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Interventional cardiology procedure is an important type of minimally invasive surgery that deals with the catheter-based
treatment of cardiovascular diseases, such as coronary artery diseases, strokes, peripheral arterial diseases, and aortic diseases.
Ultrasound imaging, also called echocardiography, is a typical imaging tool that monitors catheter puncturing. Localising a
medical device accurately during cardiac interventions can help improve the procedure’s safety and reliability under ultrasound
imaging. However, external device tracking and image-based tracking methods can only provide a partial solution. ,us, we
proposed a hybrid framework, with the combination of both methods to localise the catheter tip target in an automatic way. ,e
external device used was an electromagnetic tracking system fromNorth Digital Inc (NDI), and the ultrasound image analysis was
based on UNet, a deep learning network for semantic segmentation. From the external method, the tip’s location was determined
precisely, and the deep learning platform segmented the exact catheter tip automatically.,is novel hybrid localisation framework
combines the advantages of external electromagnetic (EM) tracking and the deep learning-based image method, which offers a
new solution to identify the moving medical device in low-resolution ultrasound images.

1. Introduction

A cardiac interventional procedure, also known as an
interventional cardiology procedure, is an important type of
minimally invasive surgery that deals with catheter-based
treatment of cardiovascular diseases, such as coronary artery
diseases, strokes, peripheral arterial diseases, and aortic
diseases [1]. Generally, it can be classified into the following
categories: cardiac catheterization, percutaneous coronary
intervention, stents, embolic protection, percutaneous valve
repair, balloon valvuloplasty, and atherectomy. A catheter is
the medical device used in most cardiac interventions that
can be inserted into the body, which functionally allows for
drainage, administration of fluids or gases, ablation, and
other tasks [2]. ,ere are various types of catheters aiming at
different medical applications, for example, the ablation

catheter is specifically used for tissue ablation with the
generated heat on the electrodes, the pacemaker catheter is
to help the heart pump, and a central venous catheter is a
conduit to give drugs positioned either in a vein near the
heart or inside the atrium. As an example of the procedure, a
right-heart catheterization to treat atrial fibrillation requires
the catheter to be inserted through the femoral vein and the
superior vena cava to the right ventricle. ,e catheter is
placed at the exact site inside the chamber, where the tips
emit electrical signals that stimulate abnormal heart rhythm,
followed by the transmission of a mild and painless radi-
ofrequency energy to the pathway that destroys the targeted
lesion area.

Image guidance during cardiac intervention is a key
concept to guarantee patient safety while the direct line of
sight is inhibited. X-ray imaging, traditionally, dominates
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the guidance during cardiovascular interventional proce-
dures, but it provides limited views when the interventions
involve the myocardium, pericardium, and cardiac valves.
,erefore, cardiac ultrasound (echocardiography) was in-
troduced to navigate these challenges. Compared to cardiac
X-ray imaging, echocardiography is especially useful for
transcatheter puncture, percutaneous mitral valve proce-
dures, and left atrial appendage closure. Echocardiography
fulfils the requirements by providing a real-time imaging
solution, with both device and cardiac inner structure
demonstration simultaneously [3]. ,ere are three types of
echocardiography that can be used during the intervention
transthoracic echocardiography (TTE), intracardiac echo-
cardiography (ICE), and transoesophageal echocardiogra-
phy (TEE/TOE). TTE is widely available and portable. It is a
noninvasive imaging procedure [4]. However, it possesses
limited ability to visualise the back of the heart and is dif-
ficult to use during interventional procedures. ICE has also
demonstrated great potential for in vivo medical device
monitoring, where a thin probe is inserted inside a patient,
but this phased array probe is expensive and can only be used
once. Additionally, ICE offers no standard views [5]. As a
trade-off between the image quality and imaging cost ob-
tained through echocardiography, TOE imaging is com-
monly chosen during catheter-based intervention. Prior to
imaging, the patient lies in the left lateral decubitus position
and swallows the probe following the instruction during
probe insertion. Mild to moderate sedation is induced in the
patient to ease discomfort and to decrease the gag reflex by
providing medications, such as midazolam. ,is makes the
ultrasound probe pass easily into the oesophagus.

