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Abstract: The integrated gradients (IG) method is widely used to evaluate the extent to which each
input feature contributes to the classification using a deep learning model because it theoretically
satisfies the desired properties to fairly attribute the contributions to the classification. However, this
approach requires an appropriate baseline to do so. In this study, we propose a compensated IG
method that does not require a baseline, which compensates the contributions calculated using the
IG method at an arbitrary baseline by using an example of the Shapley sampling value. We prove
that the proposed approach can compute the contributions to the classification results reliably if the
processes of each input feature in a classifier are independent of one another and the parameterization
of each process is identical, as in shared weights in convolutional neural networks. Using three
datasets on electroencephalogram recordings, we experimentally demonstrate that the contributions
obtained by the proposed compensated IG method are more reliable than those obtained using the
original IG method and that its computational complexity is much lower than that of the Shapley
sampling method.

Keywords: integrated gradients; deep learning; explainability; Shapley sampling; EEG signal
classification

1. Introduction

Deep learning methods have shown considerable promise for a wide range of appli-
cations, such as image recognition, natural language processing, and speech recognition.
They have even attracted attention for the classification of diseases, particularly in seizure
detection [1,2] and the evaluation of physiological states of the brain and body [3,4] from
raw electroencephalogram (EEG) signals [5]. Recently, deep learning techniques have
been applied to the analysis of EEG signals to screen for several psychiatric disorders
(e.g., [6,7]). However, understanding how deep learning classifiers work is difficult for
users, because their decisions are not fully explained. Therefore, there is a strong demand
for explainable or interpretable classifiers with high performance for use in medical ap-
plications [8–10]. For example, in medical decision support systems, explanations of the
output of a machine-learning-based classifier would enable clinicians to corroborate its
classification results against existing medical knowledge and possibly discover previously
unknown features of a disease. This would also improve both clinicians’ and patients’ trust
in deep learning methods.

Many methods have been proposed to visualize the separate contributions of input
features to classification results [4,11–15]. Such saliency methods highlight input subspaces
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(e.g., pixels in the case of image recognition) that are important in identifying a classification
label of a given data sample. Among these approaches, integrated gradients (IG) [13] and
Shapley sampling (hereafter, SS) [11,16] have been shown to be theoretically superior to
other methods because they satisfy the desired properties for the fair attribution of contri-
butions to the classification [13,15]. Although the IG method is computationally efficient, it
requires an appropriate baseline or reference point to determine reliable contributions to
the classification. The baseline is an input that is assumed to not include any features, and
it is set empirically (usually, the zero point) as no formal methods are available to find an
appropriate baseline. Setting an inappropriate baseline may undermine the reliability of
the attributions [17]. An appropriate baseline depends on the domain, task, and classifier,
and they are currently only set on a case-by-case basis. In contrast, the SS method does not
require a baseline [11]; however, its computational cost is extremely high [15].

Explanation techniques have been applied to EEG signal classification. Schirrmeister
et al. [4] proposed an input perturbation network-prediction correlation map to interpret
how convolutional neural networks (CNNs) classify EEG signals. They added noise to
each input feature and computed the correlations between the noise levels and the changes
in classifier output values. Highly correlated input features were assumed to contribute
more to producing the output. Chen et al. [7] exploited the more sophisticated gradient-
weighted class activation mapping (Grad-CAM) explanation method in which output
class information is backpropagated to an input feature space through CNN filters [12].
However, these methods are not guaranteed to satisfy the desired properties for a good
explanation. Therefore, we previously used the SS method to reliably explain a CNN
model’s classification of EEG signals [18]. However, the SS method has an extremely high
computational cost for a high-dimensional input space, such as EEG signals. In contrast,
the IG method has a lower computational cost, but it suffers from the limitation of requiring
a baseline to be set for each usage.

