT
no

n-
lin
ea
r
re
co
ns
tr
uc
tio

n
w
ith

sp
at
ia
l-t
em

po
ra
l

re
gu

la
riz
at
io
n
(H
ar
r
w
av
el
et

tr
an
sf
or
m
at
io
n)

an
d
M
E-
M
C
ba
se
d

on
no

n-
rig

id
re
gi
st
ra
tio

n.
C
ar
te
si
an

tim
e-
in
te
rle
av
ed

sa
m
pl
in
g

Sc
an

tim
e,
16
–2
0
s
pe

r
ac
qu

ire
d
sl
ic
e.
PI

re
du

ct
io
n
fa
ct
or

of
R
=
4.
Sp
at
ia
l

re
s.,
1.
3–
1.
8
×
1.
8–
2.
1
m
m

2
(s
lic
e
th
ic
kn
es
s,
8
m
m
).
30

ca
rd
ia
c
ph

as
es
.

Te
m
po

ra
lr
es
.,
34
.3
±
9.
1
m
s.
In
lin
e
re
co
ns
tr
uc
tio

n
tim

e
(G
ad
ge

tr
on

),
80
–1
20

s
pe

r
sl
ic
e

Sc
hm

id
t
et

al
.[
71
]

20
13

FB
re
al
-

tim
e

rt
CS

11
Re
al
-t
im

e
C
S-
ba
se
d
re
co
ns
tr
uc
tio

n
w
ith

k-
t
re
gu

la
riz
at
io
n.

C
ar
te
si
an

sa
m
pl
in
g

Sc
an

tim
e,
1
he

ar
tb
ea
t.
A
F
=
10
.9
.S
pa
tia
lr
es
.,
1.
7
×
1.
7
m
m

2
(s
lic
e
th
ic
kn
es
s,

6
m
m
).
Te
m
po

ra
lr
es
.,
30

m
s.
O
nl
in
e
re
co
ns
tr
uc
tio

n

Tr
ém

ou
lh
éa
c
et

al
.

[7
2]

20
14

M
ul
ti-
BH

k-
t
RP
C
A

L+
S
de

co
m
po

si
tio

n
ba
se
d
on

RP
C
A
w
ith

te
m
po

ra
lF
T.
Va
ria
bl
e

de
ns
ity

C
ar
te
si
an

an
d
ps
eu
do

-r
ad
ia
ls
am

pl
in
g

A
F
=
8.
M
at
rix

si
ze
,1
28

×
12
8
(9
0
fra
m
es
).
Re
co
ns
tr
uc
tio

n
tim

e,
10

m
in

W
an
g
et

al
.[
73
]

20
14

M
ul
ti-
BH

–
C
S-
ba
se
d
re
co
ns
tr
uc
tio

n
w
ith

D
L.
Re
tr
os
pe

ct
iv
e
C
ar
te
si
an

un
de

rs
am

pl
in
g

A
F
up

to
8.
M
at
rix

si
ze
,1
50
–2
56

×
25
6–
30
4
(1
4–
26

fra
m
es
).
Re
co
ns
tr
uc
tio

n
tim

e,
11
.3
–2
4.
3
m
in

Vi
nc
en

ti
et

al
.[
74
]

20
14

Si
ng

le
-

BH
–

C
S-
ba
se
d
m
et
ho

d
w
ith

C
ar
te
si
an

ac
qu

is
iti
on

A
F
=
11
.3

lo
ng

-a
xi
s
an
d
4
sh
or
t-
ax
is
vi
ew

s.
Sp
at
ia
lr
es
.,
1.
5
×
1.
5
m
m

2
(s
lic
e

th
ic
kn
es
s,
6
m
m
).
24

ca
rd
ia
c
ph

as
es
.T
em

po
ra
lr
es
.,
30

m
s.
BH

du
ra
tio

n,
14

s

Ro
yu
el
a-
de

lV
al
et

al
.[
75
]

