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Metformin as an archetype immuno-metabolic adjuvant for cancer immunotherapy
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ABSTRACT
The development of a single immuno-metabolic adjuvant capable of modulating, in the appro-
priate direction and intensity, the complex antagonistic and symbiotic interplays between tumor
cells, immune cells, and the gut microbiota may appear pharmacologically implausible. Metformin
might help solve this conundrum and beneficially impact the state of cancer-immune system
interactions.
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One of the greatest obstacles to making cancer immunother-
apy more broadly effective could be rooted in a basic concept
of cell biology, namely metabolism. Immunometabolism,
which is a relatively new field in cancer immunotherapy, is
gaining momentum through the realization that faulty meta-
bolic remodeling underlies impaired antitumor immune
responses, and also that controlling metabolism can enhance
antitumor immunity and synergize with existing checkpoint
inhibitors.1–5 There is no doubt that harnessing the highly
complex, antagonistic and symbiotic metabolite-mediated
communication between tumor cells and the range of
immune cell compartments residing in the tumor microenvir-
onment (TME) has such potential. The question now is how
to resolve the apparent conundrum of simultaneously orches-
trating the precise direction and intensity of multiple meta-
bolic checkpoints not only in T-cells, immune suppressor cells
(tumor-associated macrophages [TAM], myeloid-derived sup-
pressor cells [MDSC], regulatory T-[Treg]-cells), and cancer
cells within the TME, but also in the gut microbiota, and its
consequent systemic effects on host metabolism.

Advances in understanding the communication between can-
cer cells and TME-associated immune cells have highlighted the
importance of specific metabolic pathways and nutrient-sensing
mechanisms to regulate anti-cancer immune responses and opti-
mize the effectiveness of immunotherapy.6–10 A great deal is
known about how the phenotypic characteristics of T-cells for
cytotoxicity against tumor cells requires metabolic specialization,
and how specific metabolic activities and tumor-driven shifts in
the abundance of specific metabolites lead to local immunosup-
pression and reduce the metabolic fitness of tumor-infiltrating
T-cells (TILs). However, while targeting the dynamic interacting
and competingmetabolic pathways in the TME holds promise for
improving immunotherapies, one should acknowledge that the
similar metabolic needs between cancer cells and immune cells
might abolish the expected synergistic effects of such

combinations. Much is expected from tracking the metabolic
pathways that are essential to cancer cells and immune cells and,
in particular, those that are driven by tumor cells to impose
metabolic stress on TILs and result in local immunosuppression.
Nevertheless, it might be argued that it is pharmacologically
implausible to develop a single drug capable of modulating, in
the appropriate direction and intensity, the metabolic checkpoints
responsible not only for the antagonistic (tumor cells versus effec-
tor/cytotoxic T-cells) and symbiotic (tumor cells, TAM, MDSC,
and Treg cells) metabolic interplays of the TME, but also of
improving the anticancer profile of gut microbiota to elevate the
response rate of cancer immunotherapy.11,12 Although apparently
unattainable, the challenge of enhancing cytotoxic T-cell immune
surveillance, suppressing the immunosuppressive nature of TME,
impeding the expression of immune checkpoints in cancer cells,
and shifting the gut microbiota composition towards specific
commensal species with a favorable response to cancer immu-
notherapy, could be achieved with a small metabolic molecule
such as the anti-diabetic biguanide metformin (Figure 1(a)). We
here present the first comprehensive overview of how metformin
might have the capacity to beneficially impact all the cancer-
immune system interactions in individual patients (Figure 1(b)).

Metformin enhances the anti-tumor functionality of
T-cells

Ten years ago, metformin was shown to target the metabolic
switch driving the expansion of CD8+ memory T-cells.30

Metformin appeared to operate in a rapamycin-like manner
to facilitate the shift from a glucose-dependent anabolic state
(effector T-cell) to a catabolic state of metabolism (memory
T-cell) by blocking mTOR signaling downstream of AMPK
and restoring mitochondrial fatty acid oxidation.31,32 This
ability to directly enhance the number and functionality of
memory T-cells proved an effective strategy for improving the
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functional qualities of vaccine- or infection-induced T-cells,
and further protected mice from challenge by tumor cells
expressing ovalbumin.30 However, because the cancer-
protective effect took place after metformin withdrawal, it
should be viewed as a vaccination outcome, which is different
from TIL-mediated regression of established solid tumors.