In this study, we propose a method to compensate the input contributions to the
classification results obtained using the IG method with an arbitrary baseline by using
an SS contribution. The proposed method satisfies the same desired properties as the IG
method with an appropriate baseline under specific constraints on the classifier, i.e., a
linear combination of each filter output. We experimentally evaluated the reliability and
computational complexities of the proposed compensated IG method on three different
EEG datasets. This method calculates the contributions of electrodes to the classification
of a brain state or disease for each data sample. We averaged the contributions over some
data samples and visualized the scalp areas that were important for the classification.

Below, in Section 2, we review the existing methods, namely, the Shapley value, SS,
and IG, which satisfy the desired properties for a reliable explanation. Of note, the IG
method can satisfy the desired properties only with a properly set baseline. We then
describe the proposed method for compensating IG with an arbitrary baseline in Section 3.
Section 4 describes an experimental evaluation of the reliability of the proposed method on
three EEG datasets. Sections 5 and 6 present and discuss the obtained results, respectively.
Finally, we conclude this work with a summary of the advantages and limitations of the
proposed approach in Section 7.

2. Shapley Value and Integrated Gradients

The SS method approximates the Shapley value, which was originally proposed
to fairly assign gains to players in cooperative game theory [19]. The key idea of this
approach is that a given player’s contribution to the result of a game is defined as the
amount of gain reduction in his/her absence. The amount of gain reduction is averaged
over all possible combinations of players and then normalized. For a machine-learning-
based classification, the input features and classifier outputs of the models are respectively
regarded as the players and the gain. This calculation has a computational complexity of
O(n!) for n input features and retraining of the classifier for all possible combinations [20].
The SS method approximates the Shapley value using a Monte Carlo sampling method to
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avoid retraining and reduce computational costs [11,16]. Therefore, the reliability of the
SS method depends on the number of samples available. The SS value is calculated for
each data example, and the calculated values are averaged among the data to obtain the
contributions of input features. However, this approximation requires many samplings, i.e.,
forward computations from input to output, and is repeated as many times as the number
of data points.

The Shapley value is a unique method that satisfies the following four desirable
properties for the reliable computation of contributions to a classification [11,13,15,16,21]:

I Symmetry (A): for any combinations of features S, if the change in the classifier
output f is identical when a feature xi or xj is added, the features xi and xj contribute
equally to the output: fS∪i(xS∪i) = fS∪j(xS∪j) → φi( f , x) = φj( f , x). Here, φi( f , x)
indicates the amount of the contribution of the i-th feature in a classifier f and input
features x for a data sample from a dataset X (x ∈ X ). This property ensures that
if two variables lead to identical outputs, the same contributions to the outputs are
attributed to the variables.

II Dummy: if a classifier does not depend on some variables, these variables always
have zero contribution: fS(xS) = fS∪i → φi( f , x) = 0. This property captures the
desired insensitivity of the attributions.

III Linearity: let a classifier f be represented by the weighted linear sum of two sub-
classifiers f1 and f2; that is, f = a f1 + b f2 for scalars a and b. Then, the contribution
of classifier φ( f ) is also obtained by the weighted linear sum of the contribution
of each subclassifier: φ( f ) = aφ( f1) + bφ( f2). This property intuitively enables the
method to fairly attribute the contributions into linearly combining submodules
within the classifier.

IV Completeness: the sum of the contributions of all features equals the classifier’s output
value: ∑M

i=1 φi( f , x) = f (x). Satisfying this property is desirable if the classifier’s
output is continuous and used in a numeric sense.

The IG method is a type of path method [13,21] that integrates the gradients of the
output with respect to the classifier’s input, usually before a softmax function in the output
layer, along an arbitrary path from the baseline to the input data point. Given smooth path
function γ(α) = [γi(α), . . . , γn(α)] for α ∈ [0, 1] specifying a path from a baseline to the
input data x and classifier f , the contribution of the i-th feature PathIGγ

i (x) is given by

PathIGγ
i (x) =

∫ 1

α=0

∂ f (γ(α))
∂γi(α)

∂γi(α)

∂α
dα. (1)

The path method satisfies properties II–VI and the following additional property.

