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ABSTRACT

Transforming growth factor-B (TGF-B) exerts apoptotic
effects on various types of malignant cells, including
liver cancer cells. However, the precise mechanisms by
which TGF-B induces apoptosis remain poorly known.
In the present study, we have showed that threonine 32
(Thr32) residue of FoxO3 is critical for TGF-$ to induce
apoptosis via Bim in hepatocarcinoma Hep3B cells.
Our data demonstrated that TGF-B induced FoxO3
activation through specific de-phosphorylation at
Thr32. TGF-B-activated FoxO3 cooperated with Smad2/
3 to mediate Bim up-regulation and apoptosis. FoxO3
(de)phosphorylation at Thr32 was regulated by casein
kinase I-¢ (CKl-g). CKI inhibition by small molecule
D4476 could abrogate TGF-B-induced FoxO/Smad acti-
vation, reverse Bim up-regulation, and block the
sequential apoptosis. More importantly, the deregulated
levels of CKl-¢ and p32FoxO3 were found in human
malignant liver tissues. Taken together, our findings
suggest that there might be a CKI-FoxO/Smad-Bim
engine in which Thr32 of FoxO3 is pivotal for TGF-f3-
induced apoptosis, making it a potential therapeutic
target for liver cancer treatment.

KEYWORDS apoptosis, TGF-8, FoxO3, casein kinase
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INTRODUCTION

TGF-B mainly signals through activating a heteromeric
receptor complex consisting of type | (TGF-RI) and type I
(TGF-RII) serine/threonine kinase on the cell membrane
(Massague and Weis-Garcia, 1996). The activated TGF-3
receptors phosphorylate downstream adaptor proteins such
as Smad2 and Smad3. Receptor-activated Smads are
associated with a common Smad4 and translocate to the
nucleus to modulate TGF-B target genes (Derynck and
Zhang, 2003; Enroth et al., 2014; Engel et al., 1998; Mas-
sague et al., 2005). Increasing evidence indicated that Smad
proteins cooperate with a variety of transcription factors,
including AP-1, TFE3 and FoxO to activate gene transcription
or repress gene expression in association with oncoproteins
such as Evi-1, E1A, Ski, SnoN, Tid1 and Akt (Hua et al.,
1998; Remy et al., 2004; Runyan et al., 2012; Torregroza and
Evans, 2006; Vignais, 2000; Yamamura et al., 2000; Seoane
et al., 2002). TGF-B can induce apoptosis in malignant cells
through up-regulating of pro-apoptotic proteins such as Bim
and Bmf, or down-regulating anti-apoptotic proteins such as
Bcl-xL (Nass et al., 1996; Ramjaun et al., 2007).

The FoxO transcription factor family, including FoxO1,
FoxO3 and FoxO4 is reported to act as potent transcription
activators and tumor suppressors. Specifically, FoxO3 is
phosphorylated by a couple of protein kinases such as PKB/
Akt and CKI (Conery et al., 2004; Waddell et al., 2004). Once
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phosphorylated, FoxO3 is sequestrated in the cytoplasm and
its ability to activate transcription of target genes is inhibited.
It has been reported that TGF-B induces FoxO3 to actively
engage with Smads to result in cell cycle arrest by up-reg-
ulating p27 (Park et al., 2013; Kato et al., 2006). Studies also
showed that TGF- enhances FoxO3 phosphorylation and
down-regulates Bim expression to inhibit apoptosis in mes-
angial cells (Naka et al., 2010). However, the roles of FoxO3
in TGF-B-induced apoptosis in liver cancer cells have yet to
be fully elucidated.

Casein kinase | (CKI) family proteins consisting of seven
isoforms (a, B, y1-3, 8 and €) can phosphorylate p53 or 3-catenin
to regulate their activity; Of note, CKl-¢ is regarded as a consti-
tutively active kinase and its activity is regulated by (auto) phos-
phorylation status (Fish et al., 1995; Tuazon and Traugh, 1991;
Knippschild et al., 2005; Graves et al., 1993). Previous studies
reported that CKl-¢ can enhance TGF--induced Smad-medi-
ated gene transcription (Renard et al., 2008; Miyazono, 2000).
Currently, the mechanism by which CKl-¢ regulates FoxO3
activity to affect TGF-B-induced apoptosis remains unclear.

The present study sought to study the roles of FoxO3 in
TGF-B-induced apoptosis using in vitro cell models. We
proved that TGF-B triggers apoptosis via Bim elevation in
Hep3B cells. TGF-B activated FoxO3 by dephosphorylation
at Thr32 and the activated FoxO3 functionally cooperated
with Smad2/3 to mediate Bim up-regulation. CKl-¢ regulated
FoxO3 activity by Thr32 phosphorylation site and affected
TGF-B-induced Bim up-regulation and apoptosis. Deregu-
lated expression of CKl-¢ and p32FoxO3 was observed in
malignant liver tissues. Our findings suggest that a CKl-¢-
FoxO3/Smad-Bim engine could be considered as a potential
target to treat liver cancer.