20
15

Si
ng

le
-

BH
kt
-W

iS
E

M
C-
C
S
ba
se
d
on

G
W

re
gi
st
ra
tio

n
w
ith

SE
N
SE
.G

ol
de

n
an
gl
e
ra
di
al
sa
m
pl
in
g

A
F
=
16
.S
pa
tia
lr
es
.,
2
×
2
m
m

2 ,
(s
lic
e
th
ic
kn
es
s,
8
m
m
,1
2
sl
ic
es
).
16

ca
rd
ia
c

ph
as
es

Te
m
po

ra
lr
es
.,
46
.4
m
s.
BH

du
ra
tio

n,
11
.1
s

Ve
lik
in
a
et

al
.[
76
]

20
15

M
ul
ti-
BH

M
O
CC

O
Pr
e-
es
tim

at
ed

lo
w
-r
an
k
te
m
po

ra
ls
ig
na
lm

od
el
s.
Va
ria
bl
e

de
ns
ity

C
ar
te
si
an

sa
m
pl
in
g

A
F
up

to
15
.S
pa
tia
lr
es
.,
1
×
1.
7
m
m

2
(2
6
an
d
30

ca
rd
ia
c
ph

as
es
)

Menchón-Lara et al. Insights into Imaging          (2019) 10:100 Page 8 of 16



Ta
b
le

1
Su
m
m
ar
y
of

re
co
ns
tr
uc
tio

n
te
ch
ni
qu

es
fo
r
2D

ci
ne

C
M
RI

(C
on

tin
ue
d)

A
ut
ho

rs
Ye
ar

M
od

e
M
et
ho

d
Sa
lie
nt

fe
at
ur
es

Pe
rfo

rm
an
ce

O
ta
zo

et
al
.[
44
]

20
15

M
ul
ti-
BH

–
L+

S
re
co
ns
tr
uc
tio

n.
C
ar
te
si
an

sa
m
pl
in
g
fo
r
ca
rd
ia
c
ci
ne

.
Ra
di
al
sa
m
pl
in
g
fo
r
ab
do

m
in
al
an
d
br
ea
st
D
C
E-
M
RI

8-
fo
ld

ac
ce
le
ra
tio

n.
Sp
at
ia
lr
es
.,
1.
25

×
1.
25

m
m

2
(s
lic
e
th
ic
kn
es
s,
8
m
m
).
24

te
m
po

ra
lf
ra
m
es

Po
dd

ar
an
d
Ja
co
b

[7
7]

20
16

FB
re
al
-

tim
e

ST
oR

M
M
an
ifo
ld

sm
oo

th
ne

ss
re
gu

la
riz
ed

re
co
ns
tr
uc
tio

n
w
ith

ra
di
al
sa
m
pl
in
g

Sc
an

tim
e,
42

s
pe

r
sl
ic
e.
Sp
at
ia
lr
es
.,
1.
17

×
1.
17

m
m

2 ,
(s
lic
e
th
ic
kn
es
s,
5
m
m
,

5
sl
ic
es
).
Te
m
po

ra
lr
es
.,
42

m
s.
Re
co
ns
tr
uc
tio

n
tim

e,
24

m
in

(l2
-S
To
RM

)
an
d

4.
9
h
(l1
-S
To
RM

)

Ro
yu
el
a-
de

lV
al
et

al
.[
78
]

20
16

M
ul
ti-
BH

G
W
-C
S

C
S
m
et
ho

d
w
ith

M
E-
M
C
ba
se
d
on

no
n-
rig

id
G
W

re
gi
st
ra
tio

n
an
d
C
ar
te
si
an

sa
m
pl
in
g

A
F
up

to
12
.S
pa
tia
lr
es
.,
2
×
2
m
m

2
(s
lic
e
th
ic
kn
es
s,
8
m
m
).
16

ca
rd
ia
c
ph

as
es

M
ia
o
et

al
.[
79
]

20
16

Si
ng

le
-

BH
LL
R
+
FD

Lo
ca
lly

lo
w

ra
nk

w
ith

te
m
po

ra
lf
in
ite

di
ffe
re
nc
e
an
d
PI

us
in
g
go

ld
en

-a
ng

le
ra
di
al
sa
m
pl
in
g

A
F
=
19
–2
3.
Sp
at
ia
lr
es
.,
2
×
2
m
m

2 ,
(s
lic
e
th
ic
kn
es
s,
8
m
m
,1
2
SA

sl
ic
es
).

