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The predominant function of the tumor suppressor p53 is transcriptional regulation. It is generally accepted that
p53-dependent transcriptional activation occurs by binding to a specific recognition site in promoters of target genes.
Additionally, several models for p53-dependent transcriptional repression have been postulated. Here, we evaluate
these models based on a computational meta-analysis of genome-wide data. Surprisingly, several major models of p53-
dependent gene regulation are implausible. Meta-analysis of large-scale data is unable to confirm reports on directly
repressed p53 target genes and falsifies models of direct repression. This notion is supported by experimental
re-analysis of representative genes reported as directly repressed by p53. Therefore, p53 is not a direct repressor of
transcription, but solely activates its target genes. Moreover, models based on interference of p53 with activating
transcription factors as well as models based on the function of ncRNAs are also not supported by the meta-analysis. As
an alternative to models of direct repression, the meta-analysis leads to the conclusion that p53 represses transcription
indirectly by activation of the p53-p21-DREAM/RB pathway.

Introduction

Initially, p53 was falsely described as an oncogene. About a
decade after its discovery, p53 was found to be a tumor suppres-
sor.1,2 Despite 35 years of research and an ever growing number
of publications, currently over 70,000 listed in PubMed, the cen-
tral function of p53 as a transcriptional regulator still holds a
major contradiction. It remains unresolved how p53 binding
results in activation of one target gene and repression of another.

Following the discovery of p53’s first transcriptional tar-
gets, many more genes were claimed to harbor p53 binding
sites and thus to be potential targets resulting in an
“expanding universe of p53 targets”.3,4 In recent years,
genome-wide analyses led to the discovery of novel p53 target
genes by combining p53 chromatin occupancy data with gene
expression analyses.5-9 Hundreds of genes were identified as
novel direct p53 targets. For a long time the search for direct
p53 target genes often was undertaken without distinguishing
significant regulation from experimental noise, similar to the

assignment of function to large parts of the genome despite
the substantial lack of conservation in these genomic regions
by the ENCODE Consortium.10

While reproducibility is a hallmark of scientific discovery,
results from a substantial fraction of published work remain irre-
producible.11 A general problem appears to be that today’s sci-
ence is strongly biased for significant positive findings
encouraging researchers to overinterpret small effects and inflate
associations.12 One method to clarify contradictions is meta-
analysis of data from independent experiments.11

In this study, we employ a meta-analysis on p53’s transcrip-
tional network employing data on 19,736 known protein-coding
genes from several independent genome-wide studies to evaluate
models of transcriptional regulation by p53. Six major mecha-
nisms of p53-dependent transcriptional regulation are currently
accepted in the literature:13-17

� direct activation of target genes following p53 binding to a p53
response element (RE)
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� direct repression of target genes after p53 binding to p53 REs,
including variations such as head-to-tail elements or p53 REs
with inverted dinucleotide cores

� direct repression of target genes through p53 binding via adap-
tor proteins, in particular NF-Y

� indirect repression via direct activation of p21 by p53 and sub-
sequent formation of pocket protein/E2F complexes such as
RB/E2F and DREAM

� indirect repression through interference with transcriptional
activators, in particular NF-Y, Sp1 and TBP

� indirect repression of target genes via non-coding RNAs
(ncRNAs), with mir34a, lincRNA-p21 and PANDA as promi-
nent examples

We provide a comprehensive overview on original research
findings and compare them to results from the meta-analysis.
With this comparison we test the previously proposed models on
p53-dependent transcriptional regulation. Important findings
from the meta-analysis are supported by experimental validation.
In general, our analysis resolves major contradictions and leads to
a paradigm shift.

Results and Discussion

Computational meta-analysis on binding and regulation
by p53

To evaluate the function of p53 as a transcription factor we
have performed a computational meta-analysis from several inde-
pendent experiments to minimize the influence of laboratory-
specific effects and bias in study design.11,18 Data from 6
genome-wide analyses of p53-dependent gene expression were
extracted.7,19-23 In each study a gene can be identified as activated
(positive score; C1) or repressed (negative score; ¡1) by p53. By
calculating the sum over all analyses, Expression Scores ranging
from ¡6 to C6 were assigned to genes, forming 13 gene groups
(Table S1). Thus, the Expression Score represents direction of reg-
ulation as well as confidence of classification. By matching these
data with transcription factor binding analyses, it is possible to
evaluate whether activated or repressed genes are enriched for
binding of a transcription factor such as p53. In case that the
transcription factor is a repressor, its binding is expected to be
substantially enriched at genes in negative Expression Score groups
compared to genes in Expression Score group 0. We used 6
genome-wide p53 binding studies6-9,24,25 and observed that
13.4% of all known protein-coding genes were identified as
bound by p53.

Next, we compared the distribution of p53-bound genes
across Expression Score groups to a theoretical uniform distribu-
tion of 13.4% (Fig. 1A). A uniform distribution would be
expected if there is no correlation between p53 binding and
p53-dependent regulation.

In contrast to most current models13-17 but in agreement with
observations made in recent genome-wide studies,9,26-28 solely
genes activated by p53 are found enriched for p53 binding
(Fig. 1A; Fig. S1). Thus, these data strongly suggest that p53
does not act as a direct transcriptional repressor.

Default p53 target genes
The authors of 2 recent genome-wide studies argue that a

“default program” of p53 targets can be found that is shared
regardless of cell type or treatment.7,9 Based on the criteria that a
target gene is bound and regulated by p53, we collated informa-
tion describing individual p53 targets from about 300 reports
(Table S2).19,20,23,29-324 This compilation was then comple-
mented with data from 5 genome-wide studies on target genes
bound and also regulated by p53.5-9 Furthermore, we have corre-
lated 2 genome-wide p53 binding studies24,25 with the 6
genome-wide gene expression studies7,19-23 identifying additional

Figure 1. Solely genes activated by p53 are found enriched for p53 bind-
ing. A regulation score, named Expression Score, ranging from ¡6 to C6
was assigned to 19,736 known protein-coding genes from 6 genome-
wide p53-dependent gene expression analyses.7,19-23 (A) All ChIP-peaks
from 6 genome-wide p53 binding studies, that were identified in at least
2 studies, were allocated to the nearest gene.6-9,24,25 Out of the 19,736
genes, 13.4% were assigned at least one such p53 ChIP-peak. The per-
centage of genes with a p53 ChIP-peak in a specific Expression Score
group is displayed by the black line. The blue line indicates a theoretical
uniform distribution of ChIP-peak-containing genes across the 13 Expres-
sion Score groups. (B) The percentage of default p53 targets (Table S2)
in each Expression Score group is given by the black line. The theoretical
uniform distribution of default p53 targets (n D 171 or 0.8% of 19,736
genes) across the 13 Expression Score groups is indicated by the blue line.
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target genes. This meta-analysis yielded potential direct p53 tar-
gets of which 892 are assigned as activated, 384 repressed, and 10
ambiguously regulated genes (Table S3). However, most genes
in this compilation were observed in one study but were not con-
firmed in any other report. Many p53 target genes that were
described in the literature earlier could not be confirmed in
genome-wide approaches.