RESULTS

TGF-B induces Bim-dependent apoptosis in Hep3B
cells

To evaluate the apoptotic effects of TGF-3, Hep3B cells were
treated with TGF-B. Apoptosis was determined by FACS
analysis based on Annexin V-P| double staining, caspase-3
cleavage activation and cytochrome c release from mito-
chondria. We observed significant apoptosis in TGF-3-treated
cells (Fig. 1A-C). Regarding Bcl-2 family proteins are essen-
tial regulators of cytochrome c release from mitochondria
(Green and Reed, 1998), next we analyzed the expression of
Bcl-2 family proteins in Hep3B cells treated with TGF-3. We
found that Bim was significantly up-regulated at both protein
and mRNA levels, while Bax and Bcl-xL were not apparently
affected (Fig. 1D and 1E). To further verify the roles of Bim in
Hep3B cells treated with TGF-, immunofluorescence stain-
ing assays were performed. Our data showed that Bim was
elevated and translocated to mitochondria in cells treated with
TGF-B (Fig. 1F), suggesting Bim may play key roles in cyto-
chrome c release from mitochondria. To validate whether
TGF-B-induced apoptosis is Bim dependent, we used the
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Figure 1. TGF-B induces Bim dependent apoptosis in
Hep3B cells. (A) TGF-B-induced apoptosis in Hep3B cells.
Cells treated with TGF-B (5 ng/mL) for up to 48 h were
harvested and processed for apoptotic assay by using the
Annexin V-PI double staining as described in ‘METHODS
AND MATERIALS’. Statistical analysis was carried out to
assess the ratio of apoptosis. Representative data were
shown and every experiment was repeated three times
(*P < 0.05). (B) Detection of apoptosis by caspase-3
activation. Cells treated as in Fig. 1A were harvested and
cell lysates were prepared for Western blotting analysis to
detect levels of cleaved caspase-3 with specific antibody
recognizing cleaved caspase-3. 3-Actin protein levels were
assessed as loading controls for equal total protein amounts.
Representative immuno-bands were shown and every
experiment was repeated three times. (C) Cytochrome c
release from mitochondria. Cells cultured on glass cover
slips were treated with TGF-$ (5 ng/mL) for 48 h or not
(Control). Fluorescence immunostaining was performed to
detect cytochrome c with anti-cytochrome c primary mouse
antibody. Bound cytochrome c was labeled with FITC
conjugated goat anti-mouse secondary antibody (green).
Mitochondria were stained with Mito-Tracker (Red).
(D) TGF-B-induced Bim up-regulation at protein level. Cells
incubated in the absence or presence of TGF-$ for up to
720 min were harvested and cell lysates were prepared for
Western blotting to detect levels of Bim, Bax and Bcl-xL with
antibodies specifically recognizing Bim, Bax and Bcl-xL
respectively. B-Actin protein levels were assessed as load-
ing controls for equal total protein amounts. Relative band
intensities (RBIs) were analyzed by the Image J software.
(E) TGF-B-induced Bim up-regulation at mMRNA level. Cells
were treated as in D and semi-quantitative RT-PCR was
used to detect levels of Bim, Bax and Bcl-xL mRNA. GAPDH
mRNA were assessed and set up as equal loading control.
Relative band intensities (RBls) were analyzed by the Image
J software. (F) Bim up-regulation and translocation. Cells
cultured on cover slips were treated for up to 48 h or not.
Immunofluorescence staining was performed as described
in ‘MATERIALS AND METHODS'. Bim was recognized with
anti-Bim rabbit pAb and bound Bim primary antibody was
labeled with FITC conjugated goat anti-rabbit IgG (Green).
Mitochondria were stained with Mito-Tracker (Red).
(G) TGF-B-induced Bim-dependent apoptosis. Cells cul-
tured in six-well plate were transfected with synthesized
scramble control siRNA and Bim specific siRNA, and 48 h
post-transfection, cells were treated with TGF-B (5 ng/mL)
for 48 h or not. Bim expression and apoptotic effects based
on caspase-3 cleavage activation were determined through
Western blotting. (H) Cells cultured in six-well plate were
transfected with synthesized scramble control siRNA and
Bim specific siRNA, and 48 h post-transfection, cells were
treated with TGF- (5 ng/mL) for 48 h or not. Apoptotic ratio
was determined by counting cells with apoptotic nuclei as
describedin‘MATERIALS AND METHODS'. Data represent
the mean values of three independent experiments
(*P<0.05).
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siRNA system to suppress the expression of Bim. Western
blotting results indicated that Bim expression was effectively
knocked down in Bim specific siRNA-transfected cells
(Fig. 1G). Apoptosis assays revealed that Bim knock-down
effectively protected cells against TGF-B-induced apoptosis
(Fig. 1G and 1H). These results suggest that TGF-B-induced
apoptosis is Bim dependent in Hep3B cells.

