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Abstract: Wheat flour is one of the most important food ingredients containing several 
essential nutrients including proteins. Gluten is one of the major protein components of 
wheat consisted of glutenin (encoded on chromosome 1) and gliadin (encoded on chromo-
some 1 and 6) and there are around hundred genes encoding it in wheat. Gluten proteins have 
the ability of eliciting the pathogenic immune responses and hypersensitivity reactions in 
susceptible individuals called “gluten-related disorders (GRDs)”, which include celiac dis-
ease (CD), wheat allergy (WA), and non-celiac gluten sensitivity (NCGS). Currently remov-
ing gluten from the diet is the only effective treatment for mentioned GRDs and studies for 
the appropriate and alternative therapeutic approaches are ongoing. Accordingly, several 
genetic studies have focused on breeding wheat with low immunological properties through 
gene editing methods. The present review considers genetic characteristics of gluten protein 
components, focusing on their role in the incidence of gluten-related diseases, and genetic 
modifications conducted to produce wheat with less immunological properties. 
Keywords: gliadin, glutenin, genetic loci, wheat allergy, celiac disease, non-celiac gluten 
sensitivity

Introduction
Gluten-containing grains are essential food ingredients, consumed in most parts of 
the world.1,2 Owing to their importance and thanks to their ability to grow in 
different climatic areas, wheat cereals were among the first crops to be cultivated 
(established in the “Fertile Crescent”, such as modern Turkey, Iraq and Iran) and 
their importance has increased significantly over time.3–6 The complex genome of 
Triticum aestivum L. is arranged into three subgenomes, A, B, and D, each contains 
seven pairs of chromosomes.7,8 However, the ability of wheat to adapt to different 
eco-climatic conditions and deliberate breeding for specific traits have led to the 
emergence of varieties with different characteristics.8 Accordingly, evidence 
showed that changes in the environmental conditions (such as temperature, water, 
and fertilizer situations) could influence the expression of gluten genes in wheat.9

Wheat (Triticum aestivum L. 2n = 6 × = 42) flour is composed of starch (~70–-
75%: main component), proteins (~10–15%), lipids (~2%), minerals (~2%), that 
convey substantial nutritional benefits to humans.10 Gluten is one of the major 
protein components of wheat (~80% of the total proteins), which is specifically 
expressed in the developing grains and provides a source of nitrogen for germina-
tion and seedling growth.4,11–13 Gluten is composed of storage proteins including 
glutenin and gliadin and is the term applied to the viscoelastic matrix formed when 
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these proteins are mixed with water. There are around 
hundred of genes encoding gluten proteins in wheat.14–16 

In general, wheat proteins are divided into water/salt- 
soluble and insoluble categories, of which gliadins and 
glutenins are insoluble components.17 As gliadins influ-
ence the extensibility and viscous nature and glutenins are 
responsible for the elasticity and strength of dough, gluten 
is known as the main factor in determining the quality of 
the baked products and processed foods' texture and 
flavor.18–20 Due to the high amount of proline (P) and 
glutamine (Q) residues in gluten, T.B. Osborne, the father 
of plant protein chemistry, called it “prolamine”.4,11,21 

Accordingly, gliadin and glutenin are known as prolamin 
I and II, respectively.22 Prolamines in other cereals include 
secalin in rye, hordein in barley, avenins in oats, zeins in 
corn, but the medical use of the term “gluten” has evolved 
to include only those prolamines implicated in human 
disease.23

Despite the numerous benefits of wheat, gluten proteins 
have the ability of eliciting the pathogenic immune 
responses and hypersensitivity reactions in susceptible 
individuals known as “gluten-related disorders 
(GRDs)”.4,23,24 GRDs encompasses three major types of 
diseases: celiac disease (CD), wheat allergy (WA) and 
non-celiac gluten sensitivity (NCGS) that affect around 
1–7% of people worldwide.4,25–27 These are, biologically, 
different diseases with distinct immune, allergic, and pos-
sibly non-immune etiologies for which gluten or wheat 
flour is a common triggering factor that will be discussed 
in detail below.28