V Implementation invariance: if two classifiers f (x) and g(x) are functionally equivalent;
that is, if they provide equal outputs for every input, the attribution of contributions
to the outputs is also equal: f (x) = g(x)→ φ( f , x) = φ(g, x).

If the path is a straight line:

γ(α) = x̃ + α(x− x̃), (2)

the method is referred to as IG. Here, x̃ is a baseline that is a non-feature input. The IG
method further satisfies the symmetry (B) property defined below as well as the properties
II–V mentioned above [13].

VI Symmetry (B): assume that a classifier output does not always change even when
exchanging features xi and xj; that is, f (xi, xj) = f (xj, xi). Then, the contributions of
these features are identical: φi( f , x) = φj( f , x).

The IG method is actually derived from properties II–VI. If the symmetry (B) property
(VI) is satisfied, the symmetry (A) property (I) is also satisfied. Therefore, the IG method can
be used to calculate the Shapley value. For the actual integral calculation, the integration
interval is divided into many subintervals in which linear changes are assumed.
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In most cases, a zero input is used as a baseline instead of a better input (see blue arrow
in Figure 1A). However, a zero input is often inappropriate and results in the unreliable
attribution of contributions to the results [17].

Appropriate baseline
(Unknown)

Baseline
(User-defined) Data

Shapley sampling

Integrated gradients

Difference

Preprocessing (1 data)

Integrated gradients
Compensation
= Difference

Compensated integrated gradients

Target data

Data
Baseline

(User-defined)

Appropriate baseline
(Unknown)

A B

Figure 1. Diagram of the proposed method. (A) Preprocessing to compute the compensation amount
(orange dashed arrow), given as the difference between the contribution to the classification obtained
using the IG method with an arbitrary user-defined baseline (blue arrow) and the contribution to the
classification obtained using the SS method that implicitly exhibits an appropriate baseline (green
arrow). (B) Proposed IG method that compensates for the divergence from the appropriate baseline.
This is equivalent to the path integral along the orange path.

3. Compensation of Integrated Gradients

To compensate for the contributions to the classification from the user-defined zero
(arbitrary) baseline, we calculate the difference between the contribution obtained using
this baseline and a reliable contribution obtained using the SS method for a single datum
example (orange dashed arrow in Figure 1A). Because it was proven that the Shapley
value is a unique method satisfying the desirable properties [21], computing the SS is
practically equivalent to computing IG with the true baseline that satisfies the desirable
properties. The calculation algorithms differ, but the results should be equivalent. Note that
the computational cost of this step is not very high, because the SS method is only applied
to a single datum example. Negative operations when computing the difference imply
the integral along the opposite arrows in Figure 1A. Therefore, this difference between the
contributions obtained using the SS method and the contributions obtained using the IG
method with the user-defined baseline corresponds to the integral from the appropriate
baseline to the user-defined baseline through the given data point. Because the integral of
the gradients along any path exhibits the same value, the difference finally corresponds
to the integral of the gradients along an unknown path from the true baseline to the user-
defined baseline. The integral value does not depend on the data as it is determined only
by the two baselines. Therefore, the difference for one data example can be applied to the
contributions to the classification obtained using the IG method with the baseline and the SS
method for other data. The integral value is added to the contribution to the classification
obtained using the user-defined baseline and into an arbitrary target data point to obtain
the input and output gradients integrated along the orange path in Figure 1B.

The compensated IG is calculated as follows. First, a classifier is trained with a dataset
X . Then, the contributions of the input features for a single datum example (x ∈ X )
are obtained using the SS method. The contributions for the same data example x are
obtained using the IG method with an arbitrary baseline x̃. The difference between these
contributions for x is added to the contributions for the other data examples, which are
obtained using the IG method with the baseline x̃. The compensated contributions are
averaged among data examples.