Te
m
po

ra
lr
es
.,
40

m
s
(1
9–
20

tim
e
fra
m
es
).
BH

du
ra
tio

n,
9–
13

s

Fe
ng

et
al
.[
80
]

20
16

FB
XD

-G
RA

SP
C
S-
ba
se
d
re
co
ns
tr
uc
tio

n
of

ex
tr
a
ca
rd
io
-r
es
pi
ra
to
ry

m
ot
io
n

st
at
es
.C

on
tin

uo
us

ac
qu

is
iti
on

w
ith

go
ld
en

-a
ng

le
tr
aj
ec
to
ry

Sc
an

tim
e,
20

s
pe

r
sl
ic
e.
A
F
=
16
.S
pa
tia
lr
es
.,
2
×
2
m
m

2 ,
(s
lic
e
th
ic
kn
es
s,

8
m
m
,3

SA
+
1
4C

H
sl
ic
es
).
Te
m
po

ra
lr
es
.,
45

m
s.
18
–2
6
ca
rd
ia
c
ph

as
es

an
d

10
–1
6
re
sp
ira
to
ry

ph
as
es

C
he

n
et

al
.[
81
]

20
16

FB
re
al
-

tim
e

–
Pa
ra
lle
lo

nl
in
e
re
co
ns
tr
uc
tio

n
us
in
g
dT
V
an
d
ac
ce
le
ra
te
d

re
w
ei
gh

te
d
le
as
t
sq
ua
re
s
al
go

rit
hm

.R
ad
ia
ls
am

pl
in
g

M
at
rix

si
ze
,2
56

×
25
6
×
24
.R
ec
on

st
ru
ct
io
n
tim

e,
33
.1
s

Ro
yu
el
a-
de

lV
al
et

al
.[
82
]

20
17

M
ul
ti-
BH

JW
-t
TV

C
S-
M
C
m
et
ho

d
us
in
g
Ja
co
bi
an

w
ei
gh

te
d
te
m
po

ra
lT
V
as

sp
ar
se

re
gu

la
riz
at
io
n
te
rm

.C
ar
te
si
an

sa
m
pl
in
g

A
F
=
12
.F
O
V
=
32
0
×
32
0
m
m

2 ,
(s
lic
e
th
ic
kn
es
s,
8
m
m
).
30

ca
rd
ia
c
ph

as
es

M
oh

si
n
et

al
.[
83
]

20
17

M
ul
ti-
BH

PR
IC
E

Im
pl
ic
it
in
te
r-
fra
m
e
M
C
ba
se
d
on

pa
tc
h
sm

oo
th
ne

ss
re
gu

la
riz
at
io
n.
C
ar
te
si
an

sa
m
pl
in
g

Sc
an

tim
e,
tw

o
he

ar
tb
ea
ts
pe

r
sl
ic
e.
A
F
=
6.
Sp
at
ia
lr
es
.,
2.
5
×
2.
5
m
m

2 .
1
sl
ic
e,

20
te
m
po

ra
lf
ra
m
es

(1
6
lin
es

pe
r
fra
m
e)
.R
ec
on

st
ru
ct
io
n
tim

e,
7
m
in

C
he

n
et

al
.[
84
]

20
17

M
ul
ti-
BH

–
L+

S
m
et
ho

d.
RP
C
A
in
ve
rs
e
pr
ob

le
m

so
lv
ed

by
IA
LM

.C
ar
te
si
an

an
d
ps
eu
do

-r
ad
ia
ls
am

pl
in
g

A
F
=
6.
Sp
at
ia
lr
es
.,
1.
25

×
1.
25

m
m

2 ,
(s
lic
e
th
ic
kn
es
s,
10

m
m
).
1
sl
ic
e,
30

te
m
po

ra
lf
ra
m
es
.R
ec
on

st
ru
ct
io
n
tim

e,
2–
2.
2
m
in

Xu
et

al
.[
85
]