FoxO3 and Smad2/3 are activated and cooperate
to mediate Bim up-regulation

FoxO3 is a key transcription factor to regulate Bim gene
expression (Hagenbuchner et al., 2012). In order to test the
function of FoxO3 in TGF-B-induced apoptosis, cells were
treated with TGF-f and Western blotting was performed. We
found that FoxO3 was dephosphorylated at threonine 32
(Thr32) residue after treatment with TGF-f for 30 min, but
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the other three serine 253, 318, or 321 residues were not
(Fig. 2A). FoxO3 was increased after treatment with TGF-38
for 120 min, which may be caused by dephosphroylation of
p32FoxO3 (Fig. 2A). TGF-B triggered dramatic Smad2/3
phosphorylation within 15 min and the protein levels of both
Smad?2/3 and smad4 were not apparently affected (Fig. 2A).
It is well documented that activated FoxO3 could move into
nucleus to regulate target gene expression. Here we
observed that TGF-B-induced Smad2/3 phosphorylation
activation mirrored FoxO3 Thr32 dephosphorylation activa-
tion (Fig. 2A). To assess whether FoxO3 and Smad2/3 could
be activated simultaneously and cooperate to regulate target
gene transcription, double immunostaining assays were
performed. Our data demonstrated that TGF-f treatment
induced FoxO3 translocation into the nucleus in a similar
time course with Smad2/3 (Fig. 2B). Co-immunoprecipitation
(co-IP) experiments further confirmed that TGF-8 was able
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Figure 2. FoxO3 and Smad2/3 are activated and cooperate to mediate Bim up-regulation. (A) TGF-f induces FoxO3
dephosphorylation at Thr32. Cells treated with TGF-B (5 ng/mL) for indicated times were harvested and cell lysates were prepared for
Western blotting to examine protein levels of p32Fox03, p253Fox03, p318/321Fox03, FoxO3, Smad2/3, pSmad2 and Smad4 with
specific antibodies respectively. Levels of equal protein loading were determined by B-Actin. Relative band intensities (RBIs) were
analyzed by the Image J software. (B) Smad2/3 and FoxO3 co-translocation to nucleus. Hep3B cells treated with TGF- (5 ng/mL) for
indicated times were fixed with paraformaldehyde and immunostained with anti-Smad2/3 or anti-FoxO3 primary antibodies. Bound
Smad2/3 antibody was recognized with Cy3-conjugated donkey anti-mouse IgG (Red) and FoxO3 antibody was recognized with
FITC-conjugated goat anti-rabbit IgG (Green). (C) TGF-B-induced FoxO3-Smad2/3 complex formation. Cells treated for 60, 120 and
360 min or not were harvested and cell lysates were prepared for immunoprecipitation with anti-Smad2/3 followed by immunoblotting
with anti-Smad4 mAb or anti-FoxO3 pAb. Equal protein amounts loading were determined by IgG. (D) FoxO3 knockdown blocks
TGF-B-induced Bim up-regulation. Cells were transfected with FoxO3 specific interfering oligonucleotides (FoxO3-siRNA) or non-
specific oligonucleotides scramble-siRNA. After transfection for 24 h, cells treated with TGF-3 were harvested and cell lysates were
prepared for Western blotting to detect levels of FoxO3 and Bim with specific antibodies recognizing FoxO3 and Bim. Relative band
intensities (RBIs) were analyzed by the Image J software. (E) and (F) Smads knockout abolishes TGF-B-induced Bim up-regulation.
Smad2/3”"and Smad2/3™"* MEF cells treated with TGF-B (5 ng/mL) were harvested and cell lysates were prepared for Western
blotting to detect Bim with Bim pAb. Levels of equal protein loading were determined by 3-Actin. Relative band intensities (RBIs) were
analyzed by the Image J software. Representative bands were shown. Each experiment was conducted in triplicate and repeated
twice independently.

to stimulate Smad2/3 and FoxO3 to form a complex
(Fig. 2C). Additionally, our CHIP assays and oligonucleotide
pull-down assays ascertained that Smad-FoxO3 complex
could bind to bim promoter (data not shown). To verify the
functional involvement of Smad2/3 and FoxO3 to TGF-3-
induced Bim elevation, we used the siRNA system to sup-
press the expression of FoxO3 and found that FoxO3-siRNA
effectively abrogated TGF-B-induced Bim up-regulation

(Fig. 2D). To test the roles of Smad2/3, Smad knockout
(Smad2/3™") and Smad heterozygous (Smad2/3™"*) MEF
cells were used to evaluate TGF-B-induced Bim increase.
We observed that Bim was significantly increased in Smad2/
37" MEF cells (Fig. 2E), but not in Smad2/3™~ MEF cells
(Fig. 2F). These data suggest that both FoxO3 and Smad2/3
are activated and cooperate to regulate TGF-B-induced Bim
up-regulation.
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Figure 3. PI3K-Akt pathway is not involved in TGF-B-
induced FoxO3 activation. (A) TGF-§ treatment does not
induce Akt phosphorylation activation. Hep3B cells were treated
with IGF-1, TGF-B, IGF-1 and TGF-f or IGF-1 and Wortmannin
for 30 min. Cells were harvested and cell lysates were prepared
for Western blotting to detect levels of p473-Akt and Akt with
antibodies specifically recognizing p473-Akt and Akt. B-Actin
was assessed and set up as equal protein loading control.
(B) Inhibition of PI3K-Akt does not block TGF-f-induced FoxO3
activation and Bim up-regulation. Hep3B cells pretreated with
Wortmannin for 30 min were stimulated with TGF- (5 ng/mL) or
not for 0, 15 and 30 min. Cell lysates were prepared and
subjected to Western blotting to detect levels of p32FoxO3,
Bim, FoxO3, pSmad2, Smad2/3, Smad4 with specific antibod-
ies, respectively. B-Actin levels were assessed and set up as
equal protein loading control. Relative band intensities (RBIs)
were analyzed by the Image J software. Representative bands
were shown. Each experiment was conducted in triplicate and
repeated twice independently.