Nevertheless, numerous studies, based on findings 
showing that avenins alone do not induce immune 
responses in most CD patients and symptomatically toler-
ated by them, point to the safety of adding oats to their 
diet.29–32 In this regard, however, Hardy et al33 in their 
in vivo study on 73 biopsy-confirmed HLA-DQ2.5+ CD 
patients showed that the ingestion of oats (100 g/day) for 3 
days mobilizes polyclonal avenin-specific T-cells in blood 
in fewer than 10% of studied patients. Half of the patients 
had at least one digestive symptom during this challenge, 
which was due to a high daily intake of oats (100 g) and 
a high amount of fiber in them. Moreover, they reported 
that these T-cells were cross-reactive against avenin and 
hordein, and oral challenge with barley (and not wheat or 
rye) could stimulate these T-cells more efficiently than 
oats. They concluded that daily consumption of up to 
100 g uncontaminated oats is insufficient to cause clinical 
relapse in CD patients.33 A plausible explanation for oats 

having low immune-toxicity is their low proline content 
and lack of proteolytically resistant peptides with more 
than 10 amino acid residues.33,34

This review aims to provide a thorough overview of 
genetic characteristics of gluten protein components, their 
role in the incidence of various gluten-associated diseases, 
and genetic modifications that could reduce the immuno-
genic properties of gluten and lead to wheat improvement.

Method
In general, searches are developed in PubMed, Google 
Scholar, MEDLINE, and SCOPUS databases from 
September 1987 to September 2020. The following 
terms, alone or in combination, were searched: “gluten 
content”, “gliadin chromosomal locations”, “glutenin 
chromosomal locations”, “celiac immunogenic peptides”, 
“wheat allergy immunogenic peptides”, “immunogenic 
peptides and non-celiac gluten sensitivity”, “toxic gluten”, 
and “gluten genetic manipulations”.

Gliadin Components and Genetic 
Characteristics
Gliadin is a combination of monomeric proteins that 
makes up about 30% of total flour proteins.4,35,36 

Polyacrylamide gel electrophoresis at acidic pH (pH = 
3.1) shows four major groups called α- (25–35 kDa), β- 
(30–35 kDa), γ- (35–40 kDa), and ω- (55–75 kDa) 
gliadins.2,4,8,37 As α- and β-gliadins have several simila-
rities in their structure and number of amino acid residues, 
they are usually grouped and collectively named as α- 
gliadins.8,38 α/β- and γ-subunits are considered to be the 
major components of gliadins, and ω-gliadin is lower.39 In 
addition, the ω- gliadin differs in amino acid composition 
from those of the α- and γ-gliadins.4,11 Moreover, accord-
ing to the Shewry classification based on the presence of 
sulfur-containing amino acids, gliadin subunits are divided 
into S-rich (α/β- and γ-) and S-poor (ω-) gliadins.11

The gliadin is encoded by multigene families.40 

Different reports on the chromosomal location showed 
that gliadin encoding genes are found on the short arm of 
the homoeologous group 1 (Gli-A1, -B1 and -D1 loci) and 6 
(Gli-A2, -B2 and -D2 loci) chromosomes.2 Each of these 
loci contains multiple alleles and so far, more than 30 allelic 
variants have been identified for some Gli loci.2,37 Gli-1 
genes encode γ - and ω-gliadins and Gli-2 genes encode the 
α-/β- and some of the γ-gliadins (Figure 1).34 There are also 
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some minor gliadin loci located on 1AS (Gli-A3, -A5 and - 
A6), 1BS (Gli-B3 and -B5) and 1DS (Gli-D4 and -D6).41

α-gliadins are the most abundant storage proteins in 
cereal and several gene copy numbers (from 25 to 150) 
have been reported for them in haploid genome.4,42–45 The 
α-gliadin genes originated from the D sub-genome of 
wheat and contribute the most immunogenic T-cell stimu-
latory peptides in wheat gluten for the 90% of CD patients 
who are positive for the HLA-DQ2.5 genotype.42,46,47 

However, the base substitution of glutamine codon 
(CAA) to a stop codon (TAA) can potentially cause inac-
tivation of almost 50% of the α-gliadin genes.20