A chronic, repeated T-cell receptor presentation from CD8+

TILs specific for tumor antigens to cancer cells leads to
a gradual loss in their ability to secrete multiple cytokines
(e.g., IL-2, TNFα, IFNγ), and they ultimately undergo apoptotic
elimination in a process known as immune exhaustion.33 This
worsening of immune function is accompanied by phenotypic
changes in CD8+ T-cells, including the expression of exhaus-
tion markers such as the immune checkpoint molecule PD-1.
Therapeutic management of functional T-cell exhaustion
within tumor tissues is largely based on the administration of

blocking antibodies against PD-1 (pembrolizumab and nivolu-
mab) or its ligand PD-L1 (atezolizumab, durvalamab, and
avelumab);34–36 however, the possibility exists of metabolically
counteracting apoptosis induction and diminished cytokine
production in CD8+ TILs to block immune exhaustion within
tumor tissues. Interestingly, metformin has been shown to
protect PD1+ CD8+ TILs from apoptosis while restoring the
production of multiple cytokines via their conversion from
a central memory (TCM) to an effector, memory T-cell
(TEM) phenotype fully active against tumors.37 This direct
effect of metformin on CD8+ T-cells, which occurs even at
physiologically relevant low concentrations and markedly alters
their multifunctionality following migration into the tumor,
appears to be different to that expected from direct mTOR
inhibitors. Accordingly, whereas rapamycin has been shown
to promote the generation of memory T-cells by increasing

Figure 1. Metformin: A multi-faceted immuno-metabolic adjuvant for cancer immunotherapy. (a). Evidences. The anti-diabetic agent metformin might serve as
an archetype immuno-metabolic adjuvant capable of simultaneously regulating, in the appropriate direction and intensity, antitumor immunity-related metabolic
checkpoints not only in T-cells, cancer cells and associated immune suppressor cells of the TME, but also in the gut microbiota and its systemic effects on host
metabolism. The capacity to improve the metabolic competence of T-cell immune surveillance, suppress the metabolic traits of immunosuppressive cell subsets in
the TME, prevent both the constitutive and the inflammation (IFNγ)-inducible expression of immune checkpoint receptors in cancer cells, and shift the gut microbiota
composition towards specific commensal microbes might optimize the effectiveness of cancer immunotherapy. Further studies are needed to determine the effects
of metformin on tumor antigen cross-presentation by dendritic cells and tumor cell lysis by natural killer cells. (b). Mechanisms. As a consequence of the metformin-
mediated inhibition of mitochondrial electron transfer, metformin is able to activate a variety of AMPK-dependent and -independent signaling pathways through
which it facilitates the inhibition of mTOR, inhibits the inflammatory pathway, and lastly disturbs inflammation, cellular survival, stress defense, protein synthesis,
autophagy, and epigenetic reprogramming .13–20 Downstream of these major biological outcomes, metformin might have the capacity to impact all the cancer-
immune system interactions constituting the so-called “cancer immunogram”.21 Metformin might lead to systemically decreased levels of pro-inflammatory soluble
inhibitors (e.g., serum levels of C-reactive protein and IL-622–24), which are known to drive tumor-associated inflammation, impair T cell-mediated tumor control, and
associate with poor outcomes in response to ICIs (1). Metformin might increase tumor sensitivity to immune effectors by augmenting the levels of major
histocompatibility complex (MHC) class I antigens25 (2), which might impact also tumor foreignness by helping T-cells to recognize neoantigens (3). Metformin
might alter the general performance of immune system via modification of the microbiome26 (4), specifically by changing microbial folate and serine/methionine
metabolism.27–29 Metformin might reverse an inhibitory tumor metabolism by remodeling the hypoxic TME via reduction of intratumoral hypoxia (5), a key driver of
poor outcomes upon ICIs. Metformin might sustain or restore the infiltration of tumor-reactive T-cells into the tumor (6) by preventing the occurrence of
dysfunctional states characterized by impaired activity and proliferative activity, increase apoptotic rate, and reduced production of effector cytokines (i.e., T-cell
exhaustion). Metformin might alter the expression profile of immune checkpoints (7) such as PD-L1 in the tumor compartment [37, Figure 2], thus suggesting that
a combination of metformin-CTLA-4 blockade might have the potential to increase the efficacy of cancer immunotherapy.
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the TCM population, which is known to migrate between
lymphoid organs, metformin preferentially increases the TEM
population, which circulates principally in the blood, spleen,
and peripheral tissues.37,38