Currently, 2-D multiplane imaging is the most widely
used mode of TOE, providing 20 standard transoesophageal
echocardiographic views that can facilitate and provide
consistency in training, reporting, archiving, and quality
assurance (as published by the American Society of Echo-
cardiography (ASE) and the Society of Cardiovascular
Anaesthesiologists (SCA)) [6]. In clinical practice, before
localising and tracking the device from echocardiography, a
specific standard view should be determined first. For in-
stance, to view the general four chambers, the probe is
positioned at the midoesophagus with a zero-degree rota-
tion. It is then placed at the same position with a 40 degrees
rotation. ,e aortic valve short-axis view can be obtained
when the probe goes deeper into the stomach. ,e right
ventricle and left ventricle views can be obtained at the same
time from the transgastric apical short-axis view.

To ensure that the catheter tip is accurately localised
during a safe interventional procedure when obtaining TOE
imaging views, a reliable tracking solution is required.
Currently, solutions, in general, can be categorized into two
classes: the external tracking system and the image-based
method. ,e external tracking system needs to utilise an
extra device to determine the catheter tip location; for ex-
ample, the Bard Access product that employs the tip con-
firmation system (TCS) displays different electrocardiogram
(ECG) signals, corresponding to different catheter locations
[7]. However, surgeons require additional time and
knowledge to analyse the external device, and occasionally,

these external devices are largely affected by clinical envi-
ronments. In comparison with external tracking methods,
an image-based method is more distinct and easier to apply.
Consequently, in recent years, the image-based method has
attracted a lot of research attention. Previously, many image-
based catheter tracking algorithms were performed on X-ray
datasets instead of echocardiography datasets because X-ray
images, electrodes, or catheter tips possess distinct char-
acteristic features that can be used for tracking and detec-
tion. At the same time, these features were vague in an
ultrasound, which led to difficulties in localisation using only
the image-based method. ,e classic image-based methods
could only be applied to a small number of images. ,e
methods utilised hand-crafted features. On the contrary,
with deep learning, image tasks of greater difficulty can be
achieved by end-to-end convolutional neural networks
(CNN) [8]. Recently, the use of deep learning has been
increasing rapidly in the medical imaging field, including
computer-aided diagnosis (CAD), radiomics, and medical
image analysis [9].

However, the previous external tracking and image-
based methods were two distinct localisation solutions to
determine the catheter tip and no combination of these two
methods was proposed in previous research studies. Driven
by the motivation of assisting cardiologists and sonogra-
phers to track the catheter tip during the intervention in a
radiation-free and accurate way, this paper proposes a hy-
brid localisation framework on echocardiography images,
with a combination of both EM tracking and deep-learning-
based image analysis.

,e echocardiography images are collected on a 3D-
printed, tissue-mimicking cardiac phantom [10] obtained
from several standard TOE views with the Philips IE33
ultrasound machine [11]. Prior to ultrasound imaging, the
catheter tip is first localised by the NDI EM tracking systems
[12] using a pivot calibration [13] with an error of less than
0.1mm. Following data collection, all echocardiography
images are processed with the Python 3 platform, using the
UNet [14] automatic segmentation kernel. ,is hybrid
localisation network can provide a reliable reference for new
sonographers and doctors during catheterisation.

2. Materials and Methods

2.1. Echocardiography Image Collection for Catheter Local-
isationModel Training. Due to limitations in the availability
of the open-source echocardiography dataset and a lack of
information to accurately locate the catheter tip, a complete
echocardiography image dataset needs to be developed first.
To obtain the catheter tip information, at the same time,
instead of using real patient data, the cardiac interventional
procedure was simulated on a 3-D printed Lay-Fomm 40
phantom, which can fully resemble an adult patient heart.
During imaging, the Philips S5-1 broadband sector array
probe was placed on top of the cardiac phantom, while the
phantom was fixed at the bottom of a plastic water tank.
Subsequently, several TOE standard views were acquired by
probe manipulation, such as the upper aortic valve view
(commonly chosen in a real patient case). During the
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simulation, the Philips IE33 ultrasound machine was set to
full volumemode with each image acquisition lasting for five
seconds. All the DICOM images were then exported to blank
CDs and analysed with ITK-SNAP [15].