Glutenin Components and Genetic 
Characteristics
The glutenin, which represents 50% of total flour proteins, 
consists of huge polymeric proteins linked through inter- 
and intramolecular disulfide bonds and are among the 
largest protein molecules in nature.2,14,36,48,49 Its separa-
tion by Sodium dodecyl sulfate-polyacrylamide gel elec-
trophoresis (SDS-PAGE) shows high and low molecular 
weight (HMW-GS vs LMW-GS) subunits, which are 75 to 
120 kDa and 30 to 74 kDa, respectively.4,36,50 LMW-GS 
accounts for ~60% of the glutenins and has a greater and 
more favorable impact on the properties of the dough than 

Figure 1 Chromosome site of different gluten constituents. Short arm of the homoeologous group 1 (Gli-A1, -B1 and -D1 loci) and 6 (Gli-A2, -B2 and -D2 loci) 
chromosomes encode γ - and ω-gliadins, and α-/β- and some of the γ-gliadins, respectively. Glu-A1, B1, and D1 loci (long arm) and Glu-A3, Glu-B3, and Glu-D3 loci (short 
arm) of the homoeologous group 1 chromosomes also encode the HMW-GS and LMW-GS subunits of glutenin, respectively. 
Abbreviations: HMW, high molecular weight; LMW, low molecular weight.

The Application of Clinical Genetics 2021:14                                                                             submit your manuscript | www.dovepress.com                                                                                                                                                                                                                       

DovePress                                                                                                                          
39

Dovepress                                                                                                                                                              Asri et al

http://www.dovepress.com
http://www.dovepress.com


HMW-GS.51,52 HMW-GS is grouped into x- and y-type 
subunits based on its electrophoretic mobility and mole-
cular mass.4,53 LMW-GS, which is similar to γ- gliadins in 
size and structure, is subdivided into B-, C-, and D-type 
subunits (differ from A, B and D genomes of wheat) basis 
on their isoelectric point (PI) and electrophoretic mobility 
(B-type is the major group).36,52 The LMW-GS can also be 
classified based on the first N-terminal amino acid residue 
into m-type (Methionine), s-type (Serine) and i-type 
(Isoleucine) subclasses.4,52

The HMW-GS and LMW-GS genes are located on the 
Glu-A1, B1, and D1 loci (long arm) and Glu-A3, Glu-B3, 
and Glu-D3 loci (short arm) of the homoeologous group 1 
chromosomes, respectively (Figure 1).52,54 The Glu-1 loci 
have multiple alleles and each of these loci includes two 
genes related to x- and y-type subunits.54 The genes 
encoding LMW-GS are more complex and each Glu-3 
loci contain several genes and each gene has two or 
more alleles.55,56 Genomic studies revealed that Glu-3 
loci are linked to Gli-1 loci, and Gli-1 loci encode LMW- 
GS in addition to γ - and ω-gliadin genes.4 Accordingly, 
the C and D subunits of LMW-GS are very similar in 
sequence to α-/γ- and ω-gliadins, respectively.36 LMW- 
GS and HMW-GS contribute peptides that are immuno-
genic in CD patients who carry the less common HLA- 
DQ2.2 and DQ8 genotypes.57

Gluten Protein and the Pathogenesis of 
Various GRDs
Celiac Disease (CD)
Studies reported that CD has a prevalence of approxi-
mately 1–3% in the general population worldwide espe-
cially in Western societies.58,59 CD is a gluten-induced 
immune-mediated inflammatory disorder of the small 
intestine caused by an intolerance to dietary gluten. CD 
is limited to genetically predisposed individuals who carry 
HLA-DQ2.5, HLA-DQ8, HLA-DQ2.2 and/or rarely HLA- 
DQ7 haplotypes located on the short arm of chromosome 
6.60–64 The results of several Genome-wide association 
studies (GWAS), for example, most recently in 
a prospective study of 6010 children that carried HLA 
genotypes associated with increased risk of type-1 diabetes 
and CD, have also reported the role of non-HLA genes in 
CD presentation.65 Other immunologic and environmental 
factors are also involved in the development of CD.66 For 
instance, Caminero et al57 demonstrated that opportunistic 
bacterial pathogens (such as P. aeruginosa) in duodenal 

biopsies from active CD patients could increase mucosal 
injury caused by immunogenic gluten-derived peptides in 
a mouse model through protease production and protease- 
activated receptor-2 (PAR-2) signaling.57