PI3K-Akt pathway is not involved in FoxO3 activation
induced by TGF-8

Depending on the cell types, TGF-f inhibits or activates Akt
through changing its phosphorylation status. Previous stud-
ies has shown that Akt is involved in phosphorylation of
FoxO3 at Thr32 (Higaki and Shimokado, 1999; Valderrama-
Carvajal et al., 2002). In our study, to verify whether FoxO3
Thr32 dephosphorylation was mediated by Akt, cells were
treated or not with insulin-like growth factor 1 (IGF-1) (posi-
tive control), TGF-B, IGF-1 plus TGF-@, or IGF-1 plus Wort-
mannin (negative control). Our results indicated that TGF-3
did not induce Akt phosphorylation activation in Hep3B cells
(Fig. 3A). To further confirm PI3K/Akt pathway was not
involved in TGF-B-induced FoxO3 activation at Thr32, cells
were treated with TGF-B in the presence of Wortmannin or
not. We found that TGF-B-induced dephosphorylation of
FoxO3 at Thr32 and Bim up-regulation was not apparently
affected (Fig. 3B). Our results also indicated that Smad2 was

phosphorylated and Smad4 had no change. Notably, we
found that TGF-f and Wortmannin combination treatment
led to Smad2/3 decrease, of which the underlying mecha-
nism needs further investigation. Taken together, these data
suggest that TGF-B-induced FoxO3 activation through
dephosphorylation at Thr32 is not PI3K-Akt dependent.

CKI-¢ regulates TGF-B-induced Bim up-regulation
through FoxO3 in Hep3B cells

CKI-¢ plays a ligand-dependent regulatory role in the TGF-3
signaling pathway. CKl-¢ can repress basal activity of
TGF-B-targeted molecules, while enhance TGF-B-induced
Smad-mediated gene transcription (Higaki and Shimokado,
1999; Valderrama-Carvajal et al., 2002). In this study, we
tested whether CKl-¢ affects FoxO3 phosphorylation status.
Western blotting results indicated that over-expression of
wild type CKl-¢ (WT) effectively resulted in p32FoxO3
increase (Fig. 4A), whereas over-expression of dominant-
negative mutant CKl-¢ (KD) decreased p32FoxO3 level
(Fig. 4B). To assess the effects of CKl-e-mediated FoxO3
phosphorylation at Thr32 on TGF-B-induced Bim up-regula-
tion, Hep3B cells harboring CKl-¢ (WT) or CKl-¢ (KD) plas-
mids were treated with TGF-$ or not. We found that TGF-
increased Bim expression in cells expressing wild type CKl-¢
(Fig. 4C, upper panel). TGF-B-induced Bim up-regulation
was reversed in cells containing CKl-¢ (KD) (Fig. 4C, lower
panel). We next checked the roles of endogenous CKI-€ in
FoxO3 Thr32 phosphorylation activation and Bim expres-
sion. Using siRNA to knock down CKI-¢ expression, Western
blotting results showed that CKIl-¢ knockdown effectively
decreased p32FoxO3 level (Fig. 4D). More interestingly, we
found that TGF-B-induced Bim up-regulation was reverted in
CKIl-¢ knockdown cells (Fig. 4E), which is consistent with the
results from TGF-B-treated CKI-e (KD) containing cells. To
further verify that Threonine 32 (Thr32) residue of FoxO3 is
critical for Bim expression, FoxO3 plasmid containing a point
mutation (Thr32 to Ala32: T to A) was introduced to cells.
After 48 h transfection, cells treated with TGF- or not. We
found that over-expression of this mutant FoxO3 ablated
TGF-B-induced Bim increase (Fig. 4F). Taken together,
these data suggest that CKl-¢ plays pivotal roles in regulat-
ing FoxO3 phosphorylation at Thr32.