With this data collection, we included essentially all targets
that might have been missed by single studies (false negatives).
Yet, combining data sets in order to limit false negatives, inflates
detection of false positives. One has to consider that each study
can contain false positives and false negatives because of imper-
fect experimental conditions.18 Therefore, after extending the
data set on direct p53 targets, we defined limits to identify
“default” targets. Genes detected in only one study have a high
potential of being false positive hits and are most likely not part
of the default program. Thus, from the published studies we
derived weighted data sets to assign Default Target Scores to each
direct p53 target gene. We considered a gene as a default target
that was reported in at least 3 data sets, which corresponds to a
Default Target Score > 2. We found 157 (17.6%) of all activated
direct p53 target genes to meet these criteria (Table S3). Highest
Default Target Scores were reached by many well established p53
target genes, all of which are activated by p53 (Table S3), such as
CDKN1A (p21),72 BTG2,54 GADD45A,112 BAX,45 and
MDM2.122-124 In contrast, only 15 (3.9%) of the direct p53 tar-
get genes which have been described as repressed by p53 were
assigned a Default Target Score > 2 (Table S3). Thus, the average
Default Target Score of potentially repressed p53 targets is much
lower compared to the score of activated target genes. Addition-
ally, we evaluated the distribution of all default p53 target genes
across the Expression Score groups (Fig. 1B). Only genes activated
by p53 were found enriched for default p53 targets. Taken
together, in addition to looking solely at p53 binding as
described above (Fig. 1A), also data on default p53 targets sub-
stantiates the view that p53 does not directly repress its targets
(Fig. 1B).

Concordantly, recent genome-wide studies on p53 targets
acknowledged a low abundance of p53-bound targets among
repressed genes and entertained the possibility that repression by
p53 may be largely indirect.9,26-28 Nevertheless, 90 reports
describe 91 genes in detail as transcriptionally downregulated by
direct binding of p53 (Table S2). The observations reported in
these articles require further consideration.

Experimental validation of meta-analysis data
The meta-analysis data stand in contrast to the mechanisms of

direct transcriptional repression by p53 and the regulation
reported for many potential p53 targets (Table S2). Thus, we
retested 18 genes for binding and regulation by p53 that were
described to be directly repressed by p53, namely ABCB1
(MDR1),325 BCL2,245,326 BNIP3,251 CCNB1,254,327 CD44,262

CDC20,328 CDK1 (CDC2),258 CRYZ,260 HSPA8,260 ID2,275

LASP1,281 MAD1L1 (MAD1),260,329 ME1, ME2, ME3,285

NEK2,289 PTK2 (FAK),306 and TPT1 (TCTP).320

We tested p53 binding in chromatin immunoprecipitation
assays (ChIP) followed by real-time PCR. Gene regulation by
p53 was assayed by reverse transcriptase reaction followed by
real-time PCR. If available, we used the published primers for
PCR (Fig. 2; Fig. S2). No p53 binding was observed at the
GAPDHS gene which served as a negative control. Binding of
p53 was observed at the positive controls of CDKN1A (p21) and
MDM2 (Fig. 2A). Most importantly, at all other regions tested
no significant p53 binding was observed (Fig. 2A). Thus, the
p53 response elements (RE) reported for the genes listed above
can neither be confirmed by genome-wide studies nor by direct
experimental re-analysis.

Although ABCB1, CD44, CDK1, MAD1L1, ME2, and PTK2
were found in genome-wide studies to bind p53 within 25 kb of
their transcriptional start sites (TSS), the regions detected in
genome-wide studies do not overlap with reported p53 REs
(Table S1).258,260,262,285,306,325,329 Therefore, all our results con-
firm data from the genome-wide studies and the meta-analysis.
We asked how the discrepancies could arise between genome-
wide data with the confirmatory results presented here and the
observations from the reports mentioned above. Most discrepan-
cies are explained by the use of real-time PCR instead of tradi-
tional PCR to evaluate binding of p53 in ChIP assays. Relative
quantification is necessary to evaluate binding of a protein to one
locus compared to non-bound regions. However, traditional
PCR hardly allows relative quantifications often leading to erro-
neous results.

Expression of mRNA from these 18 genes depending on p53
was examined in doxorubicin- or nutlin3a-treated HCT116 cells
compared to DMSO treatment. GAPDH mRNA, L7 mRNA,
and U6 RNA served as negative controls not regulated by p53.
The positive controls CDKN1A (p21), MDM2, and PPM1D
were significantly upregulated upon treatment with doxorubicin
or nutlin3a (Fig. 2B). In contrast, only CCNB1, CDC20, CDK1,
and NEK2 were significantly repressed after treatment with doxoru-
bicin and nutlin3a, while ABCB1, BCL2, BNIP3, CRYZ, HSPA8,
ID2, LASP1, MAD1L1, ME1, ME2, ME3, PTK2, and TPT1 were
not significantly regulated by both treatments (Fig. 2B). Again,
these results confirm data from genome-wide studies and the meta-
analysis, but do not support observations from the reports on direct
transcriptional repression (Fig. 2B; Tables S1 and S2). These dis-
crepancies might largely stem from insufficient controls and overin-
terpretation of small effects.11 In most reports criteria for p53 target
genes were not met that were formulated 2 decades ago.3 In addi-
tion to the p53 targets that were not confirmed by our re-analysis
(Fig. 2), reports of directly repressed p53 targets in mouse such as
NANOG,288 PPARGC1A (PGC1a), and PPARGC1B (PGC1b)300

are also not supported by human genome-wide data (Table S2).
Since CCNB1, CDC20, CDK1, and NEK2 are repressed but

not bound by p53 (Fig. 2), we asked whether mechanisms other
than direct repression have been postulated for the p53-depen-
dent regulation of these genes. All 4 genes were shown to be
repressed by the p53 target and CDK-inhibitor p21.330-334 Fur-
thermore, p53-dependent repression of CCNB1, CDC20, and
CDK1 was shown to depend on the pocket proteins p107 and
p130,335 which also contrasts direct transcriptional repression by
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p53. In agreement with the reported p53-dependent repression
via p21, we found that doxorubicin-induced repression of
CCNB1, CDC20, CDK1, and NEK2, but not activation of
MDM2 and PPM1D, is essentially lost in HCT116 p21¡/- cells
(Fig. S3).