,e corresponding ultrasound imaging results of the
Shelley medical ablation catheter movements can be ob-
served in Figure 1, in which the vertical line (circled area)
indicates the catheter shape. While the horizontal line is the
artefact, which will not be labelled in the following works. In
Figure 2, we can observe from the echo image that the
background contained both the ablation catheter and the
cardiac structures. In the aortic valve, the visualisation of the
catheter is not only affected by the valve structure but also
affected by strong reverberations from the water tank. ,e
low-image resolution also increases the difficulty to localise
the catheter tip accurately.

2.2. Catheter Tip Determination via the External EM Device
and Pivot Calibration. Before applying the deep learning
network in image-based methods for automatic catheter
segmentation, it was necessary to determine the exact lo-
cation of the tracked catheter tip in the trained ultrasound
dataset to provide the groundtruth. As illustrated in Fig-
ures 1 and 2, it is usually difficult to identify the catheter tip
in the image by visual inspection alone. ,erefore, mapping
the physical location of the catheter tip to where it appears in
the ultrasound imaging provided an alternative approach to
obtain reliable groundtruth.

In this section, the NDI Aurora EM tracking system [12]
depicted in Figure 3(a) was used to arrive at the catheter tip’s
location physically because of its nonradiation and real-time
3-D tracking ability. ,is system consists of an EM field
generator and a sensor interface unit to connect the sensor
and the system control unit (SCU) connected to the com-
puter. To simplify the setup, a 6-degree of freedom (DOF)
catheter-type EM sensor fromNDI was used to represent the
catheter, as it could generate a mapped point on a 2-D
ultrasound image as indicated in Figure 3(b). ,e Shelley
medical ablation catheter could not be directly connected to
the EM tracking device. It was tied to the sensor so that the
tracked tip location could be shared.,e physical location of
the tip was calculated through a pivot calibration experi-
ment. ,e use of external EM tracking is to determine the
length of the catheter tip before training the lateral network,
without EM tracking, the catheter tip cannot be defined
during ground-truth labelling.

During tracking, all the data was recorded by the EM
tracking device, saved as a text file, and then processed
further in MATLAB. Initially, the EM tracking device
recorded the sensor’s 3-D location with the help of the
tracking system coordinates. ,rough pivot calibration, the
sensor was manually moved around a fixed pivot point near
the EM field generator. ,e corresponding location matrix
in the tracking system coordinates was transformed through
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2.3. Automatic Catheter Segmentation in 2-D Echocardiog-
raphy through Deep Learning. After determining the loca-
tion of the ablation catheter tip physically, the state-of-the-
art UNet was utilised to train the deep learning-based au-
tomatic segmentation platform on the collected phantom
echocardiography from different standard TOE views
[16, 17]. To make the trained model more robust, another 19
real patient TOE folders were mixed and tested at the same
time.

Most of the image-based localisations mentioned in the
literature were performed either through tracking with an
inaccurate bounding box or by locating landmarks from
registration. Both of these methods lacked the target shape
information. However, semantic segmentation could solve the
difficulty associated with an accurate localisation. Currently,
the state-of-the-art semantic segmentation model being
employed is UNet [18–23], which is depicted in Figure 4 [14].
,is model can be used on smaller datasets, such as medical
images for faster training, while the deep learningmodels have
to be trained on larger datasets with more variations. Unlike a
model based on CNN, which can only predict probability
distribution, UNet is built with a fully convolutional network
(FCN) [17] kernel. It can, thus, directly provide a full and
accurate output segmentation map on the image.