CKI inhibition blocks TGF-B-induced Bim increase
and apoptosis

To further evaluate the function of CKl-¢ in TGF-B-induced
apoptosis, cells were pretreated with CKI inhibitor D4476
followed by TGF-B incubation. Apoptosis was measured by
nuclear staining and Annexin V-PI staining. We found that
CKI inhibition by D4476 effectively protected cell against
TGF-B-induced apoptosis (Fig. 5A and 5B). Immunofluore-
sence staining assays demonstrated that TGF--induced
translocation of both Smad2/3 and FoxO3 was completely
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Figure 4. CKl-¢ regulates TGF-B-induced Bim up-regulation through FoxO3. (A) Over-expression of CKl-¢ (WT) induces
p32Fox03 increase. Hep3B cells were transiently transfected with different amounts of wild type CKl-e (WT) plasmids. After
transfection for 48 h, cell lysates were prepared for Western blotting to detect levels of CKl-¢ and p32FoxO3. Equal protein loading
was determined by B-Actin. Relative band intensities (RBIs) were analyzed by the Image J software. (B) Mutation of CKI-¢ impairs its
ability to phosphorylate FoxO3 at Thr32. Hep3B cells were transiently transfected with dominant negative mutant CKl-¢ (KD) (K to R).
After transfection for 48 h, cells were harvested and lysates were prepared for Western blotting. CKl-¢ and Bim expression were
evaluated with specific antibodies recognizing CKl-¢ and Bim. B-Actin was assessed and set up as equal protein loading control.
Relative band intensities (RBIs) were analyzed by the Image J software. (C) Effects of CKl-€ over-expression on TGF-3-induced Bim.
Hep3B cells transiently transfected with either wild type CKl-g¢ (WT) (upper panel) or dominant negative CKl-¢ (KD) (lower panel)
plasmids were treated with TGF-@3 for up to 120 min or not. Cells were harvested and lysates were prepared for Western blotting to
assess Bim expression. Equal protein loading was determined by B-Actin. Relative band intensities (RBIs) were analyzed by the
Image J software. (D) CKl-¢ knockdown decreases p32FoxO3 levels. Hep3B cells were transfected with CKI-¢ specific siRNA or not.
After transfection for 48 h, cells were harvested and cell lysates were prepared for Western blotting to assess levels of CKl-¢ and
p32Fox03 with antibodies specifically recognizing CKl-¢ and p32FoxO3. 3-Actin was set up as equal protein loading control. Relative
band intensities (RBIs) were analyzed by the Image J software. (E) CKI-¢ knockdown reverses TGF-B-induced Bim up-regulation.
Hep3B cells were transfected with CKI-g siRNA or not. After transfection for 48 h, cells were harvested and cell lysates were prepared
for Western blotting to assess level of Bim. Equal protein loading was determined by B-Actin. Relative band intensities (RBIs) were
analyzed by the Image J software. (F) FoxO3 mutation at Thr32 impairs TGF-f-induced Bim up-regulation. Hep3B cells, Hep3B cells
transiently transfected with CKl-¢ (WT) plasmids, Hep3B cells transiently transfected with FoxO3 (T to A) plasmids, or Hep3B cells
transiently transfected with both CKl-¢ (WT) and FoxO3 (T to A) plasmids were treated with TGF-f or not for 120 min. Bim expression
was monitored by Western blotting with anti-Bim pAb. B-Actin was assessed and set up as equal protein loading control. Relative
band intensities (RBIs) were analyzed by the Image J software. Representative bands were shown. Each experiment was conducted
in triplicate and repeated twice independently.
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Figure 5. CKI inhibition blocks TGF-B-induced apoptosis in Hep3B cells. (A) CKl-¢ inhibition blocks TGF-B-induced apoptosis.
Cells were treated with CKIl inhibitor D4476 (10 pmol/L), TGF-8 (5 ng/mL) or D4476 plus TGF-( for 48 h. Apoptosis was assessed by
staining with Hoechst 33342 for nucleus condensation as described in ‘MATERIALS AND METHODS'. A representative field of cells
with the indicated treatments has been shown. Typically apoptotic cells with apoptotic nuclei were marked with white arrows. (B) Cells
were treated with various conditions as indicated. Apoptosis was assessed by FACS analysis based on Annexin V-PI double staining.
Statistical analysis was performed to assess the ratio of apoptosis. Data represent the mean values of three independent experiments
(*P < 0.05). (C) D4476 abolishes TGF-B-stimulated Smad2/3 and FoxO3 translocation. Hep3B cells grown on cover slips were
pretreated with D4476 for 30 min and continuously incubated with TGF- (5 ng/mL) or not. Immunofluorescence double staining was
performed to evaluate the presence of Smad2/3 and FoxO3 with antibodies specifically recognizing Smad2/3 and FoxO3. The bound
Smad2/3 primary antibody was visualized with Cy3-conjugated donkey anti-mouse IgG (Red) and FoxO3 was with FITC-conjugated
goat anti-rabbit IgG (Green). Nuclei were stained with specific dye DAPI (blue). (D) D4476 blocks TGF-B-induced Bim up-regulation.
Cells were pretreated with D4476 for 30 min followed by TGF-8 (5 ng/mL) incubation for various times ranging from 0 to 720 min. Cells
were harvested and cell lysates were prepared for Western blotting to detect levels of Bim and Bcl-xL with specific antibodies
recognizing Bim and Bcl-xL. Equal protein loading was determined by 3-Actin. Relative band intensities (RBIs) were analyzed by the
Image J software. Representative bands were shown. Each experiment was conducted in triplicate and repeated twice independently.

blocked by D4476 (Fig. 5C). Western blotting results indi-
cated that TGF-B-induced Bim up-regulation was reversed
by this inhibitor (Fig. 5D). These data further suggest that
CKl-¢ is correlated with TGF-B-induced FoxO3 activation
and Bim up-regulation.

Deregulation of CKl-¢ and p32Fox0O3
in hepatocarcinoma

It has been reported that cancer cells may have deregu-
lated apoptosis signaling pathway (Huynh et al., 2003;

Philips and McFadden, 2004; Akagi et al., 1996). To assess
whether malignant liver cells have aberrant CKI-¢ and
p32FoxO3 expression that reduces the sensitivity of cancer
cells to TGF-B-induced apoptosis. Paired malignant liver
tissues and adjacent non-cancer tissues from the same
patients were collected. CKl-¢ and p32FoxO3 expression
was analyzed by Western blotting. Matched comparisons
with adjacent normal liver tissues showed that there was
consistent down-regulation of CKl-¢ and p32FoxO3 protein
expression in 2 out of 4 randomly selected malignant liver
tissues (Fig. 6). These data suggest that the CKl-¢ activity
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Figure 6. Deregulation of CKl-¢ and p32Fox0O3 in hepato-
carcinoma. Paired adjacent normal liver tissues (N) and malig-
nant liver tissues (T) from 4 patients suffered hepatocarcinoma
were collected and processed for Western blotting to detect
levels of CKIl-¢ and p32FoxO3 with specific antibodies recogniz-
ing CKl-€ and p32Fox03. Equal protein loading was determined
by B-Actin. Relative band intensities (RBIs) were analyzed by the
Image J software. N: samples from adjacent liver tissues; T:
samples from malignant liver tissues; p1-4: patient number.
Representative bands were shown. Each experiment was
conducted in triplicate and repeated twice independently.

and phosphorylation of FoxO3 are deregulated in human
liver cancer cells.