The ability of metformin to promote anti-tumor effects by
rescuing exhausted CD8+ TILs in the TME of highly immuno-
genic tumors, including leukemia, melanoma, renal cell carci-
noma, non–small-cell lung carcinoma, intestinal carcinoma,
and breast cancer,37 has been confirmed and extended by the
observation that it significantly augments the ability of CD8+

effector memory T-cells to mediate anti-metastatic activity in
melanoma models.39 Such a promotion of a strong cancer-
protective immune response was accompanied by the additional
induction of local and systemic cytokine responses including
production of IL-10 by metformin-expanded CD4+ regulatory
T-cells, a key mechanism to enhance effector and memory
CD8+ T-cell functions.40,41 The supra-additive capacity of met-
formin to prevent melanoma metastases to the lung when used
with other clinically relevant anti-metabolic drugs, such as
rapamycin and the dipeptidyl peptidase 4 inhibitor
sitagliptin,39 further bolsters the clinical value of metformin
against different facets of T-cell immunometabolism.

Metformin neutralizes immune-inhibitory cell
populations residing in the tumor microenvironment

Management of the inevitable T-cell exhaustion within the
TME should be accompanied by efforts to neutralize the
immune-inhibitory cell populations residing in the TME,
such as M2-polarized TAMs, MDCSs, and Treg cells, for
achieving efficient cancer immunotherapy.

The glucose-deprived, lactic acid-enriched TME not only
impairs T-cell functionality but also polarizes TAMs to an
alternatively activated M2 (anti-inflammatory) phenotype,
which enhances tumor-associated angiogenesis, promotes
tumor migration and invasion, and suppresses anti-tumor
immune responses. Metformin has been shown to prevent
cancer metastasis by inhibiting the pro-inflammatory polar-
ization of tolerogenic M2-TAMs via AMPK activation.42 The
ability of metformin to directly suppress the M2-TAM-driven
catabolism of tryptophan to kynurenine – a characteristic
immunosuppressive metabolite of the TME that impedes
T-cell activation and promotes the development of Treg

cells – has not been explored. However, successful metformin
treatment of insulin resistance leads to a normalization of the
tryptophan-to-kynurenine conversion,43,44 making it mechan-
istically plausible that metformin decreases the contribution
of the kynurenine metabolic pathway in M2-TAMs.
Moreover, the immunological ability of metformin to sup-
press the growth of some tumors such as osteosarcoma is
accompanied by a shift from an M2- to M1-like (inflamma-
tory) phenotype of TAMs involving changes in lipid
metabolism.45

Metformin can decrease the number of neutrophils and
polymorphonuclear MDSCs (PMN-MDCSs) both in the
spleen and in tumors.39,45 However, its ability to metabolically
reprogram MDCSs to curtail oxidative phosphorylation,
decrease glucose uptake, and reduce lipid incorporation is
restricted to those cells residing in the TME, in turn pushing

it to a metabolic state capable of driving tumor growth inhibi-
tion independently of metformin’s affects on T-cells.45 The
ability of metformin to generate sustained antitumor immu-
nity in the TME might involve also an attenuation of tumor-
infiltrating CD4+CD25+ Treg cells.46 The negative impact of
metformin on Treg cells involved the down-regulation of the
immune checkpoint molecule CTLA-4, which not only acts
on conventional T-cells but also represents a major mechan-
ism of Treg cell function directed by the Treg transcription
factor Foxp3.47,48 Accordingly, metformin appears to impede
the differentiation of naïve CD4+ T-cells to inducible Treg cells
by reducing the expression of Foxp3 protein caused by mTOR
activation.46 Beyond impeding Treg cell generation, metformin
drives the metabolic reprogramming of Treg cells involving
enhanced glycolysis, as evidenced by the increased expression
of Glut1 and a decrease in mitochondrial-potential and ROS
production.46