20
17

M
ul
ti-
BH

G
-N
A
D
M
,L
-

N
A
D
M

L+
S
m
et
ho

d
w
ith

N
A
D
M

fo
r
no

nc
on

ve
x
RP
C
A

M
at
rix

si
ze
,2
56

×
25
6.
1
sl
ic
e,
24

te
m
po

ra
lf
ra
m
es
.R
ec
on

st
ru
ct
io
n
tim

e,
3–
3.
3
m
in

Ro
oh

ie
t
al
.[
86
]

20
17

M
ul
ti-
BH

k-
t
M
LS
D

M
ul
ti-
di
m
en

si
on

al
L+

S
de

co
m
po

si
tio

n
m
et
ho

d.
C
ar
te
si
an

an
d
ra
di
al
sa
m
pl
in
g

Sa
m
pl
in
g
ra
te
,0
.2
5.
Sp
at
ia
lr
es
.,
1.
35

×
1.
05

m
m

2 ,
(s
lic
e
th
ic
kn
es
s,
10

m
m
).

25
te
m
po

ra
lf
ra
m
es

(6
6
bp

m
).
Re
co
ns
tr
uc
tio

n
tim

e,
26
.6
4
s
pe

r
sl
ic
e

Ro
yu
el
a-
de

lV
al
et

al
.[
87
]

20
17

Si
ng

le
-

BH
JW

-t
TV
-G
R

A
da
pt
at
io
n
of

JW
-t
TV

to
go

ld
en

ra
di
al
ac
qu

is
iti
on

pa
tt
er
n.

W
ho

le
-h
ea
rt
co
ve
ra
ge

A
F
=
16
.1
2–
14

SA
sl
ic
es
.S
pa
tia
lr
es
.,
2
×
2
m
m

2
(s
lic
e
th
ic
kn
es
s,
8
m
m
).

13
–1
6
ca
rd
ia
c
ph

as
es
.T
em

po
ra
lr
es
.,
46
.4
m
s.
BH

du
ra
tio

n,
10
–1
3
s

W
an
g
et

al
.[
88
]

20
17

FB
re
al
-

tim
e

PD
LD

TV
Pa
ra
lle
lD

ic
L
an
d
dT
V
m
et
ho

d
us
in
g
a
pr
im

al
-d
ua
la
lg
or
ith

m
.

Ra
di
al
sa
m
pl
in
g

Sa
m
pl
in
g
ra
te
,7
0%

1s
t
fra
m
e,
15
%

re
st
.M

at
rix

si
ze
,2
56

×
25
6,
24

te
m
po

ra
lf
ra
m
es
.R
ec
on

st
ru
ct
io
n
tim

e,
2
m
in

To
lo
ue
e
et

al
.[
89
]

20
18

M
ul
ti-
BH

–
L+

S
m
et
ho

d
w
ith

M
C
ba
se
d
on

a
de

fo
rm

ab
le
re
gi
st
ra
tio

n
m
et
ho

d.
C
ar
te
si
an

sa
m
pl
in
g

A
F
=
12
.S
pa
tia
lr
es
.,
1.
35

×
1.
05

m
m

2 ,
(s
lic
e
th
ic
kn
es
s,
10

m
m
).
Te
m
po

ra
l

re
s.,
25

m
s

Li
et

al
.[
90
]

20
18

FB
re
al
-

tim
e

–
k-
sp
ac
e
va
ria
nt

re
du

ce
d-
FO

V
re
co
ns
tr
uc
tio

n.
Ra
di
al
sa
m
pl
in
g

Sp
at
ia
lr
es
.,
1.
7
m
m

2 ,
(s
lic
e
th
ic
kn
es
s,
8
m
m
).
Te
m
po

ra
lr
es
.,
40

m
s.

Re
co
ns
tr
uc
tio

n
tim

e,
2
s
pe

r
fra
m
e

Menchón-Lara et al. Insights into Imaging          (2019) 10:100 Page 9 of 16



in an analogous reconstruction framework. Moreover, the
authors incorporate an efficient multi-resolution scheme,
which leads to significant improvements in the quality of
the recovered image series.
Table 2 summarizes the reconstruction techniques for

3D cine CMRI.

