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This paper presents a three-dimensional dynamic model for the chemotherapy design based on a multiphysics and multiscale
approach.Themodel incorporates cancer cells, matrix degrading enzymes (MDEs) secreted by cancer cells, degrading extracellular
matrix (ECM), and chemotherapeutic drug. Multiple mechanisms related to each component possible in chemotherapy are
systematically integrated for high reliability of computational analysis of chemotherapy. Moreover, the fidelity of the estimated
efficacy of chemotherapy is enhanced by atomic information associated with the diffusion characteristics of chemotherapeutic
drug, which is obtained from atomic simulations. With the developed model, the invasion process of cancer cells in chemotherapy
treatment is quantitatively investigated. The performed simulations suggest a substantial potential of the presented model for a
reliable design technology of chemotherapy treatment.

1. Introduction

Palliative chemotherapy has demonstrated improvements in
survival and clinical trials for cancer patients [1]. The effec-
tiveness of chemotherapy depends upon various factors
including the type of cancer and location of cancer cells in
the body [2]. The estimation of effectiveness is moreover
ambiguous since chemotherapeutic drug that destroys abnor-
mal or cancer cells also damages host cells. Because of the
low efficacy of current treatments formetastatic disease, there
is considerable interest in developing new systems to test
chemotherapeutic drugs more quickly and accurately [3].

In the late 1980s, the National Cancer Institute (NCI)
developed an in vitro drug discovery tool to test new ther-
apeutics using 60 different human cancer cell lines [4]. The
ability to test new anticancer therapeutics offers a great
advantage in the development of therapies to treat cancer
cells. Some reports indicated that many cancer chemother-
apeutic agents are not usually selectively delivered to tumor
tissues and normal cells are also destroyed by the drug [2, 5].
When administered systemically, these agents are distributed

to both normal and tumor tissues by normal diffusion
through capillaries [6]. An in vitro experiment has shown that
the transport of small drug molecules through surrounding
normal tissue is generally considered to be relatively faster
than in cancer cells which are densely packed in islet [7, 8].
This finding demonstrated the reason why normal cells are
destroyed faster than cancer cells by the drug. Thus, drug
treatment strategy is very crucial in cancer chemotherapy
and contemporary preclinical models have employed it in
cancer drug development both in vitro and in vivo [5,
9]. Mathematical models of chemotherapeutic drug have
been suggested to design treatment strategies that effectively
destroy tumor cells while limiting toxicity on normal cells
[10–14]. One of the mathematical models aimed to minimize
the total amount of drug used such that the tumor cell
population at the end of the treatment period reaches a
specified value [11]. But it is difficult to correctly formu-
late and use the constraint expressing toxicity due to the
cumulative drug. Recently, simulations have been performed
with some proposed models [15–23]. They introduced that
cancer cells had an ability to degrade and migrate into
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surrounding extracellular matrix (ECM). Each component
involved in invasive process of tumor cells was considered
as individual identity, and the model incorporated only cell-
cell interaction excluding the effects of cell-matrix interaction
[15].The othermathematical models were developed to study
the interaction of cancer cells with surrounding matrix [16].
But this model did not directly incorporate the interaction
between cancer cells and ECM. They assumed that invasive
process is triggered by cancer cells releasingmatrix degrading
enzymes (MDEs) which modify the ECM by degrading it.
They made the effort on studying the interaction between
MDEs and the degraded ECM. Byrne et al. presented a
simple one-dimensional model of trophoblasts invading the
uterine tissue to study placental development [17]. They
explained the dominant migratory mechanism without any
morphological analysis in the process of invasion. Harley
et al. discussed the existence of traveling wave solutions
of a haptotaxis model for malignant tumor invasion [18].
This work did not consider any energetic aspects such as
surface or interface energy, which limits the accuracy of the
solution. Andasari et al. studied the process of cancer-cells
invasion based on mathematical analysis and computational
simulation [19]. This work offered us a perspective on the
ability of cancer cells to break out of tissue compartments and
invade local tissue. Their simulation results were obtained by
one- and two-dimensional models that limited the accurate
and comprehensive understanding of the invasion process
of cancer cells. In our work, a three-dimensional model
incorporates multiple kinetics and energetics is developed to
overcome the aforementioned limits on understanding the
mechanism and morphological strategy of cancer-cells inva-
sion. Moreover, a multiscale approach is employed, which
increases the accuracy of simulation results by providing
material properties with atomic simulations.