Metformin down-regulates PD-L1 in cancer cells

Metabolic changes in cancer cells are closely intertwined with
aberrations in oncogenic and tumor-suppressive pathways
(e.g., PI3K/PTEN/AKT, MYC, STAT3) that contribute to
PD-L1 expression.49–51 Dysregulated activation of immune
checkpoints might therefore represent a general mechanism
of metabolism-driven tumor immune-tolerance. Accordingly,
oncogenic activation of the archetypal PI3K-AKT-mTOR
metabolic pathway, which coordinates the uptake and utiliza-
tion of multiple nutrients including glucose, glutamine,
nucleotides, and lipids, promotes immune escape by driving
PD-L1 overexpression in tumor cells.52 Not surprisingly,
treatment of cancer cells with metformin was shown to inhibit
constitutive PD-L1 expression and protein accumulation.53

The AMPK-sensed metabolic crisis imposed by metformin
reduced the stability and membrane localization of constitu-
tively expressed PD-L1 by inducing its endoplasmic reticulum
(ER)-associated protein degradation (ERAD) in cancer cells.54

In response to metformin, the activated form of AMPK
directly phosphorylates PD-L1 in a manner promoting its
abnormal glycosylation, resulting in ER accumulation and
ERAD, which contributes to an enhanced cytotoxic T-cell
activity against cancer cells54 (Figure 2(a)). Concomitantly
with AMPK activation, metformin-treated breast cancer
tumor tissues exhibit reduced PD-L1 levels. In our hands,
stimulating PD-L1 membrane sorting to ERAD via indirect
or direct activation of AMPK with metformin or 5-aminoi-
midazole-4-carboxamide, respectively, sufficed to significantly
increase the cytolytic activity of T-cells against highly aggres-
sive basal-like breast carcinoma cells (Figure 2(b)).

Tumors can express immune checkpoints such as PD-L1
either constitutively, which does not depend on the presence
of tumor-infiltrating lymphocytes, or through a more com-
mon inducible mechanism in response to inflammatory cyto-
kines, particularly to members of the interferon family.
Cytokine-driven expression of PD-L1, which can be detected
as patchy pattern of PD-L1 expression in T-cell-enriched
tumor areas, is indicative of an ongoing immune response
in the TME. We recently took advantage of the observation
that human haploid HAP1 cells express high levels of PD-L1
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on the cell surface in response to interferon-γ (IFNγ)
treatment60 to evaluate the impact of metformin on IFNγ-
induced PD-L1 expression. In HAP1 cells, pre-exposure to
and concurrent metformin prevented IFNγ-induced PD-L1
expression to a large extent (Figure 2(b)). Because the expres-
sion of PD-L1 affects T-cell responsiveness in a quantitative
manner, with higher levels of PD-L1 expression leading to an
increased impairment of T-cell survival/activity,62,63 the iden-
tification of metformin as a new regulator of PD-L1 expres-
sion provides a rationale to enhance the effectiveness of
currently existing immune checkpoint blocking therapies.

Metformin influences the gut microbiota
composition

The gut microbiota has been proven to participate in immune
surveillance, suppressing malignant transformation,64–66 and
specific commensal bacteria synergize with cancer treatments
including radiotherapy, chemotherapy, and surgery.67,68 It is
now emerging that shits in the gut microbiota/microbiome
composition can positively or negatively regulate the efficacy
of immune checkpoint inhibitors.11,69–73 For instance, an
increased abundance of Akkermansia muciniphila in the gut

microbiota of advanced cancer patients improves antitumor
immune CD8+ T-cell infiltration and activity, and increases
the efficacy of anti-PD1 therapy. Likewise Faecalibacterium,
Bifidobacterium, and short-chain fatty acid (SCFA)-producing
bacteria, which are associated with anti-inflammatory
responses aimed to prevent overactivation of the immune
response, positively relate to higher response rates and better
clinical outcomes in response to anti-CTLA-4 therapy.