The path method, including the compensated IG, satisfies properties II–V. We prove
that the compensated IG method also satisfies the symmetry property (VI) if the classifier
processes of the input features are independent and identical. Let an input time-series
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be n-dimensional: x = [x1, . . . , xi, . . . , xn]; let the length of each time-series z be L: xi =
[zi1, . . . , zik, . . . , ziL], and let a classifier f (x) be given by

f (x) =
n

∑
i

m

∑
j

Wijgj(xi), (3)

where Wij denotes a weight and gj(xi) is a nonlinear function that converts time-series input
xi into m outputs. Therefore, the input features are not combined when processing each gj
(independent constraint), and each feature is processed by the same gj (identical constraint).

In an EEG signal classification using a CNN model in this study, xi indicates the
time series measured by the i-th sensor or electrode, as shown in Figure 2. Assume
that the contribution of xi to the CNN’s output is to be evaluated. For the independent
constraint, gj(xi) represents one-dimensional (temporal) convolutional layers or filters
that do not spatially convolve the features. The processing gj(xi) of each feature shares a
common architecture with the same parameters (weights and biases); that is, for example,
the process is realized by a shared-weight technique that is widely used in CNNs. Wij
represents weights in the fully connected layer, as shown in Figure 2.

… …

gm(x1)

gm(xn)…

g2(x1)

g2(x2)

g2(xn)

…

x1

x2

xn

…

t

…

g1(x1)

g1(x2)

g1(xn)
…

n

x

…
Temporal convolution
with shared weights

f(x)

Wij

…

xInput features

Classifier f

gm(x2)

Figure 2. Model architecture for EEG signal classification using the CNN with constraints. Time-series
signals measured by electrode xi for i = 1, . . . , n are fed into temporal convolution layers gj(xi) for
j = 1, . . . , m. The input features are not spatially convolved owing to the independent constraint. The
processing gj(xi) consists of the same parameterization owing to the identical constraint. If a classifier
satisfies these constraints, the compensated IG can reliably compute the spatial contributions of xi to
the outputs.

Theorem 1. If a classifier is represented as Equation (3), all path methods always satisfy the
symmetry (B) property (VI). Therefore, explanation methods satisfying Equation (3) and properties
II–V always satisfy property (VI).

Proof. The contribution of the p-th feature xp to the outputs is represented as φp( f , x).
From Equation (3),

φp( f , x) = φ

(
n

∑
i

m

∑
j

Wijgj(xi), x

)
. (4)

Using the linearity property (III) yields

φp

(
n

∑
i

m

∑
j

Wijgj(xi), x

)
= φp

(
m

∑
j

Wpjgj(xp), x

)
. (5)

Using the implementation invariance property (V) and the symmetry assumption (let
symmetric features be xq) gives

Wpj = Wqj, (6)
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and
gj(xp) = gj(xq). (7)

Therefore,

φp

(
m

∑
j

Wpjgj(xp), x

)
= φq

(
m

∑
j

Wqjgj(xq), x

)
. (8)

Then,
φp( f , x) = φq( f , x). (9)

Consequently, all path methods satisfy symmetry property (VI) if the processes of
input features are independent and identical in a given classifier.

The contributions to the output of temporal CNNs satisfy all the properties be-
cause each filter convolves an input time-series feature; that is, they are represented as
Equation (3). In contrast, the contributions to the output of spatial or spatiotemporal CNNs,
which are commonly used in image recognition, do not satisfy the symmetry property (VI)
because they violate the independent constraint and are not represented by Equation (3).
Even if the explanation does not satisfy the symmetry property (VI) due to the proposed
compensation, it might still be more reliable than that obtained from an inappropriately
baselined IG method. As mentioned in the previous section, the path method, including
the IG method, assuming an appropriate baseline, uniquely always satisfies the properties
II–VI. Therefore, if the baseline is not appropriate, the method can violate the properties,
and it has been empirically shown that the reliability of the resultant explanations is greatly
impaired [17].

Satisfying these properties, II–VI is desirable in explaining EEG signal classification.
The proposed method can attribute the same contributions to two electrodes that play
the exact same role in the classification due to the symmetry property (VI). Owing to the
dummy property (II), the method can ignore any insensitive electrodes. The linearity
property (III) is desired to compute the contributions of linear combinations of CNN
filters. The completeness property (IV) enables the method to calculate a large sum of the
contributions if the output (i.e., classification confidence) is large.