In general, the most immunogenic wheat gluten pep-
tides in CD are derived from α-gliadins (Figure 2).47,67 

Some repetitive sequences include two or more overlap-
ping immunodominant epitopes that bind to HLA-DQ2.5, 
while others include single copies of epitopes that bind 
HLA-DQ8 or HLA-DQ2.2 and stimulate effector memory 
CD4+ T cells.68 According to standardized nomenclature, 
the most immunogenic fragment of α-gliadin for patients 
positive for HLA-DQ2.5 encompasses multiple copies of 
the overlapping DQ2.5-glia-α1a, DQ2.5-glia-α1b, and 
DQ2.5-glia-α2 epitopes.68,69 Wheat α-gliadin also includes 
the subdominant DQ2.5-glia-α3 epitope, DQ8-glia-α1, 
DQ2.2-glia-α1 and the DQ2.2-glia-α2 epitopes, which are 
relevant in patients who are positive for HLA-DQ8, and/or 
HLA-DQ2.2.40,68,70,71 Ozuna et al46 studied six distinct 
types of α-gliadins in diploid and polyploid wheats 
through next-generation sequencing and Sanger sequen-
cing. They found that α-gliadin sequences differed signifi-
cantly in their frequencies and in the existence and 
abundance of CD immunogenic peptides. Their findings 
may help reduce the risk of CD incidence by the breeding/ 
selection of wheat with low stimulatory properties.46 

Wheat ω-gliadin, however, includes two overlapping 
immunodominant epitopes, DQ2.5-glia-ω1 and 
DQ2.5-glia-ω2, that resemble DQ2.5-glia-α1a and 
DQ2.5-glia-α2, but stimulate a distinct population of 
CD4+ T cells and appear to be responsible for many cross- 
reactive CD4+ T cells activated by wheat, barley and 
rye.47,72

Gluten proteins are highly resistant to human digestive 
proteases (due to their high content of proline) and do not 
fully degrade during gastric and pancreatic digestion.34,69 

Two peptides that have attracted most attention and 
remain intact in the digestive process are the 33-mer 
(p55–87) and the 25-mer (p31–55) located in the α- 
gliadins encoded by the Gli-D2 locus on chromosome 
6D.73,74 Of these two peptides, the 33-mer is the most 
digestion-resistant peptide with high immunogenic proper-
ties (contains DQ2.5-glia-α1a, DQ2.5-glia-α1b, and 
DQ2.5-glia-α2 epitopes).75,76 During or after absorption 
of partially digested gliadin peptides into the lamina pro-
pria, specific glutamine residues of the 33-mer peptide are 
susceptible to pH-dependent transamidation (covalent 
cross-linking to free amines, for example, lysine residues 
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in other proteins) or direct deamidation to glutamate 
through the action of extracellular tissue transglutaminase 
(tTG) expressed in inflamed host tissues.77–79 

Transamidation abolishes the immunotoxicity of gluten 
epitopes,80 but direct deamidation enhances their affinity 
for HLA-DQ2.5 and is essential for their 
immunogenicity.80–82 tTG-affected peptides are efficiently 
presented to CD4+ T-cells by the HLA-DQ molecules 
implicated in CD susceptibility. This results in gluten- 
specific CD4+ T cell activation with the secretion of pro- 
inflammatory cytokines like interleukin-2 (IL-2), IL-21 
and interferon-gamma (IFNγ), antigen-non-specific acti-
vation of local cytotoxic CD8+ T cells,83,84 and enterocyte 
injury and apoptosis, which ultimately contribute to the 
characteristic mucosal lesions and local inflammation 
associated with active CD. Gluten-stimulated CD4+ 