The beneficial effects of metformin on host metabolism
are, at least in part, microbially mediated and are associated
with inflammatory immune responses.74–80 Metformin treat-
ment of mice on high-fat diet or of patients with diabetes has
been shown to shift the microbiota composition to an
increased relative abundance of A. muciniphila, a mucolytic
bacterium.77–79 Because cancer patients with augmented
memory T-cells targeting the gut colonization of
A. muciniphila are prone to have a longer clinical benefit
from PD-1-based immunotherapy, metformin’s ability to
strengthen the intestinal mucosal barrier via enrichment of
A. muciniphila and associated improvement in mucin-
producing goblet cells might promote a salutatory bacteria-
specific synergetic immune response in combination with
immune checkpoint inhibitors. Also, modulation of the gut

Figure 2. Metformin targets PD-L1 in cancer cells. (a). The AMPK-sensed metabolic crisis imposed by metformin might suffice to promote anti-tumor immunity by
reducing the stability and membrane localization of PD-L1. Metformin-induced activation of AMPK promotes PD-L1 phosphorylation and abnormal PD-L1
glycosylation, lastly resulting in ER accumulation and ER-associated PD-L1 protein degradation (ERAD).54,55 (b). Top. Figure exemplifies both the ability of metformin
to promote PD-L1 degradation in basal-like (JIMT-1) breast cancer cells exhibiting constitutive overexpression of PD-L156 and how blocking the inhibitory signal by
PD-L1 by the AMPK agonistic behavior of metformin (5 mmol/L) enhances cytolytic T cell-mediated tumor cell death as measured by an impedance-based approach
(xCELLigence system).57,58 Shown are the mean ± SD, n = 2 in triplicate (* p < .05); [AICAR, 0.5 mmol/L]. Bottom. Figure exemplifies the ability of metformin to
prevent the inducible expression of PD-L1 in interferon gamma (IFNγ)-exposed cancer cells. IFNγ plays a pivotal role in PD-L1 expression in cancer cells and the
consequent immune escape by the tumor cells. Tumor cells detect the presence of CD8+ T cells via the high concentration of IFNγ secreted from T-cells. IFNγ secreted
from CD8+ T cells induced PD-L1 expression on the surface of tumor cells, which become protected from an immune attack by tumor-specific CTLs.59 IFNγ-treated
haploid HAP1 cells express high levels of cell surface PD-L1.60 However, cell surface PD-L1 expression is notably reduced in the presence of IFN-γ (100 nmol/L) pre-
and co-stimulation following exposure to metformin (5 mmol/L), with no effect on PD-L1 mRNA expression.61 Shown are representative PD-L1 expression histograms
analyzed by flow cytometry and PD-L1 mRNA levels analyzed by qRT-PCR (n = 2 in triplicate).

e1633235-4 S. VERDURA ET AL.



microbiota by metformin results in a higher relative abun-
dance of SCFA (butyrate, propionate, acetate)-producing bac-
teria including Bifidobacterium, associated with inflammatory
immune responses. Because both A. muciniphila and gut
microbiota-derived SCFAs such as butyrate and propionate
attenuate tissue inflammation by promoting Treg cell differ-
entiation, and augmenting the size of the Treg cell pool by
elevating histone H3 acetylation in the Foxp3 promoter
region,81,82 it might be argued that metformin-driven anti-
inflammatory bacteria and metabolites could induce Treg cell
differentiation and proliferation, resulting in higher levels of
CTLA-4 and increased sensitivity to CTLA-4 blockade.
Further studies are necessary to elucidate whether metformin
can promote AMPK/mTOR-related prevention of inducible
Treg cells accompanied by elevation of CD4+ TCMs in the
tumor bed while simultaneously promoting SCFA-driven sup-
pression of inflammation via augmentation of Treg cells in gut,
which is related to colitis incidence and the potent efficacy of
CTLA-4 inhibitors.73 Given that changes in host metabolism
and microbiota can occur in tandem, the fact that the ther-
apeutic effects of metformin in cancer patients are accompa-
nied by significant elevations in circulating butyrate83 might
provide support for the ability of metformin to impact gut
microbial diversity and composition to modify the response to
immunotherapy.