DISCUSSION

In this study, we have addressed the mechanism of TGF--
induced Bim-dependent apoptosis in malignant liver cells.
We found that TGF-B induced FoxO3 activation by
dephosphorylation at Thr32. Activated FoxO3 cooperated
with Smad2/3 to mediate Bim up-regulation. CKl-¢ regulated
TGF-B-induced Bim elevation and apoptosis by affecting
FoxO3 phosphorylation status at Thr32. CKI inhibition
effectively blocked TGF-B-induced apoptosis. More impor-
tantly, we observed deregulation of CKl-¢ and p32FoxO3 in
liver cancer tissues. Our results delineate a CKI-FoxO/
Smad-Bim engine in which Thr32 of FoxO3 is critical for
TGF-B-induced apoptosis.

Under TGF-B stimulation, FoxO3 can bind to Runx-1 and
cooperate to up-regulate Bim expression (Wildey and Howe,
2009). However, which phosphorylation site(s) of FoxO3
play(s) key roles in TGF-B-induced FoxO3 activation or
whether FoxO3 can function as a cofactor with smad2/3 to
regulate TGF-B-induced apoptosis in liver cancer cells has
yet to be fully tested. In this study, we demonstrate that TGF-3
induced FoxO3 activation through specific dephosphoryla-
tion at Thr32 residue. Interestingly, the dephosphorylation
activation pattern of FoxO3 was matched (mirrored) perfectly
with phosphorylation activation of Smad2/3, suggesting the
possibility of FoxO3 and Smad2/3 co-operation. We also
observed that FoxO3 and Smad translocated to nuclear from
cytoplasm simultaneously. Moreover, the following co-IP

assay further confirmed that FoxO3 could be a co-factor of
Smad2/3. Loss-of-function assay using siRNA-mediated
FoxO3 knockdown Hep3B cells or Smad2/3 knockout MEF
cells revealed that both FoxO3 and Smad2/3 were essential
for TGF-B-induced Bim-dependent apoptosis. Therefore,
these results provided profound evidence to validate the
notion that TGF-B induced FoxO3 Thr32 dephosphorylation
and activated FoxO3 could cooperate with Smad2/3 to
medicate Bim up-regulation.

FoxO3 dephosphorylation activation could be achieved
either by phosphatases or kinases (Vogt et al., 2005). It has
been reported that TGF-B could activate PP2A, which might
lead to dephosphorylation of FoxO3 (Ni et al., 2007; Tremblay
and Giguere, 2008; Yan et al., 2008). However, our present
data indicated that inhibition of PP2A by a specific inhibitor
Okadaic Acid did not prevent TGF-B-induced FoxO3 activa-
tion (data not shown). Previous reports also showed that Akt
can phosphorylate FoxO3 at Thr32 to inhibit its activity
(Brunet et al., 1999; Biggs et al., 2001; Kops and Burgering,
1999). In our study, we found that TGF-f did not induce Akt
activation and Wortmannin could not affect TGF-B-stimulated
FoxO3 dephosphorylation at Thr32, suggesting that PI3K/Akt
was not involved in TGF-B-induced activation of FoxO3.
Therefore, it would be interesting to explore the possible
kinase(s) that may modulate TGF-B-induced FoxO3 activa-
tion. Our study indicated that over-expression of wild type
CKl-¢ (WT) significantly induced p32FoxO3 increase, while
the dominant negative CKl-¢ (KD) over-expression caused
32Fox0O3 decrease, suggesting that CKl-¢ is a potential
protein kinase for maintaining FoxO3 Thr32 phosphorylation.
More importantly, we observed that ectopic over-expression
of CKIl-¢ (KD) result in Bim decrease in TGF-B-treated cells.
Thus, we hypothesized that CKI-¢ may be responsible for
controlling the direction of the CKI-FoxO/Smad-Bim engine.
Indeed, TGF-B-induced Bim up-regulation was also reversed
in CKl-¢ knockdown cells, suggesting CKl-¢ is correlated with
TGF-B-induced FoxO/Smad-mediated Bim up-regulation.
Additionally, ablation of Bim up-regulation by expressing
mutant FoxO3 (T32A) plasmid in cells harboring CKl-¢ (WT)
further confirmed that both CKl-¢ and p32FoxQO3 are crucial.