Taken together, in most cases binding of p53 as well as p53-
dependent regulation were not confirmed. Therefore, the

reported mechanisms of direct transcriptional repression by p53
are unlikely of importance.

Challenging models of direct repression
Early in the history of p53 research, numerous genes were

found to be repressed upon p53 induction.336 For a long time
the question remained open how binding of a transcription factor
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Figure 2. Experimental validation of data from the meta-analysis. (A) p53 protein binding to reported p53 response regions in untreated and
doxorubicin-treated HCT116 cells was tested by ChIP. A fragment of the GAPDHS promoter served as a negative control while CDKN1A and MDM2 served
as positive controls. (B) mRNA expression in HCT116 cells treated with doxorubicin or nutlin3a for 24 h. Cells treated with DMSO served as a control. The
log2 fold-expression from doxorubicin- or nutlin3a-treated cells compared to DMSO control cells is displayed as. GAPDH, L7, and U6 served as negative
controls, while CDKN1A, MDM2, and PPM1D were employed as positive controls. Significance of expression was tested against U6 expression levels using
paired Student’s t-test. Experiments were performed with 2 biological replicates and 2 technical replicates each (n D 4). *P � 0.05; **P � 0.01;
***P � 0.001.
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such as p53 can result in activation of one target gene and repres-
sion of another.

One of the proposed models is based on a head-to-tail p53 RE
that had been described as a repressive element in the ABCB1
(MDR1) promoter.325 Later, related elements were found to
bind p53 and mediate downregulation of genes such as NANOG,
CD44 and TPT1 (TCTP).262,288,320 However, these results were
never confirmed in any genome-wide study.5-9 Moreover,
NANOG, ABCB1, CD44 and TPT1 were actually found not to
be repressed by p53 (Expression Scores � 0) (Fig. 2B; Table S1
and S2). Therefore, investigating their regulation could not yield
a mechanism for p53-dependent transcriptional repression in the
first place. Additionally, retesting the proposed p53 REs of
ABCB1, CD44, and TPT1 provided evidence that these loci are
not detected as bound by p53 when using ChIP followed by real-
time PCR.

The authors of one report claimed to have found a dinucleo-
tide core code underlying the p53 RE that determines whether a
target gene is activated or repressed by p53 binding.337 Based on
their finding, the authors re-analyzed 162 published p53 REs
and described 20 of them to be falsely assigned as either activators
or repressors. However, the discrepancies included re-assignment
of well established p53 targets such as BTG2 and PLK2.54,163,337

One explanation of this discrepancy could be that in the experi-
ments p53 REs were tested in an artificial promoter context.
Importantly, a recent genome-wide search for a preference of the
dinucleotide core in repressed versus activated genes did not yield
data to support this model.8 Thus, the dinucleotide core model
was disproved, and we refrained from including these results in
our analysis.

The third model of direct repression proposes p53 binding to
its target promoter via proteins that are general activators of the
gene. The transcription factor NF-Y is the most prominent
example serving as an adaptor for p53 binding to repressed target
promoters.243,255,338 Fourteen genes were described as being con-
trolled by this mechanism (Table S2). Searching in the genome-
wide p53 target studies,5-9 only one gene was confirmed in a sin-
gle study, although the locus of p53 binding does not overlap
with the CCAAT-box.6 Furthermore, NF-Y-binding CCAAT-
boxes were not found to be enriched at loci bound by p53.8 One
might argue that ChIP studies are less efficient if the target pro-
tein does not directly bind to the DNA, although the method has
been used successfully with other indirectly bound transcription
factors such as FoxM1, p130, RB, and LIN9.339-342 However,
arguing against indirect ChIPs similarly questions the initial find-
ings that are all based on the same method. Thus, adaptor func-
tion of NF-Y recruiting p53 to repress target genes cannot be
considered a general mechanism.

Similarly, examining genome-wide data from all 91 p53 tar-
gets published as directly repressed, only 5 (5.5%) could be con-
firmed by at least one genome-wide p53 target study, which
resembles the typical false discovery rate of genome-wide studies
(Table S2). Yet, 21 (23.1%) were actually observed to be acti-
vated instead of being repressed (Expression Score > 0) (Table S2).

Taken together, results from the meta-analysis falsify the
models involving direct transcriptional repression through p53.

Target genes that were reported to be directly repressed by p53
are either not repressed by p53 after all, not bound by p53 at the
proposed p53 RE, or both. This inevitably leads to the conclu-
sion that p53 is not a direct repressor of transcription.

Indirect repression through p53-p21-DREAM or -RB/E2F
pathways

Many genes downregulated by p53 are cell cycle genes
(Table S1). Researchers argued for a long time whether p53-
dependent transcriptional regulation of cell cycle genes requires
direct binding of p53 or occurs indirectly. One well known
example is the p53-dependent regulation of the CDC25C phos-
phatase gene. Initially, CDC25C was published to be activated as
a direct target of p53.343 Later, the gene was shown to be actually
repressed by p53 signaling 344 and that p21 is required for indi-
rect downregulation.333 Then, CDC25C was claimed to be both,
downregulated by the p53-p21 pathway and by direct interaction
of p53 with the promoter.257 Another study supported the model
of direct repression by p53,258 while two other reports described
indirect downregulation of CDC25C via p107/p130/
E2F4.335,345 Thus, over a period of 15 y the proposed mecha-
nism for p53-dependent regulation of CDC25C changed from
direct activation of transcription over direct repression to indirect
downregulation.

The history of CDC25C regulation shows that in addition to
direct also indirect repression of p53 target genes has been sug-
gested. Even prior to these reports, p53-dependent downregula-
tion of many cell cycle genes, including CCNB1, CDC20,
CDK1, and NEK2 (Fig. 2; Fig. S3), was shown to depend on
p21 (WAF1, CIP1, CDKN1A).330-333,346-350 Similar to p21, RB
was suggested to be involved in p53-dependent transcriptional
repression of genes such as CCNA2, CCNB1, CDK1, CHEK1,
FOXM1,MAD2L1, PCNA, PLK1, and TERT.332,335,348,350-353

Recently, attention has shifted to the p53-p21-DREAM path-
way.354-357 The mammalian DREAM complex consists of the
pocket proteins p107 or p130, the transcription factors E2F4 or
E2F5 and the dimerization partner DP1, as well as the MuvB
core composed of RBBP4 and the LIN proteins LIN9, LIN37,
LIN52 and LIN54.341,358,359 The DREAM components
E2F4 and p107/p130 have repeatedly been reported to partici-
pate in p53-dependent downregulation of cell cycle
genes.335,345,346,350,352,360,361

In order to evaluate the proposed indirect repression
mechanism involving p21, DREAM, or RB/E2F, we searched
the literature and found 88 genes that were described to be
indirectly regulated by p53 through this mechanism
(Table S4).9,98,248,257,330-335,345-357,360-371 Impressively, 83
(94.3%) genes were confirmed as repressed (Expression Score
2-1) (Table S4). Therefore, in contrast to the direct repression
models, the mechanism of indirect repression employing p21,
DREAM, or RB/E2F is supported by the genome-wide expres-
sion studies.