Clinical efficacy and ongoing trials of metformin
combined with immune-checkpoint inhibitors

The ability of metformin to circumvent the tumor-driven meta-
bolic barrier to antitumor immunotherapy by normalizing the
hypoxic TME results in a significantly improved intratumoral
T-cell function and tumor clearance in pre-clinical models of
highly aggressive tumors.84 Such translational potential of met-
formin to convert immunotherapy-resistant patients into those
showing clinical benefit has been supported by the discovery that
adjuvant metformin plus anti-PD-1 treatment results in durable
antitumor responses by preventing the presentation of PD-1+/
CD8+ T-cell infiltrates after drug withdrawal.85 A retrospective
cohort study including patients diagnosedwithmetastatic malig-
nantmelanoma and treated with anti-PD-1 only or anti-CTLA4/
anti-PD-1 combination therapies, with or without metformin,
revealed favorable treatment-related outcomes in terms of objec-
tive response rate, disease control rate, overall survival, and
progression-free survival in patients who have received metfor-
min in combination with immune-checkpoint inhibitors, albeit
without reaching statistical significance likely due to the small
sample size.86 An analysis of the immunomodulatory effects of
metformin in a clinical trial of head and neck squamous cell
carcinoma revealed its ability to increase both CD8+ effector
T-cells and FoxP3+ Treg cell infiltrates in the TME.87

A retrospective descriptive analysis carried out in the rando-
mized phase III OAK trial for treatment of advanced or meta-
static previously-treated non-small cell lung cancer revealed an
encouraging improvement of overall response rate in patients
receiving concomitant metformin treatment with the anti-PD
-L1 antibody atezolizumab.88 Not surprisingly, large prospective
clinical trials are currently underway to study the synergistic
effect of metformin in combination with immune-checkpoint

inhibitors before its recommendation as routine additive to
cancer immunotherapy.

Based on the pre-clinical capacity of metformin to induce
substantial tumor regression and augment the numbers of
tumor-infiltrating CD8+ T-cells when combined with the
anti-PD-1 antibody nivolumab in mouse models, an inves-
tigator-initiated open-label phase-Ib clinical trial has been
planned in Japan to investigate the safety, efficacy, and
pharmacokinetics of metformin-nivolumab combination
treatment.89 Similarly, the anti-tumor efficacy as well as
the safety and tolerability profile of metformin-nivolumab
combination in patients with non–small-cell lung cancer
with and without prior exposure to PD-1/PD-L1 inhibitors
is currently being evaluated in the Northwestern University-
sponsored NCT03048500 clinical trial (https://clinicaltrials.
gov/ct2/show/study/NCT03048500). A pilot phase I trial is
investigating the combined effect of metformin and the
anti-PD-L1 antibody durvalamab on the TME (i.e., T-cell
polarization and TAM M1/M2 ratios) of patients with head
and neck squamous cell carcinoma (https://clinicaltrials.gov/
ct2/show/NCT03618654). An investigator-initiated phase
I clinical trial is evaluating the effectiveness and safety of
the combination of the anti-PD-1 antibody pembrolizumab
with metformin in advanced-stage melanoma (https://clini
caltrials.gov/ct2/show/NCT03311308). A phase II trial is
evaluating the effect of combining metformin with nivolu-
mab on the overall response rate of patients with micro-
satellite stable stage IV colorectal cancer that has not
responded to previous treatment (https://clinicaltrials.gov/
ct2/show/NCT03800602). Although data from the FDA
adverse event reporting system have suggested a higher
risk of inflammatory bowel disease in lung cancer patients
during the combined nivolumab-metformin therapy,90 we
still lack clinical evidence of the impact of metformin on the
risk of immune-related adverse events, which are associated
with anti-PD-1/PD-L1 treatment efficacy91 and may include
autoimmune diabetes and diabetic ketoacidosis.92–95