Brief discussion
Nowadays, multi-slice 2D cine CMRI has become the
standard imaging modality for functional studies of the
heart in clinical practice. In standard cine scans, multiple
2D slices covering the volume of the heart are obtained.
However, multi-slice 2D cine approaches usually have an-
isotropic spatial resolution, typically with low through-
plane (slice thickness) resolution. Furthermore, data can
only be acquired in a specific geometry, such as short-axis
(SA), two-chamber (2CH), or four-chamber (4CH) views,
which requires a planning stage before starting the scan
(view Fig. 1). This fact does not allow for retrospective re-
formatting to arbitrary orientations. Moreover, 2D cine
CMRI may be adversely affected by misalignment between
slices acquired during different apneas with the usual
multi-BH acquisition procedures. Although 2D Single-BH
procedures have been explored, the achieved SNR or

resolution within a comfortable BH period could be con-
sidered insufficient for many applications. In any case, BH
procedures are inadequate for patients with respiratory
distress syndrome or with other difficulties for respiratory
suspension and for non-collaborative patients. Therefore,
FB methodologies are preferable and more suitable in
most of the cases.
3D cine CMRI avoids some of the aforementioned

drawbacks of the multi-slice 2D cine modality. It pro-
vides increased SNR and large spatial coverage. Thanks
to the isotropic spatial resolution, reconstructed volumes
can be reformatted into any desired orientation. Thus,
there is no need to perform a previous planning stage,
and the overall scan time is reduced. However, 3D ac-
quisitions also require robust strategies to mitigate the
effect of motion in the reconstructed images. In
addition, the excitation of a 3D volume also affects the
contrast between myocardium and the blood pool,
given the diminished portion of unsaturated blood enter-
ing the imaging volume. Some of the 3D approaches
[28, 39] point out this issue and suggest contrast agent
injection to improve the contrast. However, other
studies [96, 100] maintain that contrast agent injection
is not required.

Table 2 Summary of reconstruction techniques for 3D cine CMRI

Authors Year Mode Method Salient features Performance

Liu et al. [28] 2010 FB – Respiratory and cardiac self-gating. SoS
acquisition. Temporal filtering is applied
along cardiac phases. Non-isotropic
reconstructions with data rejection

10–14 SA and 8 2CH–4CH slices. Spatial res.,
1.25–1.33 mm2, slice thickness, 10 mm (SA),
8 mm (2CH and 4CH). Temp. res., 44 ms (SA),
35 ms (2CH and 4CH)

Wech et al. [95] 2014 Single-BH – CS-based method using undersampled
SoS acquisition. Non-isotropic spatial
resolution

AF = 10.7. Spatial res., 2.1 × 2.1 × 8mm3

(12 slices). Temp. res., 40.5 ms. BH
duration, 27 s

Coppo et al. [96] 2015 FB – Free-running method based on 3D spiral
phyllotaxis sampling. Respiratory self-gating
and retrospective binning

AF = 9.8. Scan time, 14.28min. Spatial res.,
1.15 mm3. Temp. res., 20 ms (43 frames).
Reconstruction time, 6 h

Jeong et al. [97] 2015 Single-BH kat-ARC Auto-calibrating PI method for Cartesian
sampling

AF = 8. Spatial res., 2 × 2 × 5mm3. Temp. res.,
36–70ms. BH duration, 22 s

Usman et al. [39] 2017 FB CASPR-Tiger Free-running CS method using iterative SENSE
with tTV. Self-gated Cartesian acquisition with
spiral profile ordering and tiny golden angle
step. No data rejection

AF = 3.5–4. Scan time, 4–5 min. Spatial res.,
2 mm3 (isotropic). Temporal res., 31–70ms
(16 cardiac phases). Reconstruction time, 2.5 h

Han et al. [40] 2017 FB ROCK Self-gated CS method with spatial and
temporal regularization and PI using a
Cartesian k-space reordering method

Abdominal MRI. Scan time, 5 min. Spatial res.,
1.2 × 1.2 × 1.6 mm3. 8 respiratory phases.
Reconstruction time (BART), 10 min