T cells also provide help for gliadin and tTG-specific 
B cells, and support antibody production by specific 
plasma cells.84–87 Glutenin peptides are also implicated 
in T-cell responses.87 In contrast, the in vitro effects of the 
α-gliadin 25-mer peptide include induction of IL-15 pro-
duction from enterocytes and dendritic cells, and innate 
immune activation.88 IL-15 promotes induction of inflam-
matory Th1 cell responses and also activation of cytotoxic 
CD8+ IELs leads to the development of the intestinal 
lesions.89,90 The contribution of IL-15 to mucosal injury 
facilitated by induction of CD4+ T-cell immunity to gluten 
has been supported by a recently reported HLA-DQ8- 
expressing mouse model with overproduction of IL-15 in 
the gut epithelium and lamina propria, which develop 
gluten-dependent small intestinal villous atrophy mimick-
ing human CD.91

Figure 2 Gluten protein components and the role of its subgroups in GRDs pathogenesis. According to the results of studies α and γ-gliadins and glutenin are considered to 
be CD pathogenic responses eliciting factors. The α-gliadin fraction is also reported as DH immunological response triggering agent. Allergic reactivity to the α-/β-, γ- and ω- 
gliadin fractions and LMW-GS was observed in WA patients. Moreover, patients with NCGS revealed high levels of IgG antibodies against α-, γ- and ω-gliadin and glutenin. 
Abbreviations: HMW, high molecular weight; LMW, low molecular weight.
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Tye-din et al47 in their follow-up study on HLA-DQ2.5 
+ CD patients screened for T cell–stimulatory gluten pep-
tides in blood following a brief oral challenge with wheat, 
barley, and rye. They showed that α-gliadin 33-mer epi-
topes (DQ2-α-I and DQ2-α-II) are immunodominant only 
after the wheat challenge, while ω-gliadin/C-hordein– 
derived sequences encompassing DQ2-ω1/ω2 were the 
dominant T cell–stimulatory peptides in response to con-
sumption of any of these cereals. Hence, they considered 
ω-gliadin/C-hordein–derived peptides as common T cell– 
stimulatory peptides in HLA-DQ2.5–associated CD 
patients.47

Nutrient malabsorption results from mucosal injury 
marked by villous blunting, crypt hyperplasia, increased 
intraepithelial lymphocytes (IELs) infiltrate, and immune- 
mediated enteropathy along with.92 Gluten-induced sys-
temic inflammation in CD is characterized by the presence 
of intestinal and/or extra-intestinal manifestations or it can 
even be completely asymptomatic.59

Dermatitis herpetiformis (DH) is one of the extra- 
intestinal presentations of CD that is accompanied by the 
development of papulovesicular pruritic skin rash on the 
extensor aspects of the limbs, sacral region, and 
buttocks.59,93 As reported in previous studies, topical or 
intradermal use of gluten protein does not lead to DH 
formation and the incidence of this disorder is related to 
intestinal contact with gluten.93 In fact, anti-tTG antibo-
dies, made in response to gluten consumption, interact 
with the epidermal transglutaminase (ETG) enzyme and 
cause DH symptoms.59 Allardyce and Shearman94 in their 
study reported that cellular immune reactivity to the α- 
gliadin fraction was also observed in DH patients. 
Moreover, Huff et al95 reported high levels of alpha- 
gliadin-specific antibodies in patients with DH 
(Figure 2). Therefore, more studies are required to evalu-
ate the exact pathogenic fractions of gluten in DH.

Wheat Allergy (WA)
Wheat is one of the most common allergens and wheat 
allergy (WA) results from immunological adverse reac-
tions to wheat ingredients, including water-soluble (albu-
min and globulin) and insoluble (glutenin and gliadin) 
proteins.56,96–99 In fact, skin contact, inhalation or inges-
tion of wheat can lead to the occurrence of these allergic 
reactions.97 Wheat-dependent exercise-induced anaphy-
laxis (WDEIA), where symptoms result from the ingestion 
of wheat in combination with physical exercise, and 
baker’s asthma, that caused by inhalation of wheat flour, 

are classified as two commonly WA.97,100 With a higher 
rate of reports in pediatrics, the prevalence of this disorder 
is reported to be between 0.5% and 1% in the world.59,98