Metformin as an archetype immuno-metabolic
adjuvant for cancer immunotherapy: directions and
cautions

Metabolic alterations in tumors are emerging as crucial factors
affecting the abundance of immune-checkpoints in tumor
cells96,97 and, accordingly, the intercrossing of immune evasion
and metabolic reprogramming cancer hallmarks might guide
the development of new strategies capable of (re)installing
immunosurveillance and converting cold tumor cells with pri-
mary and acquired resistance to immunotherapy into hot cells,
susceptible to immune checkpoint strategies. Here, we deli-
neated the ability of the anti-diabetic biguanide metformin to
operate as an archetype immuno-metabolic adjuvant capable of
performing several immuno-metabolic tasks simultaneously,
given its capacity to improve the metabolic competence of
T-cell immune surveillance, suppress the metabolic traits driv-
ing TME immunosuppressive cell compartments, prevent both
the constitutive and the inflammation-inducible expression of
immune checkpoint receptors in cancer cells, and shift the gut
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microbiota composition to specific commensal microbes asso-
ciated with a favorable response to cancer immunotherapy.

During the last decade, an ever-growing number of epidemio-
logical and preclinical studies have suggested that metformin may
reduce overall cancer risk and mortality.98–102 Accordingly, many
randomized clinical studies, ranging from proof-of-principle stu-
dies in the prevention setting to phase II/III trials in the adjuvant
and metastatic settings, have been planned and/or currently
underway (as of June 2019, the clinicaltrials.gov database lists
more than 300) to test the causal nature of the suggested correla-
tion betweenmetformin use and clinical benefit in cancer patients.
We should acknowledge, however, that recently reported first-
generation clinical trials using metformin in combination with
systemic therapy have failed to significant improve outcomes in
cancer patients.103–105 Therefore, before we can recommend the
use of metformin as a bona fide immuno-metabolic adjuvant in
a combination with immune checkpoint inhibitors (ICIs) regard-
less of the metabolic status of the patient, more patient-level data
collection (retrospective and especially prospective) are urgently
needed. Indeed, the clinical relevance of the immunomodulatory
functions of metformin, which might be synergistic and could
overcome resistance to single agent anti-PD1-/PD-L1 and anti-
CTLA-4 inhibitors,106 should be reweighted when considering the
apparently paradoxical association between obesity and increased
anti-tumor efficacy and survival after PD-1/PD-L1
blockade.107,108 First, obesity and other metabolic disorders (e.g.,
diabetes) heighten PD1-driven T-cell dysfunction and tumor
progression. Second, these very same immune-tumorigenic
loops amplify the clinical benefits that derive from the normal-
ization of T-cell metabolism imposed by ICIs, which impede the
so-called immune metabolic anergy that take place upon the
interaction of immune checkpoints such as the PD-L1 ligand in
tumor cells with its cognate receptor PD-1 on T-cells and involves
several metabolic pathways and mitochondrial fitness in these
cells.109,110 Third, the anti-cancer effects of metformin might
vary with host characteristics such as overweight or obesity with
metabolic disturbances.111,112 Therefore, although ongoing clin-
ical trials using metformin in combination with ICIs might begin
to validate the role of metformin or novel biguanides as immuno-
metabolic adjuvants capable of broadening the spectra of cancer
patients and indications that could benefit from immunotherapy,
a careful consideration to the metabolic characteristics of the
study population should be given as it might significantly modify
the capacity of metformin to impact the tumor and host-specific
parameters characterizing the cancer-immune interaction and
required for successful immunotherapy treatment.21,113 Indeed,
enriching future metformin-based clinical trials with the inclusion
of “cancer immunograms”114–117 (Figure 1(b)), could help identi-
fying the population of metformin-responders by prospectively
capturing those aspects of the cancer-immune interaction that
characterize the dynamic process of antitumor immunity in an
individual patient, thereby realizing the potential of precision
immunotherapy for more cancer patients.
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