
Declarative Representation of Uncertainty in
Mathematical Models
Andrew K. Miller1*, Randall D. Britten1, Poul M. F. Nielsen1,2

1 Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand, 2 Department of Engineering Science, Faculty of Engineering, University of Auckland,

Auckland, New Zealand

Abstract

An important aspect of multi-scale modelling is the ability to represent mathematical models in forms that can be
exchanged between modellers and tools. While the development of languages like CellML and SBML have provided
standardised declarative exchange formats for mathematical models, independent of the algorithm to be applied to the
model, to date these standards have not provided a clear mechanism for describing parameter uncertainty. Parameter
uncertainty is an inherent feature of many real systems. This uncertainty can result from a number of situations, such as:
when measurements include inherent error; when parameters have unknown values and so are replaced by a probability
distribution by the modeller; when a model is of an individual from a population, and parameters have unknown values for
the individual, but the distribution for the population is known. We present and demonstrate an approach by which
uncertainty can be described declaratively in CellML models, by utilising the extension mechanisms provided in CellML.
Parameter uncertainty can be described declaratively in terms of either a univariate continuous probability density function
or multiple realisations of one variable or several (typically non-independent) variables. We additionally present an
extension to SED-ML (the Simulation Experiment Description Markup Language) to describe sampling sensitivity analysis
simulation experiments. We demonstrate the usability of the approach by encoding a sample model in the uncertainty
markup language, and by developing a software implementation of the uncertainty specification (including the SED-ML
extension for sampling sensitivty analyses) in an existing CellML software library, the CellML API implementation. We used
the software implementation to run sampling sensitivity analyses over the model to demonstrate that it is possible to run
useful simulations on models with uncertainty encoded in this form.

Citation: Miller AK, Britten RD, Nielsen PMF (2012) Declarative Representation of Uncertainty in Mathematical Models. PLoS ONE 7(7): e39721. doi:10.1371/
journal.pone.0039721

Editor: Filippo Castiglione, National Research Council of Italy (CNR), Italy

Received February 28, 2012; Accepted May 25, 2012; Published July 3, 2012

Copyright: � 2012 Miller et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was funded by the Virtual Physiological Human Share project (http://www.vph-share.eu), under European Framework 7. The funders had no
role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: ak.miller@auckland.ac.nz

Introduction

Declarative model representation languages provide a signifi-

cant opportunity for improving multi-scale modelling workflows,

because they cleanly separate the description of the mathematical

problem from any algorithmic description, and do so in a way that

allows smaller models to be easily composed to build large multi-

scale models. Declarative model representation languages are best

understood through comparison to imperative languages; imper-

ative languages describe a series of steps taken to perform some

computation, while models in declarative languages simply make

assertions (as is typically done in descriptions of models in

academic literature), leaving the numerical application of those

assertions up to software packages. This approach has the

important benefit that the same model can be used for multiple

purposes. For example, a description of some ordinary differential

equations and their initial values (an ODE-IV problem) might be

used to render equations for a manuscript, solve the ODE-IV

problem numerically to understand the time evolution of the

system, be used to compute an analytic Jacobian or analytic

solution using another solver package, be used in a sensitivity

analysis, and be composed into a large multi-scale model, all

without reformulating the model.

A number of declarative mathematical model representation

languages exist in the literature; many of them have been

developed with particular problem domains in mind. For example,

Systems Biology Markup Language, or SBML [1] allows

mathematical models to be described, with a focus on systems

biology. CellML [2,3] is an example of a modelling language

which has been designed to be domain neutral. The CellML

project hosts a repository of CellML models [4] containing, at the

time of writing, 557 workspaces, each of which contains one or

more related models (mostly drawn from various fields of biology).

CellML is also one of the modelling languages selected for use in

the European Framework 7 Virtual Physiological Human project.

For these reasons, this paper uses CellML as the starting point for

representing uncertainty in mathematical models. However, most

of what is presented here could be adapted to other declarative

languages.

Uncertainty in model parameters can arise from diverse sources.