,e segmentation model was built on 2-D TOE images,
collected from the Lay-Fomm 40 cardiac phantom, fabricated
prior to obtaining both standard and nonstandard views, with
the ablation catheter moving from random places in the
image.,e image dataset contained 20 image volumes with 75
slices for each volume. ,e example provided in Figure 4 is a
bicaval view with the catheter segmentation in the right
atrium, and all of the ground-truth labels were obtained from
the doctors’ manual segmentation (under the reference of
both EM tracking results and visual inspections). ,e seg-
mentation algorithm is written in Python 3. As illustrated in
Figure 5, the model training procedure is given, which is
consisted of the following main steps:

(1). DICOM image reading and data cleaning
(2). Data augmentation to enlarge the training dataset
(3). Obtain a random positive and negative patch
(4). Train and validate the patch based on 2-D UNet
(5). Generate the Dice loss plot for parameter tuning
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Figure 3: (a) Illustration of pivot calibration using the NDI Aurora EM tracking system. (b) Mapped location of catheter tip in 2D
echocardiography.

(a) (b)

Figure 2: Catheter tip movement. (a) 2-D echocardiography image acquisition on 3-D printed cardiac phantom. (b) Corresponding
ultrasound results of (a) under aortic valve short-axis view.

(a) (b)

Figure 1: (a) Shelley medical ablation catheter. (b) Corresponding 2-D ultrasound image of (a).
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(6). Test and generate the predicted segmentation

,e parameters used in the UNet segmentation model
[24–32] were as follows:

(1). First ten volumes as the training dataset, second set
of ten volumes as the validation dataset, and testing
on 14 random 2-D echocardiography volumes

(2). Dropout at the last layer with the rate of 0.5
(3). Augmenting the data offline to ten times as before
(4). Use early stopping with the patience of 6000

iterations
(5). Positive and negative rate of 0.95 (when the image

slice contained the segmentation target, we
regarded it as a positive slice)

(6). Patch size of 1,448,448
(7). Batch size of four
(8). Total number of iterations (batch size) was 30000
(9). Iterative UNet depth of five
(10). Loss function: Dice loss and Laplace smoothing for

preventing overfitting
(11). Activation function as ReLU

To better describe the performance by automatic seg-
mentation when compared to ground-truth labelling, we
introduced a Dice loss to evaluate how accurate the pre-
diction would be (calculated through equation [37]).

Dice loss � 1 −
2 X∩ ​ Y| |

|X| +|Y|
�

2TP

2TP + FP + FN
� 1 − Dice accuracy.

(6)

In the above equation,X is the predicted segmentation, Y
is the true segmentation, TP stands for true positive, and FP
and FN are false positive and false negative rates, respec-
tively.,e Dice accuracy results on the testing dataset will be
demonstrated in the Results and Discussion section.

3. Results and Discussion

,e physical localisation result of the targeted ablation
catheter was 4.7362 ± 0.3523mm, and the corresponding
catheter’s ground-truth segmentation is indicated in
Figure 6(a). Figure 6(b) indicates the corresponding pre-
diction results of Figure 6(a), trained by the deep learning
platform. ,e original 2-D echocardiography of Figure 6 is
the simulated result collected on the 3-D printed cardiac
phantom. With the proposed hybrid framework, the accu-
racy of the catheter tip’s groundtruth location can be
guaranteed at 0.1mm. When compared to the traditional
groundtruth by considering a doctor’s visual inspection
alone, this new groundtruth is more reliable. During the
catheter movement, the final trained model could still
identify the dynamic target as indicated in Figure 7. Within
one second, no catheter tip was missing in every single
frame, but at the same time, as the current deep learning
network has a limited ability in recognizing moving target
shown in Figure 7, some predicted segmentations are in-
complete compared to the groundtruth. ,e corresponding
Dice accuracy results are as follows:

0.8138811737712837 (max), 0.6771465049473349,0.8079201691686618,

0.7211444100551068, 0.7322477650063857, 0.7824308664136881,

0.8112021032810474, 0.6286978766145106 (min), 0.7643511925952297.

(7)

Cleaned & augmented
echocardiography

Groundtruth
segmentation

Predicted
segmentation

mapimage patch

Copy and crop
Conv Relu

Conv Relu

Max pool

Figure 4: Diagram of the deep learning model trained on 2-D echocardiography dataset.