Menchón et al. [98] 2017 FB MC-XD CS method with cardio-respiratory ME-MC
based on 3D nonrigid GW registration.
Efficient spatial multiresolution strategy.
Retrospective 3D spiral phyllotaxis sampling

AF = 24.38–34.8. Spatial res., 1 mm3 (isotropic).
Temp. res., 43–50ms (20 cardiac phases and 4
respiratory phases). Reconstruction time, 1.42 h

Wetzl et al. [99] 2018 Single-BH – CS method with non-linear, iterative SENSE
using Cartesian sampling pattern based on
the spiral phyllotaxis. Nearly isotropic spatial
resolution

AF = 23. Spatial res., 1.6 × 1.9 × 2.3 mm3. Temp.
res., 42–48ms. BH duration, 32 s. Reconstruction
time, 10 min

Feng et al. [100] 2018 FB 5D-GRASP Extension of the XD-GRASP method for 3D
spiral phyllotaxis trajectory with respiratory
self-gating

AF = 18.3. Scan time, 14.28 min. Spatial res.,
1.15 mm3 (isotropic). Temp. res., 40–50 ms
(20 cardiac phases and 4 respiratory phases).
Reconstruction time, 6.8 h
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As for the different techniques, it is not easy to estab-
lish a comparative analysis. Tables 1 and 2 include the
performance of each proposal in terms of AF, spatiotem-
poral resolution of images, and reconstruction times.
Additionally, Fig. 3 shows a graphical representation of
the performance of different methods for comparison

purposes. Specifically, temporal resolution (ms) vs. AF is
depicted for multi-BH, Single-BH, and FB reconstruction
approaches separately. In some cases, when AF is not re-
ported in the corresponding publication, it has been esti-
mated from available data. In a similar way, the
temporal resolution of the dynamic sequences

a

b

c

Fig. 3 Graphical representation of performance. a Multi-BH reconstruction techniques. b Single-BH reconstruction techniques. c FB reconstruction
techniques. Temporal resolution (ms) versus AF. Text boxes indicate first author, publication year, and reference in brackets. Shaded text boxes refer to 3D
approaches. (Lowest) in-plane spatial resolution (mm) is codified varying the size of font and markers. Slice thickness (mm) is depicted using a color code
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reconstructed has been approximated assuming an aver-
age heart rate of 60 bpm when it is not reported. Shaded
boxes are used to differentiate between 2D and 3D tech-
niques. Moreover, graphics include information about
the in-plane spatial resolution (mm) and slice thickness
(mm) by using different sizes and colors. In general, CS
and low-rank algorithms show potential for further ac-
celeration of the acquisitions. However, these procedures
involve longer reconstruction times. Thus, GPUs and
specialized frameworks play an important role for redu-
cing the reconstruction times.

Deep learning and beyond
Reconstruction of cine CMRI will remain an active area
of technological development. There is still room for im-
provement in motion detection and modeling, which
would result in significant enhancement of image qual-
ity. In particular, dealing with irregular motion patterns
will be a key aspect. Further progress in the reduction of
scan and reconstruction times is also required for future
works. Moreover, there is a great interest to transition to
MRI guidance for cardiac interventions [45]. To this
end, evolution of real-time imaging is crucial. It is worth
noting that the role of machine learning (deep learning,
in particular) is also promising for reconstruction of car-
diac cine MRI.
Deep learning (DL) has recently emerged as a game

changer within any topic related to imaging and, in par-
ticular, to medical imaging. Deep neural networks have
the intrinsic capability of learning multiple abstract
levels of representation. This allows for modeling com-
plex relationships within the data, improving the overall
performance of the problem to solve, either classifica-
tion, estimation/regression, or reconstruction. These
networks were initially proposed in the 1980s [102] al-
though their feasibility has boosted just recently. The
reason of this is the development of powerful GPUs with
great processing capabilities as well as the availability of
massive amounts of data.
In the field of medical image reconstruction, practi-