A parameter may have been measured experimentally, yielding

information about the value of the parameter, but not an exact

value. Often, there may be a statistical model describing prior

distributions and the relationship between samples (and the

random variables from which they are sampled) and the particular

parameterisation used in an experiment; the posterior distribution

PLoS ONE | www.plosone.org 1 July 2012 | Volume 7 | Issue 7 | e39721

of the parameters can then be computed either analytically or

using numerical methods (such as BUGS, Bayesian Inference

Using Gibbs Sampling [5] and subsequent refinements).

Another common source of uncertainty is where there is no

experimental data available for a parameter, but due to physical

and other constraints, a modeller has an idea of the range of values

in which a parameter lies. Modellers will often be able to suggest a

subjective probability distribution for the parameter; for example,

a modeller who knows that a parameter value must fall in the

interval (a, b) may postulate, a priori, that the true value is

uniformly likely to be any value between a and b.

A further common source of uncertainty arises when producing

models of individuals from a population. Each individual may

have a specific fixed value of a parameter, with variation of the

parameter across the population; if a particular parameter has not

been measured in a particular individual, the parameter is

uncertain in an individual-specific model.

ODE-IV problems with uncertain parameters are distinct from

stochastic differential equation initial value (SDE-IV) problems.

SDE-IV problems contain references to stochastic functions that

vary with time, while the class of problem described here describes

parameters with a single but unknown true value that holds for all

time values.

For uncertainty information to be useful in a declarative model,

some representation for the posterior distribution of uncertain

parameters is required. We will briefly summarise the existing

literature on declaratively representing distributions of uncertain

parameters, and then describe an approach for representing these

distributions in CellML models.

The BUGS software package includes a declarative language for

expressing statistical models [6]. This language can be used to

declare stochastic and deterministic relationships between vari-

ables (these relationships are referred to as nodes in the paper).

Stochastic nodes are described using distribution names taken

from a controlled vocabulary, so that only distributions recognised

by the software can be specified in the language. Other more

recent Bayesian Inference Gibbs Samplers, such as WinBUGS [7],

OpenBUGS and JAGS [8] have continued with the controlled

vocabulary approach to describing distributions (and in the case of

JAGS, providing facilities for more easily adding new distributions

to the language). The output from these software packages

describes the posterior distribution as a set of samples.

UncertML is a markup language for describing uncertainty

using XML. It allows summary statistics about uncertain values to

be provided, as well as descriptions of a finite number of

distributions from a controlled vocabulary. It also allows

distributions in terms of samples, by providing a set of samples

(each individual sample called a realisation) drawn from the

distribution of a parameter.

We are also aware of a proposal under development as part of

the SBML distribution and uncertainty project (http://sbml.org/

Community/Wiki/SBML_Level_3_Proposals/

Distributions_and_Ranges_Hinxton_Proposal). The approach

taken by that project so far provides a wrapper around UncertML

to describe uncertainty in terms of realisations and distributions

from a controlled vocabulary. This approach would not be

adequate for representing uncertainty in CellML models for two

major reasons: firstly, it would be incompatible with the principle

of using Content MathML to represent mathematical relationships

in CellML, and secondly, it would provide an inconsistently low

level of expressive power. CellML already has facilities for

representing mathematical expressions using Content MathML,

and many probability density functions can be represented in

closed form without the loss of accuracy arising from using

realisations or the loss of expressive power arising from using a

controlled vocabulary of distributions.

In this paper, we discuss mechanisms for bringing uncertainty

into CellML models. The mechanisms for uncertainty represen-

tation presented here fit in naturally with the use of Content

MathML to describe models; in addition to allowing distributions

to be described using realisations as in UncertML and the SBML

distributions and uncertainty project, it allows distributions to be

specified by giving the probability density function. We also

present an experimental extension to SED-ML (the Simulation

Experiment Description Markup Language [9]) for describing

sensitivity analysis experiments, and a software implementation of

the proposals presented in this paper.

Methods

Representing the Information in MathML
CellML makes use of Content MathML [10] to describe

mathematical relationships in a structured way. Content MathML

provides the csymbol operator, which allows external symbols to

referenced and included as an operator in a MathML expression.

To support descriptions of uncertain parameters, we introduce

three operators to be included in Content MathML expressions.