Based on the above observation that CKl-¢ acts as a
protein kinase to regulate FoxO3 biological activity through
Thr32 residue and determines Bim expression profile, we
speculate that inhibition of CKI-& may inhibit TGF-B-induced
Bim increase and apoptosis. As expected, we found that
TGF-B-induced apoptosis was completely blocked by CKI
inhibitor D4476. Further studies revealed that D4476 incu-
bation not only impaired FoxO3 and Smad2/3 collaborating
activation, but altered TGF-B-induced Bim expression profile
from increase to decrease. This is consistent with our find-
ings that CKl-¢ (KD) over-expression or CKl-¢ knockdown
revert TGF-B-induced Bim expression. Taken together, these
data make it clear that CKl-¢ is able to regulate TGF-3-
induced Bim expression by affecting FoxO3 phosphorylation
status and support the model in which TGF- stimulates
apoptosis by trigger the CKI-FoxO/Smad-Bim engine.
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In an attempt to bring our studies close to clinical analysis,
we then demonstrate that, in comparison with adjacent
normal liver tissues, 2 out of 4 malignant liver tissues have
lower CKl-¢ and p32FoxO3 expression. Since the tumor
suppressive actions of the FoxO3 are well documented
(Renault et al.,, 2011; Qi et al., 2011a, b; Karube et al., 2011),
our findings imply that massive inactivation of FoxO3 by
Thr32 phosphorylation may either initiate a progressive
cancer-prone condition or have a pro-metastatic role to
promote tumor progression in liver cancer.

In summary, our data reveal a novel CKI-FoxO/Smad-Bim
engine for TGF-B-induced apoptosis and its deregulation
may be related to cancer development. Identification of this
engine may provide a potential new therapeutic target in the
treatment of liver cancer, although it remains to be defined
what happens to CKl-¢ upon TGF-§ stimulation.

MATERIALS AND METHODS
Materials and cell culture

Primary antibodies: to Bim rabbit pAb (BOD) and -Actin mouse mAb
(Sigma-Aldrich); to cytochrome ¢ mouse mAb (BD Pharmingen); to
Smad2/3 mouse mAb (BD Transduction laboratories); to p-Akt (473)
rabbit pAb, caspase-3 rabbit pAb, p-Smad2 mAb, p-FoxO3 (Thr32/
Ser318/321/Thr253) rabbit pAb and Akt rabbit pAb (Cell Signaling
Technology); to Smad4 mouse mAb (B-8) and FoxO3 rabbit pAb
(Santa Cruz Biotechnology). Second antibodies: FITC conjugated
goat anti-rabbit IgG (Santa Cruz Biotechnology); Cy3 conjugated
donkey anti-mouse IgG (Jackson ImmunoResearch Lab, INC.);
Wortmannin (Upstate); IGF-1 (Insulin-like growth factor 1, IGF-1) and
human TGF-B was obtained from R&D systems; Protein G Plus-
Sepharose (Santa Cruz Biotechnology, INC); PI (Propidium lodide,
Sigma-Aldrich); DAPI (4,6-Diamidino-2-phenyindole, DAPI) and
Hoechst 33342 were from Sigma-Aldrich, Inc.; Superscript-TM ||
reverse Transcriptase kit (Invitrogen); Hep3B cells were cultured in
minimum essential medium (MEM) supplemented with 10% fetal
bovine serum, 100 units/mL penicillin, and 100 mg/mL streptomycin
at 37°C and 5% CO,. MEF cells, Smad2/3~) MEF cells and Smad2/
30" MEF cells were kindly gifted by Dr. Xiao Yang (Chinese PLA
Academy of Military Medical Sciences, Beijing, China) and were
similarly cultured in Dulbecco’s modified Eagle’s medium with the
exception of serum (15% fetal bovine serum). CKl-¢ (WT and KD
mutant) constructs were provided by Dr. Xiaofan Wang (Department
of Pharmacology and Cancer Biology, Duke University Medical
Center, Durham, North Carolina, USA). Patient tissue samples were
provided by Dr. Junbo Hu at Tongji Hospital, Wuhan, China).

Apoptosis assays

Apoptosis was examined by detecting phosphatidylserine (PS)
exposure on cell membrane with Annexin V and dye exclusion assay
as described previously (Chen et al., 2001). Cells were simulta-
neously stained with Annexin V-FITC (green) and Pl (red). This
assay discriminates between intact (FITC™/PI”), early apoptotic
(FITC*/PI"), and later apoptotic cells (FITC*/PI*). Comparative
experiments were performed at the same time by bivariate flow-

cytometry using a FACScan (BD) and analyzed with CellQuest
software on data obtained from the cell population from which debris
was gated out. Nucleus condensation or DNA fragmentation was
detected to indicate apoptosis in some experiments using DAPI/
Hoechst staining. Briefly, cells were washed with PBS and stained
with DAPI or directly stained with Hoechst 33342 before visualization
under fluorescent microscopy. At least 200 cells from 6 random
selected areas were counted in each experiment. Caspase-3 acti-
vation was determined by detecting its cleaved fragments using
Western blotting. Pro-caspase-3 (37 kDa) was cleaved into 17 kDa
fragment (cleaved caspase-3) during apoptosis.