2-D Echocardiography

Groundtruth Catheter Segmentation

Groundtruth & Trained Patch

DICOM Image Reading Data Augmentation

Patch Division 2-D UNet Patch Training

Dice Loss Calculation UNet Segmentation Results

Figure 5: Flow chart of echocardiography UNet model training
procedure.

Computational Intelligence and Neuroscience 5



,e training and testing of the Dice loss plots, indicated
in Figure 8, are consistent with the aforementioned accuracy
results. ,e Dice loss on the training dataset was rather low.
However, on the validation dataset, the Dice loss rose sig-
nificantly (which indicated that the trained model was

overfitting to a certain extent). Upon comparing the UNet
model accuracy with other high-image quality datasets, the
lower prediction accuracy could be explained by the target
being too sparse and ambiguous to identify. ,erefore, the
accuracy obtained cannot compete with the performance on

(a) (b)

Figure 6: (a) Ground-truth segmentation of Shelley medical ablation catheter. (b) Deep learning platform predicted catheter segmentation
on simulated 2-D echocardiography.

(a) (b) (c)

(d) (e) (f )

(g) (h) (i)

Figure 7: Catheter tip segmentation results by deep learning platform in 2-D echocardiography sequences: (a) 0.1 s, (b) 0.2 s, (c) 0.3 s, (d)
0.4 s, (e) 0.5 s, (f ) 0.6 s, (g) 0.7 s, (h) 0.8 s, and (i) 1 s.
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Figure 8: Training curve of the deep learning model’s training and validation loss.

(a) (b) (c)

(d) (e) (f )

Figure 9: Validation of the model on real patient echocardiography: (a–c) groundtruth segmentation from ME-RV inflow, TG Basal SAX,
and bicaval view; (d–f) deep learning predicted segmentation of (a–c).
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CT or MRI volumes. Except for the difficulty faced (due to
the target being sparse or ambiguous), another challenge
attributed to the limited variation of TOE images obtained
caused the overfitting of the model, which was unavoidable.

To validate the trained model’s ability for generalisation,
the model was also tested with real patient data obtained
from several standard TOE views, such as the mid-
oesophagus right ventricle (ME-RV) inflow view and the
transgastric basal short-axis (TG basal SAX) view. From
Figure 9, the predicted results proved the generalisation
ability of the proposed model with the correct catheter lo-
cation and shape. As the target was too blurred, the shape
may have varied from the groundtruth to a certain level.

4. Conclusions

EM tracking device is easily get affected by the clinical en-
vironment, and it cannot provide visual information about
the medical device; while the target in medical images cannot
provide numerical results. ,is new hybrid localisation
framework combines the advantages of external EM tracking
and deep-learning-based image methods, and successfully
builds up the connection between the physical coordinate and
the image coordinates, which offers a new solution for
obtaining a more reliable groundtruth to train the automatic
deep learningmodel. At the same time, 3-D printed phantoms
also provide a new direction for collecting the original dataset
to train the deep learning models based on our requirements.

Based on the simulated dataset and EM tracking tip de-
terminations, the reliability of deep-learning-based models can
be guaranteed. However, the model’s accuracy and stability
need to be improved in the future. During future improvement,
the groundtruth labels have to be derived from the EM sensor,
while all the possible standard views need to be classified too.
Due to the dataset limitations, all the networks built thus far
faced the overfitting problem, so an adequate fully automatic
solution for cardiac intervention has not yet been achieved.

,e future plan will be to try and optimise this platform
from the following perspectives: TOE standard view clas-
sification and learning and EM tracking groundtruth la-
belling. To improve manual inspection, an automatic EM
tracking mapping system will be developed so that the
automatic labelling of the groundtruth can replace the
current semiautomatic method. Increased real patient data
will be involved and analysed (including the condition of the
patients) with a variety of different machines, including
catheters. Meanwhile, the deep learning model will also be
optimised into a more stable and accurate one, which can
adapt to accommodate a larger patient dataset.

Data Availability

,e dataset can be accessed upon request.
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