The full definitionURL for these operators is ‘‘http://www.cellml.

org/uncertainty-1#’’, followed by the suffix for the respective

operator:

N uncertainParameterWithDistribution takes two arguments.

The first argument should be either a variable in the model,

or a vector of variables in the model, while the second should

be a statistical distribution (built with one of the following two

operators). This operator forms an assertion that the variable

in the first argument is a random variable with the distribution

specified as the second argument.

N distributionFromDensity takes a single argument, which

should be a function from a real number to a real number,

representing the p.d.f. This function would usually be specified

using the MathML lambda constructor.

N distributionFromRealisations takes a single argument, which

should be a vector. Each element of the vector represents a

realisation of the variable (in which case it should be an

expression which evaluates to a scalar value) or variables (in

which case each vector element should itself be a vector of

expressions which evaluate to a scalar value).

Note that these URIs identify a virtual resource and are

recognised by software, but do not refer to any particular

document.

CellML requires that all variables and constants are annotated

with units (with the possibility that the units are ‘dimensionless’);

this rule continues to apply in expressions for realisations and

p.d.f.s, with probabilities being dimensionless. This allows software

that checks CellML models for units and dimensional consistency

to also check descriptions of probability distributions (although

such software will still need to be updated to recognise the

constructs presented in this paper).

Adding Uncertainty Support to a DAE-IV Solver
We implemented sampling from a probability density function

in the CellML Integration Service, through numerical inversion of

the cumulative density function [11] as follows:

Let X be the distribution represented by the probability density

function f; let x be the desired sample from X. Let z be a sample

from Z, where:

Declarative Representation of Uncertainty

PLoS ONE | www.plosone.org 2 July 2012 | Volume 7 | Issue 7 | e39721

Z*Uniform(0,1) ð1Þ

Note that for a random sampling analysis to be carried out, it is

necessary for a source of uniform random or pseudo-random

numbers to be available. Most general purpose computing

platforms make such uniform random number generators

available. For example, POSIX [12] defines the function random,

which is suitable for use as a uniform random number generator

on many platforms. On platforms where no suitable system-

provided random number generator is available, algorithms such

as the Mersenne Twister [13] can be used to generate a series of

values starting from a seed value.

Let F be the cumulative density function:

F (y)~

ðy

{?
f (w)dw ð2Þ

We perform a change of variable on w in the integral to make

the limits finite:

v~
w{y

y{wz1
ð3Þ

v(y{wz1)~vy{vwzv~w{y ð4Þ

w(1zv)~vyzvzy ð5Þ

w~yz
v

1zv
ð6Þ

lim
a?{?

a{y

y{az1
~

1

{1
~{1

(Lower integration bound as w?{?)

ð7Þ

y{y

y{yz1
~0 (Upper integration bound at w~y) ð8Þ

dw

dv
~

1(1zv){v

(1zv)2
~

1

(1zv)2
ð9Þ

F (y)~

ð0

{1

f (yz
v

1zv
)dv|

dw

dv
ð10Þ

~

ð0

{1

f (yz
v

1zv
)dv|

1

(1zv)2
ð11Þ

Using numerical integration, F(y) can be evaluated from this last

form at any y. To compute x from z, we numerically invert F(y) at

z, giving:

x~F{1(z) ð12Þ

The numerical integrator to use is selected by the user in the

simulation description. The inversion is performed by finding the

smallest x̂x that minimises (z{F (x̂x))2 using an existing Levenberg-

Marquardt implementation [14]. This approach assumes that F(x)

is a valid cumulative density function, and so is monotonically

increasing; the only local minimum of (z{F (x̂x))2 is the global

minimum.

This procedure of numerically inverting a function is compu-

tationally expensive, but with the models we tested, the cost is still

low compared to the numerical integration that follows.

Details of the Simple Example Model Used
To demonstrate the concepts described above, we coded a

simple example model in CellML (Model S1). Our model

describes the motion of an object in two spatial dimensions (x

and y) experiencing a constant acceleration, and with uncertain

initial position and velocity. This model was chosen for its

conceptual simplicity.

We created two SED-ML simulation experiment descriptions;

one describing a single run of the model, and one describing a

sampling sensitivity analysis.