Co-immunoprecipitation (co-IP)

Two near confluent 75-mm dishes of Hep3B cells were washed
three times with phosphate buffered saline (PBS), collected and
lysed with 500 uL ice cold lysis buffer (50 mmol/L Hepes, pH 7.5,
150 mmol/L NaCl, 5 mmol/L EDTA and 1% Triton X-100) containing
protease inhibitor cocktail (10 pg/mL Aprotinin, 1 nmol/L PMSF and
10 pg/mL Leupeptin) for 30 min at 4°C. Lysates were clarified by
centrifugation at 15,000 xg for 15 min and pre-cleared by incubation
with protein G Plus-Sepharose for 120 min at 4°C. After pre-clearing,
supernatants were transferred to 1.5-mL microfuge tubes containing
anti-Smad2/3 mAb plus protein G-Sepharose. After incubation with
rotating overnight at 4°C, immunoprecipitates were washed three
times with RIPA lysis buffer and subjected to Western blotting ana-
lysis with anti-FoxO3 pAb and anti-Smad4 mAb.

Western blotting analysis

Western blotting was performed according to our published method
(Liao et al., 2003). Hep3B cells were harvested and lysed in lysis
buffer (in mmol/L: 25 HEPES, pH 7.4, 5 EDTA, 8.0 EGTA, 1.0
NazVO,, 0.25 NaF, 0.1 phenylmethylsulfonyl fluoride, 1.0 dithio-
threitol; and 1% NP-40, 5 pg/mL aprotinin, 100 pg/mL leupeptin,
50 pg/mL trypsin inhibitor). Cellular protein (20 pg) was loaded and
separated on sodium dodecyl sulfate polyacrylamide gel (BioRad
mini gel, 6%—12% according to target protein molecular weight) and
transferred to a nitrocellulose membrane (GibcoBRL) by the stan-
dard electric transfer protocol. The membrane was blocked at room
temperature with PBS containing 0.1% Tween-20 (PBST) plus 5%
non-fat milk for 120 min, probed with antibodies overnight at 4°C,
then incubated with horseradish peroxidase-labeled second anti-
body (KPL Corp.) in blocking buffer for 120 min at room temperature.
The membrane was then exposed to an enhanced chemilumines-
cent system and autoradiography was used to visualize immuno-
reactive bands.

Immunofluorescence double staining

Hep3B cells were plated onto 12-mm diameter round glass cover
slips in six-well plate. Next day cells were incubated with TGF-3
(5 ng/mL), then washed three times with PBS and fixed with 3.7%
paraformaldehyde for 15 min at 37°C (As for mitochondria staining,
Mito-Tracker was added into culture medium before fixation). Fixed
cells were rinsed with PBS and incubated with 50 mmol/L NH4CI for
10 min at 37°C. Cells were rinsed in PBS, sequentially permeabili-
zed with 0.2% Triton X-100 on ice for 5 min, and washed with PBS
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for 5 min each at room temperature. After incubation for 60 min in
blocking buffer, cells were incubated with primary antibodies for
60 min at room temperature or overnight at 4°C (primary antibody
IgG was diluted into PBS with 0.05% Triton X-100 and 0.2% BSA).
After three washes with PBS (5 min each), cells were incubated with
the secondary antibodies for 60 min at room temperature: fluores-
cein isothiocyanate (FITC) conjugated goat anti-rabbit IgG (1:200)
and Cy3 conjugated donkey anti-mouse IgG (1:200). Cells were
washed three times with PBS (5 min for each wash). Cells on cover
slips were mounted with slow-fade anti-fade reagent containing
DAPI onto glass slides and were observed under fluorescent
microscopy.

Semiquantitative reverse transcription-polymerase chain reaction
(RT-PCR)

To determine the mRNA levels of the concerned genes, we isolated
total RNA from cells using Trizol (Invitrogen). Reverse transcription
reactions were carried out with 5 pg of total RNA following the
standard protocol supplied with the reverse transcriptase. The
resulting cDNA was used for PCR and GAPDH was used as a
loading control. The primers employed for each gene are listed
below. All the reactions had a hot start of 5 min at 95°C and a final
elongation step at 72°C for 10 min.

GAPDH: 5-GGTATCGTGGAAGGACTCATGAC-3' (sense) and
5'-ATGCCAGTGAGCTTCCCGTCAGC-3' (antisense); Bim: 5'-ATG
GCAAAGCAACCTTCTGA-3' (sense) and 5-TCAATGCATTCTCCA
CACCA-3' (antisense); Bcl-xL: 5-ATGTCTCAGAGCAACCGGGA
GC-3' (sense) and 5'-TTTCCGACTGAAGAGTGAGCCCA-3' (anti-
sense); Bax: 5-~ACCAAGAAGCTGAGCGAGTGTC-3' (sense) and
5'-ACAAAGATGGTCACGGTCTGCC-3' (antisense).

SiRNA interfering

SiRNA transfection was performed according to the manufacturer’s
instructions. Briefly, cells were plated at a density of 5 x 10° cells/well
in 6-well plates. Cells were transfected with 80 nmol/L siRNA duplex
mixture (Cell Signaling Biotechnology, Beverly, MA) for 24 h in the
presence of lipofectamine RNAiMax (Invitrogen Inc., Carlsbad, CA).
A nonspecific control siRNA (Scramble siRNA) (Cell Signaling Bio-
technology, Beverly, MA) was also transfected at the same concen-
tration as the negative control.

Statistical analysis

All experiments were performed at least 3 times, and results are
reported as mean + 95% confidence intervals unless otherwise
stated. A P < 0.05 was considered statistically significant.
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