4. Evaluation Methods
4.1. Datasets

We evaluated the reliability and computational costs of the proposed method on
three publicly available EEG datasets, including the PhysioNet polysomnography (PSG)
dataset [22], the UCI EEG dataset [23], and the CHB-MIT Scalp EEG dataset [24]. We fed
the raw data into CNN models without any preprocessing.

The PhysioNet PSG dataset includes three channels: EEG channels from two electrodes
and an electrooculography channel measured during sleep at a sampling frequency of
100 Hz. Data from 20 healthy people were collected for two days. A single epoch lasted
30 s, each of which was given a label describing sleep stages: non-rapid eye movement 1
(N1), N2, N3, rapid eye movement (R), or wakefulness (W). This dataset has been used as a
benchmark to classify sleep states. Because only three sensors were involved, this dataset
does not contain a great deal of spatial information.

In contrast, the UCI EEG dataset and CHB-MIT Scalp EEG dataset include data
recorded from 64 and 22 electrodes, respectively, and therefore, may contain more spatial
information than the PhysioNet PSG dataset. The UCI EEG dataset consists of visual
event-related EEG signals for a single second; these were measured from 64 electrodes at
a sampling frequency of 256 Hz. Three channels were excluded because they were not
EEG signals; 122 were included, of which, 45 were healthy and 77 had alcoholism. The
CHB-MIT Scalp EEG dataset includes 22-channel EEG signals measured from 22 patients
with epilepsy. The sampling frequency was 256 Hz. The time and duration of epileptic
seizures were annotated.
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4.2. Implementation

For the PhysioNet PSG dataset, we trained six-layer temporal CNN models to classify
the data into five sleep stages (N1, N2, N3, R, and W), which convolved input EEG signals
separately from one another to acquire time domain features integrated into the fully
connected output layer (see Figure 2). Moreover, 50, 100, 200, 400, and 200 temporally
convolutional filters were used with time window sizes of 50, 50, 50, 50, and 1, respectively,
from the input side. The temporal max-pooling sizes from the first to third layers were 5, 2,
and 2, respectively, and temporal average pooling with a size of 150 was adopted in the
fourth layer. The final layer was fully connected. Batch normalization was used in all layers
except for the final layer. We used the cross-entropy loss function and trained the CNNs
using the Adam optimizer, where the minibatch size was 50. The CNNs were trained using
data for the first day, and then they were tested using data for the second day.

For both the UCI EEG and the CHB-MIT Scalp EEG datasets, we trained four-layer
temporal CNNs and four-layer spatiotemporal CNNs to classify the data into two classes
(alcoholism/control and seizure/non-seizure, respectively). Data from subjects whose
last digit subject numbers were 0 or 1 were used to test the CNNs, and those of the other
subjects were used to train the CNN models. In the temporal CNNs, the time window sizes
were 20, 20, and 10, and the numbers of filters were 20, 40, and 10, respectively, from the
input side. The first and second layers used max-pooling with a size of 4, and the third layer
used average pooling with a size of the full length. The final layer was fully connected.

In the spatiotemporal CNNs, the first layer performed temporal convolution; the
temporal window size was 30, the number of filters was 20, and the max-pooling size was
2 in the direction of the time axis. The second layer performed spatial convolution; the
spatial window size was 64, the number of filters was 40, and the max-pooling size was 2.
The third layer performed temporal convolution; the temporal window size was 30, and the
number of filters was 40. Further, the final layer was fully connected. The other parameters
were the same as those for the CNNs for the PhysioNet PSG dataset. The spatiotemporal
CNNs were two-dimensional, which prevented the proposed method from satisfying the
symmetry property (VI).