Here, we propose a three-dimensional dynamic model
for the chemotherapy design. The model incorporates mul-
tiple components to study interactions between cancer cells,
MDEs, degrading ECM, and chemotherapeutic drug. Multi-
ple mechanisms possible in chemotherapy are systematically
integrated for the high possibility of adequate predictions.
Migration of cancer cells driven by haptotaxis,MDEs secreted
by cancer cells, degradation of extracellular matrix, and dif-
fusion of chemotherapeutic drug are analyzed simultaneously
by consideringmultiplemechanisms in cancer-cells invasion.
The velocity, number, and morphological changes of cancer
cells are affected by diffusion of chemotherapeutic drug.
Meanwhile, the degradation of the ECM is influenced by
the diffusion of chemotherapeutic drug and MDEs which
are secreted by cancer cells. Furthermore, a multiscale
approach that links atomic-scale information to macroscopic
properties of drugs is adopted. Molecular dynamic (MD)
simulations have been carried out to examine the diffu-
sion of chemotherapeutic drug and enhance the fidelity of
the developed model. The evolving morphologies of the
microstructures related to multicomponents, multiphysics,
and multiscales cause computational challenges. These are
addressed by employing a diffuse interface model and the
reliability and effectiveness of the model are demonstrated.
A series of simulations are performed to systematically
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Figure 1: Schematic drawing represents the process of cancer-cells
invasion with chemotherapeutic drug.

investigate the effects of chemotherapeutic drugs on cancer
cells and the ECM.

2. Materials and Methods

2.1. Multicomponents Model. A diffuse interface model has
been employed to efficiently present the morphological evo-
lution of themicrostructure system, which incorporates mul-
tiple kinetics and energetics in the multicomponent system,
and demonstrated its reliability and effectiveness [24–28].We
develop the diffuse interface model that incorporates a series
ofmulticomponents, which play decisive roles in the invasion
process and chemotherapy. The model incorporates multiple
kinetics that are the interdiffusion of chemotherapeutic drug
and cancer-cell migration induced by haptoattractant. Multi-
ple energetics are also incorporated, which are the interface
energy among the population of cancer cells, the interface
energy of the ECM, and the interface energy between cancer
cells and the ECM.The phase field equations with multicom-
ponents are driven by the reduction in the total free energy of
an inhomogeneous system. The multicomponents of cancer-
cell invasionwith chemotherapeutic drug are displayed in the
schematic drawing of Figure 1. We define a field variable 𝑐

1

by the volume fraction of cancer cells, which describes the
structural domain of cancer cells in the simulations. 𝑐

1
= 1.0

corresponds to the pure cancer cells and 𝑐
1
= 0.0 to other

materials such as the ECM. Define a field variable 𝑐
2
by a

volume fraction of the ECM. 𝑐
2
= 1.0 corresponds to the

pure ECM and 𝑐
2
= 0.0 to other materials such as cancer

cells, which is dimensionless. The observed morphology of
the ECM from experiments will correspond to the space 𝑐

2
=

1.0 in the simulation results.𝑚 is defined by the concentration
of the MDEs and 𝜃 by concentration of chemotherapeu-
tic drug. In our work, we use four variables, 𝑐

1
(𝑥, 𝑦, 𝑧, 𝑡),
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𝑐
2
(𝑥, 𝑦, 𝑧, 𝑡), 𝑚(𝑥, 𝑦, 𝑧, 𝑡), and 𝜃(𝑥, 𝑦, 𝑧, 𝑡), which are time

dependent and spatially continuous functions to describe
cancer cells, MDEs, ECM, and chemotherapeutic drug. As
an initial condition, we assume that 𝜃 corresponds to initial
concentration of chemotherapeutic drug performed in the
model. Various initial concentrations of chemotherapeutic
drug 0.0; 5.0 × 10

−4; 1.0 × 10
−3; 5.0 × 10

−3 are tested to
provide analytical information of the capability of the drug in
cancer treatment. The population of cancer cells is driven by
haptotaxis in the model. Haptotaxis is the directional migra-
tion of the cells due to increasing haptoattractant gradients
mediated by specific material. Fibronectin is indicated to
be a chemoattractant or haptoattractant for certain tumor
cells [29, 30]. The maximum concentration of fibronectin
is assigned on the right region of the ECM. The linear
haptoattractant gradient field is introduced only along the 𝑥
direction to ignore the effect of the surrounding boundary
on the cancer-cells invasion. Driving mechanisms for the
evolution of each component as well as the interactions of
them are incorporated in the following sections.

2.2. Multiphysics Model. A three-dimensional dynamic
model based onmultiphysics technology to study the process
of cancer-cells invasion with chemotherapy is expounded
here. The morphological evolution of cancer cells and the
ECM are represented by the free energy composed of the
respective field variables, 𝑐

1
and 𝑐
2
. From the general diffuse

interface approach, the total free energy of themicrostructure
system is followed by Cahn-Hilliard model [31] and then
given by

𝐺 = ∫

𝑉

{𝑓 (𝑐
1
, 𝑐
2
) + ℎ
11
(∇𝑐
1
)
2

+ ℎ
22
(∇𝑐
2
)
2

+ ℎ
12
(∇𝑐
1
∇𝑐
2
)} 𝑑𝑉.