For illustration purposes, we chose the initial position x to have a

posterior distribution with the components independently nor-

mally distributed with a mean of 0 m and a variance of 1 m2:

Xi(0)*DistributionFromPDF(lz :
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

2p|1
p e

{(z{0)2

2|1)

for i[1,2

ð13Þ

Note that the l notation lx : f (x), where f (x) is some

expression, is used to define an anonymous function with bound

variable x.

These distributions were described using the probability density

function. Likewise, the x component of the initial velocity was

described independently as a sample from the normal distribution

with mean 10 ms21 and variance 1 m2 s22:

dX1

dt
*DistributionFromPDF(lz :

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2p|1
p e

{(z{10)2

2|1) ð14Þ

The y component of the initial velocity was described in a

different way, to demonstrate the ability to sample values from a

set of realisations. To generate the realisations, we created a

statistical model. We assumed that the initial y velocity depended

on which of two springs was used to propel the object; the spring is

selected so that there is a 50% chance of each spring being

selected. We further assumed that each spring produced normally

distributed initial velocity, with the per-spring mean and per-

spring variance unknown. We set the prior distribution for each

per-spring mean to be a normal distribution with a mean of 9 and

a standard deviation of 0.5, and the prior distribution for the per

spring variance to be an exponential distribution with a rate

parameter of 20. We additionally provided 40 data values, 20 of

which were equal to 6, and 20 of which were equal to 12, with the

spring corresponding to each data value unknown. As there is no

immediately obvious closed form for the posterior distribution of

Declarative Representation of Uncertainty

PLoS ONE | www.plosone.org 3 July 2012 | Volume 7 | Issue 7 | e39721

any additional velocities, it is a good example of where the

distributionFromRealisations construct is useful. We used JAGS to

produce 1000 samples for the posterior distribution for a velocity

(determined independently from the 40 data points), after

discarding a burn-in of 1000 samples, and put the retained 1000

samples into the CellML model using distributionFromRealisa-

tions. As shown in Figure 1, this produced a bimodal distribution.

The representation in CellML is equivalent to:

dX2

dt
Dt~0*DistributionFromRealisations

(4:1822,8:24563,10:519,10:8341,:::½ �)
ð15Þ

The remainder of the model describes straightforward equa-

tions:

dXi(t)

dt
~vi(t) for i[½1,2� ð16Þ

dv1(t)

dt
~{g ð17Þ

Results

Information to Represent
The CellML specification is intentionally very broad; the

underlying philosophy used is to allow a wide range of models

to be represented. Some types of software can process all valid

CellML models, but other types of software (such as solver

software) only support a subset of all models that can be expressed

in CellML. It would therefore be helpful if the mechanism for

adding uncertainty to CellML allowed the same level of generality

to be preserved. For this reason, the approach presented in this

paper allows the posterior distribution of uncertain parameters to

be represented by specifying the probability density function

(p.d.f.), rather than by selection from a controlled vocabulary, thus

enabling modellers to express general models. Applications that

will only work with a limited number of distributions will then

need to recognise distributions from the mathematical form.

It is not always possible to find a closed form for the p.d.f. of the

posterior distribution; in these cases, the distribution might only be

known from numerical sampling. To support this use case, a

mechanism is additionally provided to describe parameter

uncertainty using realisations (samples) from the distribution.

Describing Sensitivity Analysis Simulation Experiments
The scope of modelling languages such as CellML is to

represent mathematical models, and so descriptions of how to

perform simulation experiments using those models are outside the

Figure 1. The distribution of the initial position in x and y, and the initial x and y velocity components of the object, shown using
both a density histogram and a kernel density plot. Generated using Model S1.
doi:10.1371/journal.pone.0039721.g001

Declarative Representation of Uncertainty

PLoS ONE | www.plosone.org 4 July 2012 | Volume 7 | Issue 7 | e39721

scope of CellML. SED-ML [9] is an emerging format for

describing simulation experiments. The latest publicly available

draft of SED-ML only supports one type of simulation, to describe

a so called uniform time-course experiment, where a model

describing an ODE-IV or differential algebraic equation initial

value (DAE-IV) problem is used to find solutions at one or more

points between the ‘initial’ bound variable value (at which initial

values are provided) and some upper bound.