In each dataset, we randomly selected 200 data samples of each class. For each classi-
fier, we computed the contributions of input features to the outputs using the proposed
method, the IG method with zero-input baseline, and the SS method. We used 10 additional
data examples with the proposed method to mitigate the sampling error in the SS method,
although theoretically a single datum example should be enough for this purpose. Ideally,
the contribution to the classification should be compared against true contributions; how-
ever, these were unknown. Therefore, we considered the contributions to the classification
obtained using the complete SS method as the true contributions and measured the simi-
larity among contributions in terms of Spearman’s correlation [25,26]. Large correlation
coefficients (close to 1) indicate high similarity between the two compared contributions
to the classification. Note that the comparison with the contributions obtained using the
SS method reflects the sampling errors. Furthermore, we determined the contributions of
EEG electrodes to the classification of alcoholism in the UCI EEG dataset to qualitatively
compare the methods. The number of divisions of the integral interval in the IG methods
was set to 200. The number of samplings in the SS method was set to 1000 per data example.
We used a temporal model and averaged the contributions from the 200 data samples
analyzed for this comparison.

5. Results

Table 1 lists Spearman’s correlation coefficients of all datasets and models. The coeffi-
cient values of the proposed compensated IG method (C-IG) were approximately equivalent
to those of the SS method on the temporal CNNs. In contrast, the original IG method exhib-
ited the lowest values, especially for the UCI EEG dataset. Therefore, the proposed method
can suitably compensate for the unreliable contributions to the classification obtained using
the IG method with the zero-point baseline.
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Table 1. Spearman’s correlation coefficient compared to contributions obtained using the Shapley
sampling. The temporal and spatiotemporal CNNs, respectively, correspond to one- and two-
dimensional convolutional CNNs.

Temporal CNNs Spatiotemporal CNNs
Dataset Class C-IG (Proposed) SS IG C-IG SS IG

PhysioNet N1 0.983 0.970 0.180
N2 0.970 0.953 0.655
N3 0.988 0.988 0.925
R 0.963 0.970 0.665
W 0.987 0.972 0.326

CHB-MIT Szr. 0.996 0.994 0.817 0.806 0.983 0.695
No Szr. 0.993 0.990 0.293 0.917 0.982 −0.037

UCI EEG Alc. 0.994 0.991 0.260 0.793 0.989 0.323
Ctr. 0.995 0.992 0.258 0.739 0.988 0.331

C-IG, compensated integrated gradients (proposed method); SS, Shapley sampling; IG, integrated gradients with
the zero-input baseline; N1–3, non-rapid eye movement 1–3; R, rapid eye movement; W, wakefulness; Szr., seizure;
No Szr., non-seizure; Alc., alcoholism; Ctr., control. The numbers in bold indicate the best performance of the
C-IG, SS and IG methods.

Even when C-IG did not satisfy the symmetry property (VI) on the spatiotemporal
CNNs, its coefficient values were larger than those of the original IG method with the
zero-input baseline. However, the values obtained by C-IG were lower than those of
the SS method in this case, indicating that the violation of the symmetry property (VI)
undermined the reliability of the estimated contributions to the classification. Nonetheless,
compensation improved the reliability of the original IG method.

We defined the computational complexity of the explanation methods in the UCI EEG
dataset. The complexity of the original IG method was given by the number of divisions of
integral intervals (200)× number of data examples (200) = 40,000. The proposed method ex-
hibited additional complexity for preprocessing using SS, given by the number of samplings
(1000) × number of electrodes (61) × number of data examples (10) = 610,000; therefore,
its total computational complexity was 650,000. The complexity of the SS method was given
by the number of samplings (1000)× number of electrodes (61)× number of data examples
(200) = 12,200,000. Assuming equal computational costs for the approximated integrals
(backward computation) and the samplings (forward computation), the computational
complexity of the proposed method was less than that of the SS method by approximately
95%. When 1000 data examples were targeted, the complexity was 99% lower. Table 2
summarizes the computational complexity of the explanation methods considered.

Table 2. Computational complexity of explanation methods in the UCI EEG dataset.