Scientific reports have considered wheat ω-5 gliadin 
(fast ω-gliadin, Tri a 19), encoded by the Gli-1 locus on 
chromosome 1B, as the major allergen part of gluten 
protein for various types of WA especially WDEIA 
(also known as ω5-gliadin allergy) (Figure 2).101,102 

Morita et al103 reported that fast ω-gliadin is the main 
allergen for Japanese WDEIA patients. Moreover, results 
of the study conducted by Palosuo et al104 showed that γ- 
70 and γ-35 secalins in rye and γ-3 hordein in barley that 
have structural homology and cross-reactivity with ω-5 
gliadin could bind to IgE antibodies and elicit symptoms 
in WDEIA patients. Since WDEIA diagnosis is signifi-
cantly delayed, Kennard et al105 recommended the use of 
ω-5 gliadin-specific IgE testing for patients with unex-
plained anaphylaxis.104 Moreover, according to 
Sandiford et al,106 α- and fast ω-gliadin are also asso-
ciated with baker’s asthma allergic reactions 
(Figure 2).105 Positive IgE responses to several other 
wheat grain proteins, such as α/β- (Tri a 21), γ-gliadins, 
low molecular weight (LMW) glutenin, and α-amylase 
/trypsin inhibitors (ATIs) are also reported (Figure 2).98 

For instance, Baar et al,107 using a molecular discovery 
approach, found that Tri a 36, which belongs to the 
LMW-GSs (GluB3-23), is a wheat food allergen with 
IgE-reactive sequences.56,107

Following contact with allergens, secretion of IL-25 or 
IL-33 from epithelial cells leads to T helper type 2 (Th2) 
cell response activation and subsequently IgE antibodies 
production by B-cells.108 This secreted IgE antibody 
bound to FceRI receptor on mast cells and basophils as 
well as to specific epitopes in wheat allergens resulting in 
the release of inflammatory chemical mediators such as 
histamine and platelet activator factor (PAF) (Figure 3).25 

As a result, allergic responses (such as itching, eczema, 
rhinitis, nausea) can be life-threatening and cause anaphy-
lactic shock in some cases.25

Non-Celiac Gluten Sensitivity (NCGS)
Non-celiac gluten sensitivity (NCGS) or gluten sensitivity, 
which remains ill-defined, is a condition resulting from 
reactions to gluten-containing grains without IgE- 
mediated or T-cell-mediated responses.59,109–111 Recent 
studies found that different non-gluten components of 
wheat flour such as ATIs, Fermentable Oligosaccharides, 
Disaccharides, Monosaccharides, and Polyols 
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(FODMAPs) causing irritable bowel syndrome might also 
contribute to NCGS.59,112

The precise pathogenesis of NCGS is still obscure; 
nevertheless, it has been reported that activation of the 
innate immune system could have a role in some patients 
with this condition.113 In this regard, a decrease in 
T helper cell numbers and a reduction in regulatory 
T cell clones expansion and their cytokines production 
have been reported in mucosal biopsy specimens of 
NCGS patients.114,115 Some early studies reported that 
HLA-DQ2 and/or -DQ8 genotypes could be over- 
expressed in NCGS, although these molecules are found 
in only around 50% of NCGS patients, which is not dis-
similar to the general population.56 NCGS is a widespread 
disorder with an estimated prevalence of 0.5% to 13%, 
which is more frequent in adult females.116

Given the lack of a definitive test to diagnose NCGS, 
which in some cases may be confused with CD or WA, 

several research studies focus on finding NCGS-specific 
serum biomarkers.117,118 Tye-Din et al119 in their study on 
CD and self-reported gluten sensitive (SR-GS) patients 
found that gluten challenge significantly increased IL-2, 
IL-8 and IL-10 serum levels in CD but not SR-GS patients 
(both groups had completely eliminated gluten from their 
diet before participating in the challenge). They concluded 
that cytokine assessment after acute gluten challenge could 
be used for distinguishing CD from SR-GS.119 Uhde et al-
120 also reported a significant increase in anti-gliadin IgG1 
and IgG3, and IgG2 and IgG4 subclasses in CD and 
NCGS patients, respectively. There was also a correlation 
between the IgG4 and IgG3 antibodies and serum concen-
tration of Fatty acid-binding protein 2 (FABP2), which is 
an intestinal cell damage marker. They proposed that these 
components might be additional biomarkers to differenti-
ate CD and NCGS.120 The only presented case report by 
Vojdani and Perlmutter of a patient with NCGS and 