(1)

In order to describe each component, the term𝑓(𝑐
1
, 𝑐
2
) could

be any function with double wells. In numerical simulations,
term 𝑓(𝑐

1
, 𝑐
2
) with three components is derived as [32]
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(2)

where𝑓
0
is a positive constant, a domain without cancer cells,

and ECM is represented by 𝑐
3
, which is equal to 1 − 𝑐

1
− 𝑐
2
.

We assume 𝑎
1
= 𝑎
2
= 𝑎
3
= 1 for simple calculations.

The remaining terms illustrate the interface energy among
components. ℎ

11
, ℎ
12
, and ℎ

22
are gradient energy coefficients.

Thenet fluxes of 𝑐
1
and 𝑐
2
are given by J

1
= −𝑀

1
∇𝜇
0

1
+𝑀
1
𝛽∇𝜙,

J
2
= −𝑀

2
∇𝜇
0

2
, and the details of the derivation of these

expressions are represented in the following paragraphs.
Chemical potentials 𝜇0

1
and 𝜇

0

2
are related to the free

energy of the system and defined by 𝜇0
𝑖
= 𝛿𝐺/𝛿𝑐

𝑖
. Driving

forces for the evolution of each component are attributed to
the chemical potential by F

𝑑1
= −∇𝜇

0

1
and F

𝑑2
= −∇𝜇

0

2
.

We represent fluxes of 𝑐
1
and 𝑐

2
as J
𝑑1
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1
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0

1
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J
𝑑2

= −𝑀
2
∇𝜇
0

2
. Here 𝑀

1
and 𝑀

2
are mobilities of cancer

cells and the ECM. The mobility of cancer cells is described
by𝑀
1
(𝑐
1
) = 𝑀

0
[{∫ 𝑐
2
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and will vanish outside the interfacial region of 𝑐
1
[24, 28, 33].

The mobility has a strong dependence on the local structure
and the variable 𝑐

1
. The function of mobility instead of a

constant mobility is employed and defined considering the
excellent numerical stability [33], at the same time, following
the model for the taxis phenomenon, which is developed
by Keller and Segel [34]. The flux of 𝑐

1
is additionally

induced by external stimuli and given by J
𝑐

= 𝜒𝑐
1
∇𝜙,

where 𝜒 is haptotaxis sensitivity. 𝜙 is haptoattractant density,
which represents external stimuli to provide the driving force
∇𝜙 for cancer-cells directional migration. We employed a
function with a linear gradient as 𝜙 in our simulations.
𝑀
1
𝛽 corresponds to the haptotaxis sensitivity since 𝜒 is

proportional to themobility of cancer cells [35], where𝛽 is the
sensitivity constant.The additional flux of cancer cell induced
by haptotaxis can be rewritten as J

𝑐
= 𝑀
1
𝛽∇𝜙. Thus, the final

net flux of 𝑐
1
and 𝑐
2
can be expressed as J

1
= J
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𝑐
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(3)

The evolution of each field variable 𝑐
1
and 𝑐
2
is governed

byCahn-Hilliard nonlinear diffusion equation and combined
with mass conservation relation 𝜕𝑐

1
/𝜕𝑡 = −∇ ⋅ J

1
, 𝜕𝑐
2
/𝜕𝑡 =

−∇ ⋅ J
2
. The expressions of 𝑐

1
and 𝑐
2
are obtained as follows:

𝜕𝑐
1
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1
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2
∇𝜇
0

2
) .

(4)

MDEs secreted by cancer cells and the chemotherapeutic
drug are modeled as diffusing throughout the tissue and
undergoing some form of decay. The kinetic process of
MDEs and chemotherapeutic drug in the invasion process are
described as follows:

𝜕𝑚

𝜕𝑡

= ∇ ⋅ (𝑀
3
∇𝑚) + 𝜀𝑐

1
− 𝜆𝑚 (5)

𝜕𝜃

𝜕𝑡

= 𝑀drug∇
2
𝜃 − 𝜂𝜃, (6)
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where 𝑀
3
is the mobility of MDEs and 𝜀 represents the

released rate of MDEs by cancer cells. 𝜆 is the natural
degradation rate of the enzymes. 𝑀drug is the diffusion
coefficient of the drug, which is obtained from the atomic
calculations. The drug diffuses throughout cancer cells and
the tissue and undergoes some form of decay related to 𝜂.