Method Computational Complexity

IG 40,000
SS 12,200,000

C-IG 650,000
IG, integrated gradients with the zero-input baseline; SS, Shapley sampling; C-IG, compensated integrated
gradients (proposed method).

Table 3 shows the classification accuracy. The performances of the spatiotemporal
CNNs were better than those of the temporal CNNs. The constraints of the classifiers for
more reliable explanations limited their learning performances.



Brain Sci. 2022, 12, 849 9 of 13

Table 3. Classification accuracy of models for three datasets.

Dataset Model Accuracy

PhysioNet Temporal CNNs 81.6%
CHB-MIT Temporal CNNs 83.4%

Spatiotemporal CNNs 88.7%
UCI EEG Temporal CNNs 69.5%

Spatiotemporal CNNs 77.1%

Figure 3 shows the contributions of the EEG electrodes for alcoholism (A) and control
(B) classification using the temporal CNNs in the UCI EEG dataset. They averaged over
100 randomly selected data. The contributions to the classification obtained using the
proposed method (C-IG: left panels) were indistinguishable from the true contributions
obtained using the SS method (middle panels), whereas those obtained using the original
IG method (right panels) exhibited different distributions from those obtained using other
methods. The correlations between the contributions obtained using the SS method and
the proposed method are shown in the column of temporal CNNs (C-IG) in the row of UCI
EEG in Table 1, indicating a high correlation of more than 0.99. In contrast, the contribution
obtained using the original IG method (right panels) shows different distributions from
those obtained using other methods.

A comparison of the contribution distributions in (A) and (B) reveals an inverse
relationship in the proposed and SS methods; specifically, many areas showing positive
contributions for the alcoholism class tended to show negative contributions to the healthy
class, and vice versa. In contrast, the contribution distributions in (A) and (B) obtained
using the original IG method were similar, indicating the risk of false explanation of the IG
method with an inappropriate baseline and the importance of compensation.

C-IG (proposed)C-IG (proposed) SSSS IGIG

AlcoholismAlcoholism

ControlControl

C-IG (proposed)C-IG (proposed) SSSS IGIG

AA

BB

Figure 3. Contributions of EEG electrodes over the scalp to classify alcoholism (A) and control
(B) using the temporal CNNs. The average contributions of the methods applied to 100 data examples
from the UCI EEG dataset are shown. The red and blue areas represent positive and negative contri-
butions to the classifications, respectively. The proposed method involves the compensated integrated
gradients (left panels), the Shapley sampling shows the desired contributions as a reference (middle
panels), and integrated gradients show the contributions obtained using the original integrated
gradients method with the zero-input baseline (right panels).
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Figure 4 shows the counterparts in the spatiotemporal CNNs. The contributions to
the classification obtained using C-IG were slightly different from those obtained using
the SS method. The correlations between the contributions obtained using the SS method
and the C-IG method are shown in the column of spatiotemporal CNNs (C-IG) in the row
of UCI EEG in Table 1, indicating approximately 0.7. These differences originated from
the violation of the symmetry property (VI) in the spatiotemporal CNNs. Nonetheless, the
compensation improved the explanation obtained by using the original IG method.

C-IG (proposed)C-IG (proposed) SSSS IGIG

AlcoholismAlcoholism

ControlControl

C-IG (proposed)C-IG (proposed) SSSS IGIG

AA

BB

Figure 4. Contributions of EEG electrodes over the scalp to classify alcoholism (A) and control
(B) using the spatiotemporal CNNs. The average contributions of the methods applied to 100 data
examples from the UCI EEG dataset are shown. The red and blue areas represent positive and
negative contributions to the classifications, respectively. The proposed compensated integrated
gradients method is shown (left panels), while the Shapley sampling shows the desired contributions
as a reference (middle panels), and integrated gradients show the contributions obtained using the
original integrated gradients method with the zero-input baseline (right panels).