This type of simulation experiment can be used with models

containing uncertain parameters, to find the solution for a single

sampled instance of the problem. However, one of the major

reasons for describing parameter uncertainty information in the

first place is to understand the effects of the parameter uncertainty

on the results of the simulation experiment, or in other words, to

perform a sensitivity analysis.

There are numerous types of sensitivity analysis possible; one of

the simplest and most robust (albeit computationally expensive) is

random sampling-based sensitivity analysis [15]. We propose a

simple extension to SED-ML to support such simulation

experiments, by creating a new type of experiment called a

SamplingSensitivityAnalysis. SamplingSensitivityAnalysis extends

the existing UniformTimeCourse simulation type, but adds a new

attribute, numberOfSamples, to describe the number of random

samples to take.

Implementing Uncertainty in a DAE-IV Solver
As a first step towards validating the proposals presented in this

paper, we extended an existing software library for working with

CellML models, the CellML API implementation [16], to support

simulations of models using these proposals.

We extended the SED-ML Processing Service and SED-ML

Running Service within the CellML API to support sampling

sensitivity analyses. In addition, we extended the CellML Code

Generation Service and CellML Integration Service to allow them

to solve DAE-IV problems with uncertainty in the model

parameters.

We implemented both univariate and multivariate sampling

from a vector of realisations by randomly picking an index from

the realisations, so that each index is equally likely to be selected,

and assigning the parameter(s) on the left hand side to the value(s)

from the selected realisation.

Results from the Simple Example Model
Figure 1 shows a density plot of the sampled parameters for four

different sampled scalars making up the components of the initial

position and the initial velocity.

Figure 2 shows the path taken across ten runs of the model,

showing that the initial variation has a significant impact on the

path taken and the position after a fixed amount of time (all paths

are shown between t = 0 s and t = 10 s).

Figure 3 shows the output of the sensitivity analysis run, giving

the position of the object at 10 s for many different parameters.

The model and simulation descriptions are available online in

the CellML model repository [4] at https://models.cellml.org/w/

miller/uncertain-starting-parabola. The experimental software

implementation of the proposal (including support for both the

CellML and SED-ML extensions presented here) has been

included in the development branch of the CellML API, available

from http://cellml-api.sourceforge.net.

Discussion

The proposal presented in this paper allows mathematical

models coded in CellML to include descriptions of parameter

uncertainty. This proposal has been initially demonstrated on a

simple physical model, but can be used with CellML models of

arbitrary complexity.

The implementation issues around the proposal have been

addressed (as discussed in the Methods section), and a software

implementation has been produced and tested, demonstrating that

the proposal is feasible to implement.

Future Work
The work presented here is only useful for continuous

distributions, where the distribution will almost never be exactly

equal to any one particular value, because the p.d.f. is finite

everywhere. Such distributions have smooth, differentiable, and

monotonically increasing cumulative density functions.

However, mathematical modellers may also need to describe

variables sampled from a discrete distribution, and possibly even

from distributions which are discrete on some ranges and

continuous on others. The mixed case could be handled in

MathML using combining constructs such as piecewise to mix

discrete and continuous parts, and so the remaining need is to

allow random variables with a discrete distribution to be

represented. The representation presented here could be extended

to allow discrete distributions by adding a new MathML csymbol for

describing a probability distribution using a probability mass

function (p.m.f.). Such discrete random variables would require a

different numerical sampling algorithm. Determining the discrete

values at which the p.m.f. is defined purely numerically is a

difficult problem, but with a CellML model, it is possible to

combine automated symbolic analysis with numerical analysis.

This approach would be feasible for the class of discrete problems

where a piecewise is used to ensure the probability is zero except

for cases which consist of some transformation of finite sets. In

such cases, the finite set could be computed by applying the

transformation in the piecewise case condition. A numerical

algorithm would take a sample from the uniform (0,1) distribution,

compute the probability at each member of the finite set, and

compute a cumulative sum of the probabilities until the sampled

value was exceeded. While this would not cover every possible

p.m.f., it would most likely be general enough to support most

cases needed in practice.