Next, we evaluated whether genome-wide protein binding to
these 88 genes is in agreement with this mechanism. To this end,
ChIP-Chip data on DREAM binding 341 and ChIP-Seq data on
p130 and RB binding 340 were used. We found that 79 (89.8%)
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of the 88 genes were indeed shown to bind DREAM, p130, or
RB (Table S4). Furthermore, we evaluated the distribution of
DREAM-, p130-, or RB-bound genes across the Expression Score
groups (Fig. 3; Table S1). In fact, we find DREAM, p130, or
RB binding to be highly enriched at p53-repressed target genes.
As an example, 306 (76.7%) of 399 genes that are found to be
repressed by p53 in at least 4 expression studies (Expression Score
2-4) are found to bind DREAM, p130, or RB in proximity of
their transcription start site (Fig. 3D; Table S1). Interestingly,
binding of DREAM or p130 appears to correlate stronger with
repression by p53 than binding of RB (Fig. 3A-C). With
CCNB2 as an example for cell cycle genes, the complete pathway
from induction of DNA damage over activation of p21 through
p53 and finally to downregulation of the target was presented as

a mechanism that involves binding of DREAM including its
component p130 to specific elements in the promoter.355,372 In
summary, these data strongly support the notion that DREAM,
p130, or RB mediates p53-dependent repression.

Lately, E2F7 attracted much attention as another possible fac-
tor in mediating p53-dependent transcriptional repression of cell
cycle genes.98 This report described that G1/S genes such as
E2F1, DHFR, RRM2, and E2F8 require E2F7 for p53-
dependent downregulation. While the initial study suggested
that downregulation of all targets also requires p21,98 it was
observed in another study that repression of GBJ2 and E2F8
depends on E2F7 but not on p21.9 However, a more recent study
concluded that a contribution of E2F7 to p53-dependent down-
regulation of target genes such as E2F1 is unlikely.345

Figure 3. Indirect repression through p53-p21-DREAM or -RB/E2F pathways. (A) The percentage of genes bound by DREAM in proximity to their tran-
scriptional start site (TSS) in each Expression Score group is displayed.341,408 The theoretical uniform distribution across the 13 Expression Score groups of
genes bound by DREAM is indicated by the blue line (3.5% of 19,736 genes). (B) Displayed for each Expression Score group is the percentage of genes
bound by RB in proximity to their TSS.340 The blue line indicates a theoretical uniform distribution of genes bound by RB (4.1% of 19,736 genes) across
the 13 Expression Score groups. (C) The percentage of genes bound by p130 in proximity to their TSS is shown for each Expression Score group.340 A theo-
retical uniform distribution of genes bound by p130 (15.2% of 19,736 genes) across the 13 Expression Score groups is indicated. (D) Compilation of targets
displayed in (A-C). The blue line indicates a theoretical uniform distribution of genes bound by DREAM, p130, or RB (16.1% of 19,736 genes) across the 13
Expression Score groups. The red area marks the fraction of genes bound by DREAM, p130, or RB in Expression Score groups ¡6, ¡5 and¡4 (76.7 % of 399
genes).
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Unfortunately, the authors did not discuss these contradictory
results although there is an overlap in authorship with the initial
study.98,345 Thus, it is difficult to conclude whether E2F7 con-
tributes to p53-dependent gene regulation. Nevertheless, we
included E2F7 ChIP-Seq data 373 to investigate whether E2F7
target genes are repressed by p53. In general, our data support
the possibility that E2F7 participates in p53-dependent tran-
scriptional repression (Fig. S4). However, essentially all E2F7
target genes are also bound by DREAM, p130, or RB
(Table S1). This suggests that a p53-dependent repression via
E2F7 occurs, if at all, only in conjunction with DREAM, p130,
or RB. In conclusion, the results uncover a dominant role of
the p53-p21-DREAM/RB pathway in p53-dependent transcrip-
tional repression.

Lessons learned from network perturbations by viral
oncoproteins

Oncogenic viruses often interfere with the p53 pathway.21 In
addition to targeting p53, many viruses interfere with pocket
protein/E2F complexes such as RB/E2F and DREAM. Human
papilloma virus (HPV) employs E6 and E7 oncoproteins to selec-
tively target p53 and pocket protein complexes, respectively.374

Importantly, RB/E2F and DREAM are disrupted by HPV
E7.357,375,376 Thus, one would expect that the expression of
genes directly targeted by p53 is impaired by HPV E6 but not by
E7 expression. In contrast, genes targeted by RB/E2F or
DREAM downstream of the p53 pathway are expected to be
deregulated similarly by HPV E6 and E7. Therefore, we inves-
tigated genome-wide expression data after induction of
HPV16/18 E6 and HPV16/18 E7 21 (Table S1). Indeed, we
find prominent p53 targets such as CDKN1A, MDM2, BAX,
FAS, BTG2, and PLK2 to be downregulated upon induction
of HPV E6, while they show no regulation or a slight upregu-
lation after induction of HPV E7 (Table S1). Thus, their
p53-dependent regulation is not impaired by HPV E7. In con-
trast, established targets of the p53-p21-DREAM-CDE/CHR
pathway such as CCNB2, KIF23, and PLK4 are upregulated
upon induction of HPV E6 and are also upregulated by HPV
E7 (Table S1). Next, we investigated whether this is a general
phenomenon of genes directly activated by p53 in contrast to
genes indirectly repressed via the p53-p21-DREAM/RB path-
way. We find 469 genes that are upregulated by HPV E6,
which display an Expression Score 2-2, and bind DREAM,
p130, or RB (Table S1). Interestingly, solely 14 (3.0%) of
these genes display a significantly divergent expression (>2.5-
fold or negative ratio) after HPV E6 compared to E7 expres-
sion. In contrast, 119 genes are downregulated by HPV E6,
which show an Expression Score 32, and bind p53. Most
interestingly, 50 (42.0%) of these genes display a significantly
divergent expression (>2.5-fold or negative ratio) by HPV E6
compared to E7 (Table S1). This 14-fold increase of gene
numbers regulated by HPV E7 in addition to E6 among
pocket protein target genes is highly significant (P < 10¡27)
and thus substantiates the model that p53 can directly activate
its target genes while p53-dependent repression largely occurs
via the p53-p21-DREAM/RB pathway.