tioners are very much aware of the limitations associated
with the optimization-based algorithms described in pre-
vious sections. Two of them are the following: the high
processing times and the need for hyperparameters tun-
ing. Therefore, DL architectures have emerged as solu-
tions that shift the complexity from the “production”
side to the training stage. Since training is done off-line,
time requirements are not an issue in this case. Of
course, a number of different problems arise, and these
solutions are subject to criticisms. However, it seems
that this new scenario is here to stay.
Reported DL solutions can be roughly classified as

those that pursue reconstruction as a black-box solution,
such as [58, 103], and those that mimic the optimization

process by, explicitly or implicitly, unrolling the process
into several stages, for instance [55, 56]. This taxonomy
is carried out in [104], and we adhere to it. However,
this is a hot topic so this reference list is just a sample of
recent contributions.
The field of cardiac imaging is not so populated yet. A

recent contribution [105] is used (not exclusively) for
static cardiac imaging. The authors propose an adversar-
ial architecture for CS-like MRI reconstruction of static
2D images. The generator part is implemented by means
of a U-Net [106]. The network is trained to learn the re-
siduals between the fully sampled ground truth image
and the zero-filling direct reconstruction. The authors
highlight the importance of training a generator network
as for refinement learning as well as the capability of
their proposal to correctly reconstruct pathological cases
despite none of them have been provided in the training
stage. Static cardiac images were coherently recon-
structed by a network trained with brain images,
although artifacts in the blood pool region are observed
as well as some loss of fine structural details.
The number of contributions related to dynamic car-

diac imaging is also scarce. In [107], the authors make
use of a U-Net for 2D cine reconstruction. In this case,
the temporal dimension is used as an additional channel,
but no further actions are accomplished to capture dy-
namics. Other two related contributions are [57, 104],
which are described below.
The method proposed in [57] is grounded on the idea

that a deep network could be trained end to end to recon-
struct a dynamic sequence of cardiac images. However, it
would be valuable to guarantee that the solution is coher-
ent with the k-space information in those locations where
measurements have been sampled. This leads naturally to
an iterative procedure, which the authors unroll by means
of a cascade of two structures, namely a deep network and
a data consistency unit. The latter is a simple operation
performed analytically. Both the network depth and the
cascade depth are parameters to tune. The authors re-
shape the time sequence as a 3D volume of 2D temporal
slices, so filters in the convolutional layers are spatiotem-
poral. In addition, they add data sharing layers as new data
channels, which consist of images reconstructed by filling
their subsampled k-spaces with the sampled values in
nearby (in time) image frames. Despite the experiments
described in the paper are preliminary, they clearly show
the benefits of the proposed architecture. However, AFs
are relatively low according to the state of the art de-
scribed in previous sections (maximum AF is nine).
In [104], the authors avoid the network cascade by

means of a recurrent architecture. This contribution runs
somewhat parallel to [57]—the contribution comes from
the same group—although there are a number of substan-
tial differences. In this case, an iterative procedure based
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on variable splitting is used for the optimization of the
overall objective function. The iteration is accomplished
by means of convolutional recurrent neural networks
(CRNN). In each iteration, a data consistency oper-
ation is carried out similarly to the one proposed in
[57]. As for the network architecture, the authors use
several layers of unidirectional CRNN as well as one
layer of a bidirectional CRNN. Recurrence of unidir-
ectional CRNN is carried out in the iterations of the
optimization process. Meanwhile, the bidirectional
CRNN intends to capture the dynamics of the time
sequence. Consequently, recurrence in the iteration
dimension and the time dimension are accounted for.
Features stemming from the CRNN proposal show a
higher orthogonality degree, i.e., a higher information
decoupling than the features from the cascade of
networks.
Overall, although this field is in its infancy, a tremen-

dous activity is taking place in this area so amazing
advances may be expected in the mid-term. However, di-
mensionality here is an issue. Training of 3D dynamic
sequences seems tremendously involved in terms of data
and computing time requirements. Maybe mixed ap-
proaches in which part of the reconstruction is carried
out by means of DL solutions that are then refined by
means of a classical optimization-based approach could
be a procedure to explore. Time will tell.
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