The approach taken in this work does not allow multivariate

probability density functions to be described using probability

density functions. This limitation can sometimes be bypassed by

describing a joint distribution as a univariate marginal distribution

and a series of conditional distributions for the remaining random

variables. Current ratified versions of CellML do not provide a

mechanism to specify that a variable has a type other than real,

and so software that processes CellML does not typically need to

support vector mathematics. However, if future versions of

CellML did allow variable types such as ‘vector of real numbers’

to be specified, it would make the inclusion of multivariate

probability density functions more natural.

The use of probability distribution functions to describe

distributions fits cleanly with the design of CellML, but it

represents a significantly different approach to the controlled

vocabulary approach taken in UncertML. An important area of

future work is to investigate the interconversion between

uncertainty specifications in UncertML, and uncertainty specifi-

cations using the approach discussed here. Conversion from

UncertML to the approach discussed here should be relatively

simple for most distributions, because it is simply a matter of

substituting the form for the corresponding probability density

function. Due to the higher level of generality of the approach

presented here, conversion in the reverse direction will not always

Declarative Representation of Uncertainty

PLoS ONE | www.plosone.org 5 July 2012 | Volume 7 | Issue 7 | e39721

be possible. However, it would be possible to identify p.d.f.s for

particular well-known forms of the distributions supported by

UncertML, and convert those forms into the corresponding

Content MathML.

The methodology presented in this paper represents probability

distribution functions in a declarative form, which admits the

possibility of both analytic and numerical analysis, as well as

approaches that combine automatic analytic manipulation with

numerical solution. The work presented in this paper primarily

relies on numerical analysis. In some cases, however, it may be

significantly more efficient to perform analytic work on the p.d.f.

(and possibly the entire DAE-IV system) prior to any numerical

analysis. In the case where the inverse of the c.d.f. has a closed

form, automated symbolic manipulation could allow this closed

form to be computed analytically.

A great deal of theoretical work has been published on how to

efficiently sample from particular probability distributions; for

example, the normal distribution [17] and the gamma distribution

[18]. The work presented in this paper does not currently use these

optimised algorithms because of the focus on generality. However,

future work could preserve support for the general case, while

detecting p.d.f.s corresponding to a distribution for which a more

efficient algorithm is available.

In addition, there are a number of alternative general numerical

algorithms for sampling from a continuous probability density

function. The rejection method [19] allows for sampling directly

from the probability density function, using two uniform random

samples. The rejection method requires upper and lower bounds

on both the density function and the random variable being

sampled, and so automated symbolic analysis to determine these

bounds would be required for an efficient rejection based method.

As is common with numerical integration problems, the

presence of step-wise discontinuities can cause problems for

numerical solvers. Consider the case of a uniform distribution; the

probability density function is zero outside a certain range of

random variable values, and a constant value inside the range.

The only way that a numerical integration algorithm can

determine that the function is not zero everywhere is if it happens

to find a point inside the range. Numerical integration algorithms

can only take a finite number of samples, so if the range is very

small, it may be missed entirely by the numerical integrator. This

problem can already occur in DAE-IV problems (where it is

common to want to numerically integrate the DAE-IV system over

a variable such as time). Generally, modellers can work around the

problem by adjusting the numerical parameters to ensure that the

maximum step size used by the numerical algorithm is small

enough to ensure that the algorithm will find the step. However, a

more general solution could be to analytically detect piecewise

expressions, and numerically identify the boundary of a transition

between piecewise cases, and ensure that the solver carries out a

step in every piecewise case. Note, however, that a similar issue

can arise with narrow normal distributions, because outside a

certain range, the probability density is so small that it is

represented by the floating point number zero.

Figure 2. The path of the object in the example model is plotted for ten runs of the model. The path depends on the uncertain
parameters. Generated using Model S1.
doi:10.1371/journal.pone.0039721.g002

Declarative Representation of Uncertainty

PLoS ONE | www.plosone.org 6 July 2012 | Volume 7 | Issue 7 | e39721

Supporting Information

Model S1 The simple example model used to demon-
strate how uncertainty can be represented using
CellML.
(ZIP)

Acknowledgments

The authors thank the two anonymous peer reviewers for their helpful

comments on this manuscript.