Evaluating alternative models of indirect repression
Among the first models trying to explain p53-dependent tran-

scriptional repression, interference of p53 with the TATA-box
binding protein (TBP) and its associated factors was pro-
posed.377,378 Another model involves displacement of NF-Y
(CBF) binding to CCAAT-boxes by p53, which was observed at
the HSPA4 (hsp70) promoter.379 The model was supported by
the finding that the NF-Y subunit C interacts with p53 in vitro
and in vivo.255 Furthermore, this model was extended toward a
possible direct p53-NF-Y-CCAAT repression model with the
observation that p53 binds to several CCAAT-box-containing
cell cycle genes.255,338 However, as outlined in the chapters
above, direct p53 binding to target promoters most likely does
not lead to repression but solely to activation. Consistent with
this notion, a genome-wide motif search at p53 binding regions
did not find TATA-, CCAAT- or GC-boxes to be enriched.8

Yet, several reports describe that transcriptional repression of
target genes by p53 is lost upon mutation of CCAAT-boxes.
Thus, we searched the literature for reports of indirect repression
involving interference of p53 with activating transcription factors
such as NF-Y (Table S5).191,309,333,377,379-402 We asked whether
target genes are possibly repressed through NF-Y-bound
CCAAT-boxes after p53 activation. It was observed that downre-
gulation by p53 is lost after CCAAT elements were destroyed in
the promoters of genes such as CCNB2,255,384 CDK1
(CDC2),403 CDC20,334 and TOP2A.397 We and others observed
a loss of p53-dependent repression and falsely interpreted that
CCAAT-boxes bound by NF-Y are involved. In these reports it
was not considered that mutation of CCAAT-boxes essentially
inactivates promoters. Thus, the inactive promoters could not be
repressed any further. In support of this interpretation, it is well
established that NF-Y-bound CCAAT-boxes are essential for
activity of the respective genes.404,405 This is further supported
by the observation that recruitment of RNA polymerase II
depends on intact CCAAT-boxes.406

Many of the cell cycle genes activated through CCAAT-boxes
also carry phylogenetically conserved cell cycle-dependent ele-
ments (CDE) and cell cycle genes homology regions (CHR) in
their promoters which are responsible for cell cycle-dependent
transcriptional regulation.405,407 It has been shown that DREAM
binds to CDE and CHR elements.408 Importantly, p53-depen-
dent repression of these genes is controlled by DREAM binding
to CDE and CHR sites.355-357 Consistently, instead of losing
activity by altering the CCAAT-boxes, destruction of CDE and
CHR elements leads to derepression of genes such as CCNB2,355

CDK1 (CDC2),349,360 CDC20,363 and TOP2A.349

In addition to NF-Y, Sp1 has also repeatedly been implicated
in mediating p53-dependent repression (Table S5). Similar to
the observations on NF-Y-mediated regulation, it was described
that repression by p53 can depend on Sp1 binding sites, namely
GC-boxes. The Survivin (BIRC5) gene served as an example
where promoter activity is lost upon GC-box mutation.381,382 As
shown for promoters regulated by CCAAT-boxes, also Survivin
possesses a phylogenetically conserved CHR downstream of its
Sp1 sites.408,409 Considering DREAM-mediated repression via
CHRs,355-357 it is likely that also in the case of Survivin the
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CHR mediates p53-depedent repression. Concordantly, binding
of DREAM components was shown to mediate repression of Sur-
vivin upon induction of p53.354

In order to evaluate a possible general function of CCAAT-,
GC-, TATA-boxes, CHRs, and E2F sites in p53-dependent tran-
scriptional control, we investigated the distribution of genes

harboring such phylogenetically conserved elements across the
Expression Score groups. CHR elements which bind DREAM 408

and E2F sites that recruit RB/E2F complexes 410-412 are also
enriched at genes repressed by p53 (Fig. 4A and B). Consistent
with this notion, DREAM, p130, and RB binding are strongly
enriched at genes downregulated by p53 (Fig. 3). In contrast,
TATA-box-containing genes are not accumulated in groups of
genes activated or repressed by p53 (Fig. 4C).

It is established that NF-Y and Sp1 often activate E2F and
DREAM/CHR target genes.334,357,405,413-415 Thus, it is not sur-
prising that CCAAT- and GC-boxes are overrepresented at target
genes repressed by p53 (Fig. 5A and B). However, when remov-
ing all DREAM-, p130-, and RB-bound genes from the analysis,
we observe that CCAAT- and GC-box enrichment is essentially
lost in the group of genes downregulated compared to genes acti-
vated by p53 (Fig. 5C–E). These results lead to the conclusion
that CCAAT- and GC-boxes do not mediate repression by p53
independently of DREAM, p130, or RB. Still, it is unknown
why the transcription factors NF-Y and Sp1 particularly often
activate genes that are regulated by pocket protein complexes
such as DREAM.

Taken together, gene regulation by interference of p53 with
activating transcription factors is, if at all, an exception.

ncRNAs in p53’s transcriptional network: major players
or minor influence?

The most prominent examples of ncRNAs in p53’s transcrip-
tional network are mir34a,416 lincRNA-p21,417 and PANDA.418

The original studies on mir34a and lincRNA-p21 were performed
in mouse cells.416,417 Here, we are limited to draw conclusions
for p53’s transcriptional network in human by comparing results
of the meta-analysis with major findings from the initial ncRNA
studies.

The original study on mir34a explicitly described mir34a-
dependent downregulation of Cdk4, Ccne2, and Met via their
30UTR.416 Indeed, CDK4 and CCNE2 are found to be repressed
by p53. However, both genes are also targeted by pocket proteins
making it difficult to distinguish the influence of mir34a from
that of the pocket proteins (Table S1). In contrast, Met does not
bind pocket proteins and even showed the strongest repression
by mir34a in the initial study.416 This observation was confirmed

Figure 4. Genes repressed by p53 are enriched for CHRs which bind
DREAM and E2F sites which recruit RB/E2F complexes. (A) The percent-
age of genes possessing a phylogenetically conserved CHR element in
proximity to their TSS in each Expression Score group is displayed. The
theoretical uniform distribution across the 13 Expression Score groups of
genes with a phylogenetically conserved CHR element is indicated by
the blue line (12.1% of 19,736 genes). (B) The percentage of genes har-
boring a phylogenetically conserved E2F site in proximity to their TSS in
each Expression Score group is displayed. The theoretical uniform distri-
bution across the 13 Expression Score groups of genes possessing a phy-
logenetically conserved E2F sites is indicated by the blue line (8.2% of
19,736 genes). (C) The percentage of genes with a phylogenetically con-
served TATA-box in proximity to their TSS in each Expression Score group
is displayed. The theoretical uniform distribution across the 13 Expression
Score groups of genes holding a phylogenetically conserved TATA-box is
indicated by the blue line (5.9% of 19,736 genes).
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by another report.419 Interestingly, human MET appears not to
be repressed by p53 (Expression Score D 2) (Table S1). Thus, the
influence of mir34a on p53’s transcriptional program is not the
same between mouse and human. Importantly, experiments on

mir34a-c triple knockout mice showed that the mir34 family is
not necessary for p53 function.420 Considering these observa-
tions, the mir34 family appears to have only a minor influence
on p53-dependent transcription.