6. Discussion

In this work, we proposed a compensated IG method using one example of the SS
value to improve the reliability of learning models in explaining classification outcomes.
The proposed method satisfies the four desired properties, namely, the dummy, linearity,
completeness, and implementation invariance properties, as well as the additional sym-
metry property under the classifier constraints. By using three kinds of EEG datasets, we
demonstrated that the proposed method was able to compute more reliable contributions
to the classification results than the original IG method (see Table 1) and with a much lower
computational cost than the SS method. The contributions to the classification obtained
using the proposed method were very similar to those obtained using the SS method,
especially for temporal CNNs, and satisfy the constraints of the symmetry property.

However, the classifier constraints can reduce the classification accuracy (see Table 3).
In contrast, the spatiotemporal CNNs showed higher classification accuracy but lower
explanation reliability than the temporal CNNs. Indeed, spatial features, including brain
functional connectivity, are important for EEG analyses [27,28], although the proposed
method assumes that features are spatially independent. This constraint is a limitation of
the method. Therefore, the classifier selection should depend on whether the explanation
reliability or classification accuracy is emphasized. Even when the symmetry property is
violated given the convolution among input features, we demonstrated that compensation
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effectively improves the reliability of the original IG method because the compensated IG
can satisfy properties II–V.

Very little spatial information is included in the PhysioNet database. In this case,
the proposed method was able to reliably compute contributions of data points over the
time series, whereas classifiers were not affected by the spatial constraint. Recently, an
easy-to-use EEG with a small number of channels was developed [29]. The proposed
method can be applied to such EEG signals without spatial features, as shown in the results
for the PhysioNet database.

The visualized contributions to alcoholism classification focused on the occipital visual
area and frontal area (see Figures 3 and 4). This was remarkably evident in the explanation
using the proposed method and not observed in the explanation using the original IG
method. The EEG signals in the UCI EEG dataset were measured in a visual-event-related
design. Neuroscientific studies have found that the positive amplitudes to visual stimuli are
significantly lower in people with alcoholism than in those without the condition [30,31]. In
addition, a statistical analysis of the same dataset showed different patterns of EEG powers
between participants with alcoholism and the control group in the occipital and frontal
regions [32] and discussed a possible link to cortical atrophy [33]. Classifiers might use such
differences to identify alcoholism, and the proposed method visualized the contributions of
visual areas in the occipital and frontal lobes. However, additional analyses in the frequency
domain and a coherence analysis between electrode signals are necessary to examine the
plausibility of the visualizations in more details.

Our method evaluates the contributions of electrodes; that is, the spatial input space.
However, for the classification of EEG signals, contributions in the frequency domain may
be more interpretable than those in the spatiotemporal domain [4,7,18]. Many explanation
methods, including the IG method, visualize the contributions in the input space because
they were developed for image classification. Therefore, a more detailed explanation
could be obtained by transforming the input contributions from the time domain to the
frequency domain.

The visualization of the contributions of classifier variables (e.g., nodes) is important to
understand the internal processes of the classifier, whereas we visualized the contributions
of the outputs in this study. For example, the correlation between inputs and activities of a
node [4] and information entropy of activities of a node [34] were used to clarify representa-
tion of each node in EEG signal classification. The proposed method can also be applied to
the internal variables by considering the activities of a node as the outputs. This may offer
more reliable explanations of the learning representation of each node than the existing
methods. In future studies, we plan to apply the proposed method to multichannel time
series data that differ from EEG data, such as the acceleration of human activities [35] and
electrocardiography [36].

7. Conclusions

In this study, we proposed a method to compensate for the IG explanation method.
The proposed approach is theoretically superior and has lower computational costs; it uses
one SS value to solve the problem that the reliability of the explanation decreases when
the baseline of the path integral is set inappropriately. The proposed method can compute
highly reliable contributions to the classification regardless of the baseline if individual
input features are non-linearly processed in an identical manner and the processed features
are then linearly combined to create outputs that are often used for EEG signal classification.
By using three different EEG datasets, we demonstrated that the proposed method was able
to calculate contributions to the classifications that were as reliable as those obtained using
the SS method. The computational complexity of the proposed method is almost the same
as that of the conventional IG method and is much smaller than that of the SS method.
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