Author Contributions

Conceived and designed the experiments: AKM RDB PMFN. Performed

the experiments: AKM. Analyzed the data: AKM. Contributed reagents/

materials/analysis tools: AKM. Drafted the manuscript: AKM. Reviewed

critically and proposed amendments to the manuscript: RDB PMFN.

References

1. Hucka M, Finney A, Sauro H, Bolouri H, Doyle J, et al. (2003) The systems

biology markup language (SBML): a medium for representation and exchange of

biochemical network models. Bioinformatics 19: 524.

2. Hedley W, Nelson M, Bellivant D, Nielsen P (2001) A short introduction to

CellML. Philosophical Transactions of the Royal Society of London Series A:

Mathematical, Physical and Engineering Sciences 359: 1073.

3. Lloyd C, Halstead M, Nielsen P (2004) CellML: its future, present and past.

Progress in biophysics and molecular biology 85: 433–450.

4. Lloyd C, Lawson J, Hunter P, Nielsen P (2008) The CellML model repository.

Bioinformatics 24: 2122.

5. Thomas A, Spiegelhalter D, Gilks W (1992) BUGS: A program to perform

Bayesian inference using Gibbs sampling. Bayesian statistics 4: 837–842.

6. Gilks W, Thomas A, Spiegelhalter D (1994) A language and program for

complex Bayesian modelling. The Statistician : 169–177.

7. Lunn D, Thomas A, Best N, Spiegelhalter D (2000) WinBUGS-a Bayesian

modelling framework: concepts, structure, and extensibility. Statistics and

Computing 10: 325–337.

8. Plummer M (2003) JAGS: A program for analysis of Bayesian graphical models

using Gibbs sampling. In: Proceedings of the 3rd International Workshop on

Distributed Statistical Computing, March. Citeseer, 20–22.

9. Köhn D, Le Novere N (2008) SED-ML–An XML Format for the

Implementation of the MIASE Guidelines. In: Computational Methods in

Systems Biology. Springer, 176–190.

10. Carlisle D (2000) OpenMath, MathML and XSL. Sigsam Bulletin 34: 6–11.

11. Devroye L (1986) Non-uniform random variate generation, volume 4. Springer-

Verlag New York.

12. Josey A, Cragun DW, Stoughton N, Brown M, Hughes C, et al. (2004) The

Open Group Base Specifications Issue 6 IEEE Std 1003.1. The IEEE and The

Open Group 20.

13. Matsumoto M, Nishimura T (1998) Mersenne twister: a 623-dimensionally

equidistributed uniform pseudo-random number generator. ACM Transactions

on Modeling and Computer Simulation (TOMACS) 8: 3–30.

14. Lourakis M (2008). levmar: Levenberg-marquardt nonlinear least squares

algorithms in C/C++. URL http://www.ics.forth.gr/\,{}lourakis/levmar.

Figure 3. A sensitivity analysis of the example model, showing the position of the object at time 10 s. Generated using Model S1.
doi:10.1371/journal.pone.0039721.g003

Declarative Representation of Uncertainty

PLoS ONE | www.plosone.org 7 July 2012 | Volume 7 | Issue 7 | e39721

15. Helton J, Johnson J, Sallaberry C, Storlie C (2006) Survey of sampling-based

methods for uncertainty and sensitivity analysis. Reliability Engineering &

System Safety 91: 1175–1209.

16. Miller A, Marsh J, Reeve A, Garny A, Britten R, et al. (2010) An overview of the

CellML API and its implementation. BMC bioinformatics 11: 178.

17. Kinderman A, Ramage J (1976) Computer generation of normal random

variables. Journal of the American Statistical Association : 893–896.
18. Ahrens J, Dieter U (1982) Generating gamma variates by a modified rejection

technique. Communications of the ACM 25: 47–54.

19. Von Neumann J (1951) Various techniques used in connection with random
digits. Applied Math Series 12: 36–38.

Declarative Representation of Uncertainty

PLoS ONE | www.plosone.org 8 July 2012 | Volume 7 | Issue 7 | e39721