Figure 3 IgE- mediated wheat allergy. As a result of contact with allergens, IL-25 or IL-33 are secreted from epithelial cells, cause Th2 cell response activation and 
subsequently IgE antibodies production by B-cells. Inflammatory chemical mediators are released as a result of IgE antibody binding to FceRI receptor on mast cells and 
basophils as well as to specific epitopes in wheat allergens, causing allergic reactions. 
Abbreviations: Ag, antigen; IgE, immunoglobulin E; IL, interleukin; Th2, T helper type 2.
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autoimmunity revealed high levels of IgG antibodies 
against α-gliadin 33 and 17 mer, γ- and ω-gliadin and 
glutenin (Figure 2).121

The chronic symptoms ascribed to NCGS are similar to 
those of untreated CD with a wide range of intestinal and 
extra-intestinal presentation as highlighted in Salerno 
expert criteria.4,117 In contrast, the double-blind sham- 
controlled gluten challenge that is low in FODMAPs 
does not generally induce measurable symptoms in 
patients self-reporting NCGS, whereas patients with trea-
ted CD typically experience acute upper gastrointestinal 
symptoms and show elevations in serum IL-2 within 2 
hours.122,123

Wheat Genome Editing
Currently removing gluten from the diet is the only 
remedy to improve the symptoms of people prone to 
GRDs.124 However, the addition of gluten to numerous 
food products and the high cost of gluten-free foodstuffs 
have made it difficult to strictly adherence to this 
diet.15,27,125 As a result, several genetic studies have 
focused on breeding wheat with low immunological prop-
erties and preserved baking quality through biotechnolo-
gical approaches. Numerous scientists believe that gene 
editing would be a definitive solution for GRDs; however, 
due to the variety of causal agents, it is not so easy to solve 
them all in this way126–128 Biotechnological approaches 
are used for precise and organized modifying of specific 
genomic sequences through their different functions such 
as gene replacement, targeted gene knock-out and knock- 
in, etc.129,130 Vasil et al131 were the first group to success-
fully produce transgenic wheat plants in 1992 through the 
Bar gene transferring by biolistic particle bombardment 
method. The Bar gene encodes phosphinothricin acetyl-
transferase (PAT) enzyme, which is the cause of herbicide 
tolerance of plants.131 RNA interference (RNAi) and 
CRISPR/Cas9 are the two recent biotechnology methods 
used in this regard.126

RNA interference (RNAi) is a post-transcriptional pro-
cess present in almost all eukaryotic organisms and reg-
ulates the expression of protein-coding genes in 
a sequence-specific manner, which is capable of engineer-
ing novel phenotypes.132,133 In fact, RNAi suppresses pro-
tein synthesis by using short double-stranded RNA 
(dsRNA) complementary to target mRNA and degrading 
that (silencing of the gene).134 It has been shown that this 
method is very efficient in regulating gene expression in 
numerous plant systems.135 Gil-Humanes et al136 used this 

method to produce breads with up to 97% lower gliadin 
content (near gliadin-free). The results of their study 
showed that these reduced-gliadin breads had lower immu-
notoxicity compared to wild types, while physically no 
difference was observed between them. Additionally, the 
removal of gliadin leads to an increase in the number of 
lysine amino acids (due to the increase in glutenin content 
which contains more lysine residues) that increases the 
nutritional value of these breads.136 Altenbach et al137 