Figure 5. CCAAT- and GC-boxes do not mediate repression by p53 independent of DREAM, p130, or RB. (A) The percentage of genes harboring a phylo-
genetically conserved CCAAT-box in proximity to their TSS in each Expression Score group is displayed. The theoretical uniform distribution across the 13
Expression Score groups of genes with a phylogenetically conserved CCAAT-box is indicated by the blue line (15.9% of 19,736 genes). (B) The percentage
of genes holding a phylogenetically conserved GC-box (Sp1 site) in proximity to their TSS in each Expression Score group is displayed. The theoretical uni-
form distribution across the 13 Expression Score groups of genes possessing a phylogenetically conserved GC-box (Sp1 site) is indicated by the blue line
(31.1% of 19,736 genes). (C) All genes bound by DREAM, p130, or RB (n D 3,189) are removed from the total set of 19,736 genes for further analyses. (D)
The percentage of genes harboring a phylogenetically conserved CCAAT-box in proximity to their TSS in each Expression Score group is displayed. The
theoretical uniform distribution across the 13 Expression Score groups of genes with a phylogenetically conserved CCAAT-box is indicated by the blue
line (13.3% of 16,547 genes). (E) The percentage of genes possessing a phylogenetically conserved GC-box (Sp1 site) in proximity to their TSS in each
Expression Score group is displayed. The theoretical uniform distribution across the 13 Expression Score groups of genes holding a phylogenetically con-
served GC-box (Sp1 site) is indicated by the blue line (29.0% of 16,547 genes).
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The initial study on lincRNA-p21 explicitly reported Vcan,
Cxcr6, Hus1, Kdm6b (Jmjd3), Zbtb20, Atf2, Rb1, Lpp, Pdlim2,
and Usp25 to be repressed by lincRNA-p21 and hnRNP-K in
response to p53.417 However, solely ATF2 and USP25 show a
slightly negative Expression Score of -1, while VCAN, CXCR6,
HUS1, KDM6B, ZBTB20, RB1, LPP, and PDLIM2 are not
found to be repressed by p53 in human (Expression Scores 3 0)
(Table S1). Considering these large discrepancies between mouse
and human, it appears unlikely that p53-dependent repression
via lincRNA-p21 and hnRNP-K plays a major role in human.
Concordantly, the authors of a very recent study investigating
lincRNA-p21 knockout mice concluded that lincRNA-p21
unlikely has genome-wide regulatory functions.421

In addition to mir34a and lincRNA-p21, the PANDA ncRNA
was observed to be p53-dependently induced.418 PANDA was
described to interfere with NF-YA upon induction of p53. How-
ever, as outlined above, genes regulated by NF-Y/CCAAT-boxes
are not generally repressed by p53 (Fig. 5). Consistently, the
authors observed only 224 genes to be induced upon PANDA
knockdown,418 although 1412 genes are downregulated after
NF-YA was targeted directly by shRNA.422 Moreover, FAS,
PIDD (LRDD), APAF1, and BIK were explicitly reported to be
downregulated by the p53-PANDA-NF-YA pathway.418 In con-
trast, expression of FAS, PIDD (LRDD), and APAF1 was not
found to be deregulated upon depletion of NF-YA by shRNA,
while BIK even was observed to be activated.422 Thus, one can
conclude that the p53-PANDA-NF-YA pathway does not gener-
ally influence gene transcription, but regulates, if at all, only a
few promoters in certain cell types. In the initial study, PANDA
was shown to fine-tune the p53-dependent transcription of pro-
apoptotic target genes in human fetal fibroblasts.418

Taken together, a major contribution of well known ncRNAs
to p53’s transcriptional program is not evident. The transcrip-
tional influence of the ncRNAs discussed above appears to be, if
at all, limited to fine-tuning expression of a few genes in certain
cell types.

Conclusions and Perspective

Our results resolve the longstanding question on how p53
binding can activate one target gene and repress another. Most
surprisingly, results from the computational meta-analysis do
not support models involving direct transcriptional repression
through p53. Experimental validation supports the conclusions
from the meta-analysis. Thus, the previously reported regulation
of several target genes appear questionable (Table S2). Generally,
binding and regulation are not necessarily cause and conse-
quence, considering that not every binding event leads to regula-
tion and that regulation can be indirect.

As an alternative to direct repression, the results show that
p53-dependent repression occurs indirectly and is largely medi-
ated by activation of the p53-p21-DREAM/RB pathway
(Fig. 6). Other reported indirect pathways such as ncRNAs
appear to be, if at all, either an exception or to merely mediate
fine-tuning of p53’s transcriptional program.

In summary, with direct activation and indirect downregula-
tion via the p53-p21-DREAM/RB pathway only 2 out of the
previously reported 6 major mechanisms of p53-dependent regu-
lation are supported by the meta-analysis (Fig. 6). Future
research will have to show whether there are still other mecha-
nisms that are of general importance mediating p53-dependent
transcription.

Materials and Methods

Computational meta-analysis on binding and regulation
by p53

Expression data on known protein-coding genes were
extracted from 6 studies on p53-dependent regulation.7,19-23 The
expression values of the analyzed genes were compiled and classi-
fied into repressed (¡1), induced (C1), and not-regulated (0) by
p53. For every gene the Expression Score was calculated as the
sum of the classifications of the individual studies. Expression
Scores range from ¡6 to 6, where “6” means found as induced by
p53 in all studies and “¡6” means classified as repressed by p53
in all 6 studies. Thus, the Expression Score describes the direction
of regulation as well as the confidence of the classification
(Table S1).