suppressed the expression of ω-5 gliadins (as an important 
food allergen) in the US wheat cv Butte 86 using RNA 
interference technique. The results of their study showed 
that removing ω-5 gliadins from wheat did not affect flour 
functionality and had no effect on the expression of other 
grain proteins. Conversely, the removal of this part 
improved the dough properties and increased protein sta-
bility, indicates the negative role of ω-5 gliadins in flour 
quality.137 In comparison, Altenbach et al138 in their recent 
study used the same method to silence a subset of alpha- 
gliadin genes (containing CD epitopes) of wheat flour 
from the US spring wheat cultivar Butte 86. Analysing 
reactivities of IgG and IgA antibodies from patients with 
CD showed a significantly reduced immunoreactivity of 
the flour. However, their results showed a decrease in 
functional properties and dough strength in the transgenic 
lines. They proposed that the simultaneous removal of 
alpha and omega gliadins from wheat could be a more 
efficient approach in this regard.138 In a comprehensive 
study, Barro et al139 reported the effectiveness of seven 
RNAi containing plasmids with the ability to target α-, γ-, 
ω-gliadins, and LMW glutenin subunits in breeding non- 
toxic wheat variants without any CD epitopes.139 Targeted 
gene knockdown by RNAi is a fast, low-cost and easy-to- 
perform method, however, while effective, it provides only 
transitory inhibition of gene function and may also have 
unpredictable effects on target genes leads to limited use 
of this method.5,140

There are some editing genome tools based on the 
effect of site-specific DNA-binding domain and the use 
of engineered nucleases, that can identify and edit 
a particular DNA sequence, including zinc-finger 
nucleases (ZFNs) and transcription activator-like effector 
nucleases (TALENs).5 The clustered regularly inter-
spersed short palindromic repeats (CRISPR)/Cas system, 
especially CRISPR-associated protein 9 (CRISPR/Cas9), 
is a widely used prokaryotic nuclease-based target gene 
precise editing tool, which known as an effective alter-
native to ZFNs and TALENs.5,141,142 CRISPR/Cas9, 
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identified as the most popular genetic engineering tech-
nique, causes genome modifications by delivering to 
plant cells and expressing there.129,142,143 In this method, 
the single guide RNA (sgRNA) directs the caspase to the 
target DNA sites and helps breeding low immunogenic 
epitopes containing plants with greater specificity.144 The 
first successful use of CRISPR-Cas9 system was to 
knock out TaMLO gene (Mildew-resistance locus O) in 
wheat protoplasts which leads to improved disease resis-
tance that brings the importance of the CRISPR/Cas9 
system to promote important traits.145 Sánchez-León et -
al,146 using two single guide RNAs (sgAlpha-1 and 
sgAlpha-2) targeted coding sequence for α-gliadin 
genes, show that CRISPR/Cas9 technology could be 
used for providing wheat lines with reduced 
immunoreactivity.145 Jouanin et al147 in their pilot study 
reported the efficacy of CRISPR/Cas9, using six sgRNA 
sequences, in mutating α- and γ-gliadin gene copies and 
preventing them from triggering the human immune 
system.147

The Court of Justice of the European Union (CJEU) in 
July 2018 considered any crop with altered genetic mate-
rial caused by new plant breeding techniques (unnatural 
changes) as genetically modified organisms (GMOs), 
which are subjects within the scope of EU law and can 
be used. This judgment, although supported by some, has 
also provoked criticism, which led to the formation of the 
new European Commission that may result in the EU’s 
GMO legislation change.148

Conclusion
As lifelong adherence to a gluten-free diet remains 
a challenge for GRDs patients, it seems that increasing 
attention to the immunogenetic properties of gluten con-
stituents is an essential element in improving the condition 
of patients. In this regard, technologies have been designed 
that can reduce the immunogenicity properties of gluten by 
promising a genomic editing approach. Although these 
techniques mostly work precisely on the target gene, it is 
important to note that changes in the expression of one 
gene how affect the expression of other genes? It can be 
said that one of the reasons for not including these 
manipulated products in patients’ diets is the lack of 
a clear answer to this question. Therefore, it is suggested 
that future studies in this regard consider all genome- 
editing results (either genetic or metabolic changes) to 
ensure the created product compatibility with food safety 
conditions.
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