Due to the fact that the data originate from different sources,
all studies must be evaluated and filtered with individual thresh-
olds for log-fold change and/or p-values. We aimed not to alter
criteria that were used in the original studies. However, if a study
yielded many more regulated genes compared to a related study,
we slightly adjusted thresholds in p-values and expression fold-
changes to yield data sets of similar size. The following thresholds
were used for the 6 studies: For the data from the study by B€ohlig
et al. (kindly provided by Levin B€ohlig) the p-value must not
exceed 0.05, the log-fold change has to exceed 1 to be classified
as "induced" and undercut ¡1 for classification "repressed".19

For the data from the Nikulenkov et al. study (kindly provided
by Galina Selivanova) 0.5 and -0.5 are used as thresholds of the
log-fold change and 0.05 of the p-value.7 The data on differen-
tially expressed genes after expression of HPV-16 E6 or HPV-18
E6 from the study by Rozenblatt-Rosen et al. (GSE38467) were
filtered with log-fold change of 0.25 and an adjusted p-value of
0.05.21 The data from the report by Kracikova et al.
(GSE30753) were filtered solely with an adjusted p-value of
0.05, the same criteria were used in the original study.22 The
thresholds for the Goldstein et al. data (GSE30137) were set to
an absolute log-fold change of 0.5 and an adjusted p-value of
0.05.23 The expression data from Rashi-Elkeles et al. represent a
meta-study on different data sets. For filtering, the sum of the Z-
values from the individual studies is used; larger than 10 is
counted as "increased", less than -10 is counted as "repressed".20

For every gene, the genomic location is shown, i.e. chromo-
some, strand, transcription start and stop, and start and stop of
the coding sequence. Primarily, the annotations of the canonical
transcripts for the human genome version hg19 were taken from
the UCSC Genome Browser database.423 Only in cases where no
annotation was available at the UCSC Genome Browser
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database, the annotation from Ensembl human genome version
GRCh37 was used.424 Additionally, mappings to the different
database identifiers are provided if available including UCSC
canonical transcript ID, Ensembl gene ID, HUGO gene symbol,
and Affymetrix microarray IDs (Table S1).

ChIP peaks from 6 genome-wide p53 binding studies were
annotated 25 kb around the TSS.6-9,24,25 In 4 of the 6 studies,
ChIP peaks originate from several experiments. In case of 2 data
sets in one report, all ChIP peaks were included in our analysis.6,8

To reduce the number of false positive annotated p53 ChIP
peaks, we filtered for peaks which occurred in at least 2 data sets
in cases where 3 or 4 experiments were performed.7,9 Further-
more, ChIP peaks occurring in more than one experiment from
the same study were merged into one peak using BEDTools.425

All ChIP peaks from the 6 studies that overlap by at least one
base pair were merged. From this set of p53 ChIP peaks, only
those peaks were selected for further analysis that were found in
at least 2 studies. For each gene, the location of the p53 peaks is
annotated for each study as well as the p53 ChIP Score showing
the number studies for which peaks in the promoter of this gene
were found (Table S1).

Search for phylogenetically conserved binding motifs
Several binding sites were annotated in the promoter regions

of the genes. CHR (TTTGAA, TTTAAA, CTTGAA, TAG-
GAA), E2F (TTSSSSS), TATA (TATATA, TATAA), CCAAT
(CCAAT), and SP1 (GGGCGG, GGCGGG) sites were
searched in the region of 200 bp around the TSS on both strands
that were not extended into the coding sequence or genes located

upstream of the TSS. PhastCons conservation scores 426 obtained
from the multiz46 alignment of placental mammalia 427 were
used to calculate average phylogenetic sequence conservation.
Only those hits were annotated that have an average PhastCons
conservation score of at least 0.8 (Table S1).

Meta-analysis of “default targets”
An extensive literature search for potential direct p53 target

genes was performed that started with 2 reviews 13,428 and
includes about 300 reports in total (Table S2). We included all
target genes that were reported as differentially expressed upon
p53 induction and bound by p53 in proximity of their locus
(Table S2). All reported p53 target genes were compiled and clas-
sified as repressed (¡1) or activated (C1) by p53 (Table S3).

Additionally, we included potential p53 target genes from
genome-wide studies that combined p53 binding data (ChIP-
PET, ChIP-chip, ChIP-seq) with p53-dependent expression data
from microarray analyses.5-9 Two studies contained 2 data sets
each from ChIP-seq combined with expression data following 2
different treatments to activate p53.6,8 We included the 2 data
sets of each study separately in our analysis. As both data sets
originate from experiments with similar conditions, we assigned
a lower score (0.75) when a gene was found as p53 target gene in
these data sets in order to not overweigh the study’s influence on
our meta-analysis (Table S3). Next, we combined 2 genome-
wide p53 binding data sets,24,25 that previously had not been
compared to expression data, with 6 genome-wide p53 depen-
dent expression studies.7,19-23 From this combination, we
included genes as potential p53 targets that were identified as

Figure 6. The tumor suppressor p53 is not a direct repressor of transcription, it solely activates its target genes upon binding to DNA. In order to activate
transcription, the p53 tetramer binds to the p53 RE of its target gene. The transcription factor p53 acts as repressor by activation of the p53-p21-DREAM/
RB pathway ultimately leading to indirect p53-dependent transcriptional repression.
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bound by p53 in at least one of the binding studies and as regu-
lated in at least one expression study, assigning a score of 0.25 for
each study in which the gene was identified as bound or regulated
by p53 (Tables S1 and S3).

For every gene the Default Target Score was calculated as the
sum of the scores from the individual data sets. Thus, it repre-
sents the direction of regulation as well as the confidence of the
classification. We considered a gene as a “default target” that was
reported in at least 3 data sets, which corresponds to a Default
Target Score greater than 2 (Table S3).

DREAM, p130, RB, and E2F7 binding data
The promoter regions 200 bp upstream and downstream

from the TSS, but not extending into the coding sequence or
genes located upstream of the TSS, were overlayed with peaks
from 4 ChIP-chip experiments measuring binding of E2F4,
p130, LIN9, and LIN54 proteins as indicators for DREAM com-
plex binding 341 as described previously.408 ChIP-seq peaks for
DNA bound by p130, RB,340 and E2F7 373 were overlayed with
an extended promoter region of 1000 bp around the TSS. Again,
the promoter regions were truncated to not overlap with the cod-
ing sequence or genes located upstream of the TSS. ChIP peaks
for p130 and RB were restricted to those with a false discovery
rate � 0.1 (Table S1).

Cell culture, FACS, chromatin immunoprecipitation, RNA
extraction, and semi-quantitative real-time PCR

Experiments were performed as described previously.357

Primer

Real-time PCR primer for ChIP analyses
GAPDHS: for 50-AGACCAGCCTGAGCAAAAGA-30, rev 50-

CTAGGCTGGAGTGCAGTGGT-30;356, 357 CDKN1A: for 50-
CTGAGCCTCCCTCCATCC-30, rev 50-GAGGTCTCCTGTC
TCCTACCATC-30;356, 357 MDM2: for 50-TCGGGTCAC-
TAGTGTGAACG-30, rev 50-TGAACACAGCTGGGAAAATG-
30; ABCB1: for 50-TTATCCCAGTACCAGAGGAGGA-30, rev
50-TGCTTTGGAGCCATAGTCAT-30; BCL2: for 50-ATCCT
TCCCAGAGGAAAAGC-30, rev 50-ATCAAGTGTTCCGCGT-
GATT-30; BNIP3: for 50-AGCGTTTCTGGGGCGCACCTTG-
30, rev 50-GGGACTGGGAGGCACTTTTCAGAGGA-30;251

CCNB1: for 50-CCTGATTTTCCCATGAGAGG-30, rev 50-
GGATCACACATTAGCAACGGG-30;254 CD44: for 50-TTTAC
GGTTCGGTCATCCTC-30, rev 50-TGCTCTGCTGAGGC
TGTAAA-30;262 CDC20: for 50-TAAAGCCCCAAGGGGA-
TAAG-30, rev 50-CGTGTGTTTGTCTCGTTTGC-30; CDK1:
for 50-AACTGTGCCAATGCTGGGAG-30, rev 50-AGC-
CAGCTTTGAAGCCAAGT-30;258 CRYZ: for 50-TCCACCAT-
GATTGTGAGACC-30, rev 50-CAAACATTTACCTGACACC
CA-30;260 HSPA8: for 50-TGGGTAGATGGGTCCTTCAT-30,
rev 50-AATAGTGCCCATCACCTCCT-30;260 ID2: for 50-
GAACGCGGAAGAACCAAG-30, rev 50-GGCTCGGCTCA
GAATGAA-30; LASP1: for 50-AGCGTTCAGGAGGATCCAA-
30, rev 50-AGCGCTCTCAGGCTGACT-30; MAD1L1: for 50-

ACTGGGAAGGTAGCCTAGTAGCATA-30, rev 50-AGCCTC
CTCGGACAAACTTGC-30;260 ME1: for 50-GGAAACTGCAC-
CAACTGTGA-30, rev 50-TAAACATGCGGGTTGGCTAT-30;
ME2-RE1: for 50-GTTGCCCAGGCTGGAGTG-30, rev 50-
CTGTAATCCCAGCACTTT-30;285 ME2-RE3: for 50-
AAGTTGGAGACCACCCTGTG-30, rev 50-GCTAGAGTG-
CAGTGGCATGA-30; ME3: for 50-GTTGCGATCCCGTGG
CTG-30, rev 50-ACCGCAGGTCAGACTGAC-30;285 NEK2: for
50-TGCAACCCCATGCTCTGTTAC-30, rev 50-TCACGCC-
TATAATCCTAGCAC-30;289 PTK2: for 50-CTCCAACCTCG
CCTTTTGC-30, rev 50-GGGACTTAGAAGTCCACTGG-
30;306 TPT1: for 50-TAGGGAGCGCCCCGAGAGTT-30, rev 50-
GTGACGTGGCACGAAGAG-30.320

Real-time PCR primer for expression analyses
GAPDH: for 50-GACCCCTTCATTGACCTCAAC-30, rev

50-CACGACGTACTCAGCGCC-30; U6: for 50-AACGCTT-
CACGAATTTGCGT-30, rev 50-CTCGCTTCGGCAGCACA-
30;357 L7: for 50-GCACTATCACAAGGAATATAGGCAG-30,
rev 50-CCCATGCAATATATGGCTCTAC-30;356 CDKN1A:
for 50-GGAAGACCATGTGGACCTGT-30, rev 50-GGAT-
TAGGGCTTCCTCTTGG-30; MDM2: for 50-GTGAATCTA-
CAGGGACGCCA-30, rev 50-CTGATCCAACCAATCACC
TGAA-30;351 PPM1D: for 50-CAACTGCCAGTGTGGT-
CATC-30, rev 50-CGATTCACCCCAGACTTGTT-30; ABCB1:
for 50-CATGATGCTGGTGTTTGGAG-30, rev 50-AGGCAC-
CAAAATGAAACCTG-30; BCL2: for 50-ACTTGTGGCCCA-
GATAGGCACCCAG-30, rev 50-CGACTTCGCCGAGATGT
CCAGCCAG-30;245 BNIP3: for 50-TCCTCTTTAAACACCC-
GAAGCGCA-30, rev 50-ATCCGATGGCCAGCAAATGAGA
GA-30;251 CCNB1: for 50-AAGAGCTTTAAACTTTGGTC
TGGG-30, rev 50-CTTTGTAATGCCTTGATTTACCATG-
30;254 CD44: for 50-CCACGTGGAGAAAAATGGTC-30, rev
50-CATTGGGCAGGTCTGTGAC-30;262 CDC20: for 50-CGC
CAACCGATCCCACAG-30, rev 50-CAGGTTCAAAGCC-
CAGGC-30;328 CDK1: for 50-TGGGGTCAGCTCGTTAC
TCA-30, rev 50-CACTTCTGGCCACACTTCATTTA-30;258

CRYZ: for 50-GAGTGATAGTTGTTGGCAGCAGAG-30, rev
50-TGCTGAAATTCCTCCTTGGTTG-30;260 HSPA8: for 50-
GCCGTTTGAGCAAGGAAGACA-30, rev 50-CAGCAGTCT-
GATTCTTATCAAGCC-30;260 ID2: for 50-TCAGCCTGCAT-
CACCAGAGA-30, rev 50-CTGCAAGGACAGGATGCTGAT-
30;275 LASP1: for 50-GTATCCCACGGAGAAGGTGA-30, rev
50-TGTCTGCCACTACGCTGAAA-30;281 MAD1L1: for 50-
CAGGGTGACTATGACCAGAGCAG-30, rev 50-TCAGCT
CTGCCACCTCCTTG-30;260 ME1: for 50-GGATTGCACA
CCTGATTGTG-30, rev 50-TCTTCATGTTCATGGGCAAA-
30; ME2: for 50-ATGGGCTTGTACCAGAAACG-30, rev 50-
TGCTGCAAGAAGACCTGCTA-30; ME3: for 50-CAGCA-
GAGTGACCTGGACAA-30, rev 50-CTTCTGGCCAA-
GAATTCAGC-30; NEK2: for 50-AGTGCAAGGACCTGAA
GAAAAG-30, rev 50-TCAATATCTGACAGGGCTTGAG-
30;289 PTK2: for 50-GTGCTCTTGGTTCAAGCTGGAT-30,
rev 50-ACTTGAGTGAAGTCAGCAAGATGTGT-30;306 TP
T1: for 50-GATCGCGGACGGGTTGT-30, rev 50-TTCAGCG-
GAGGCATTTCC-30.320
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