2.3. Multiscale Model. The derived governing equations are
based on the continuum framework, which allows us to
acquire a systematic picture of the invasive process of cancer
cells and practically design the effective chemotherapy. To
achieve the atomistic accuracy and broaden the applicability
of the model, we employ a multiscale approach that bridges
the gap between the atomic-scale information and the con-
tinuum analysis by transferring the calculated characteristics
of the system with atomic simulations to the continuum
calculation. Atomic simulations could provide information
on calculating static and dynamic properties such as diffusion
coefficient [36]. The diffusion of chemotherapeutic drug is
investigated with atomic-scale calculations to enhance the
possibility of expansion to various chemotherapeutic drugs.

The diffusion coefficient of chemotherapeutic drug in
a polymer has been calculated from MD simulations. A
cellular biological medium consists of extracellular space
and extracellular polymer fibers. The amorphous polymer
(polydimethylsiloxane, PDMS) is thus taken as a diffusion
medium, which represents the ECM in our atomic simula-
tions, and doxorubicin (C27H29NO11) that is chemothera-
peutic drug and regarded to diffuse in PDMS. Doxorubicin
is one of the most frequently used anticancer drugs in
cancer treatment [37]. The diffusion coefficient is unique
parameter for each specific drug and denotes the capacity of
the drug diffusing in a specified medium, which is primary
depending on its own chemical structure and affected by the
external conditions such as the medium and temperature.
Thus, the required information for calculation is the chemical
structure of doxorubicin, PDMS, and temperature. Our
atomic simulation is achieved with the structure of systems
in a constant volume and constant density of the molecules
at room temperature. Here we use a system consisting of
five chemotherapeutic drug (doxorubicin) molecules and ten
polydimethylsiloxane (PDMS) molecules. All the molecules
are packed together and rotated. The three-dimensional
drug-polymer structures are constructed by using geom-
etry optimization method. Periodic boundary conditions
are imposed in the model. Simulations are running at the
temperature of 298Kwith a constant volume.Then the whole
structure is allowed to optimize the energy and equilibrated at
the certain temperature. Purpose of the energy minimization
is to ensure that dynamic simulation starts with a relatively
stable structure.

Dynamic simulation begins with the optimized structure
and the simulation time is selected to be 15 ps. Li et al.
pointed out that value of diffusion coefficient decreased as
the simulation time increased and the calculated results were
consistent with the experimental value when the simulation
time was between 10 ps and 20 ps [38]. In a short simulation
time, the mean-square displacements show a nonlinear func-
tion with respect to the time and this tends to overestimate

the diffusion coefficient [39]. With longer simulation time,
the diffusion coefficient will not be changed considerably.
Thus, the dynamic simulation time is selected to be 15 ps. In
MD simulations, the diffusion coefficient of the drug, which
is obtained from the calculated trajectory of it, can be defined
as [38]

𝑀drug =
1

6𝑁

lim
𝑖→∞

𝑑

𝑑𝑡

𝑁

∑

𝑖=1

⟨[𝑟
𝑖
(𝑡) − 𝑟

0
(𝑡)]
2

⟩ , (7)

where𝑀drug is the diffusion coefficient of the drug. 𝑁 is the
total number of drug molecules. The angular brackets repre-
sent mean-square displacement (MSD) of the drug. Diffuse
behavior can be recorded in a trajectory file for each time step
of dynamic simulation. MSD obtained from the trajectory
of the drug molecules, which is a time dependent function,
represents an average of squared distances summed up over
all possible positions of the origin. 𝑀drug is proportional to
the slope of MSD.

The diffusion coefficient of a material diffusing in a
specified medium can be affected by external conditions
such as concentration of the medium and temperature. We
consider constant external conditions and corresponding
constant diffusion parameter, which is obtained by MD
simulations before the macroscopic migration simulations,
to obtain the sufficient efficiency of simulations for the
practical analysis. Meanwhile, thirty MD simulations with
the same initial conditions have been performed to achieve
the accurate average value of diffusion coefficient. Once
diffusion coefficient is calculated from MD simulations, the
calculated diffusion coefficient is employed to the phase
field model to investigate dynamic evolution of chemother-
apeutic drug. In phase field model, 𝜃 denotes the volume
fraction of chemotherapeutic drug. As an initial condition,
𝜃 corresponds to initial concentration of chemotherapeutic
drug considered in the model. The diffusion coefficient of
chemotherapeutic drug is space and time dependent function
and defined by the field variables of 𝑐

1
and 𝑐
2
, 𝑀drug(𝜃) =

𝑀drug−𝑖∑
𝐾

𝑖=1
(1/𝐾)[{∫ 𝑐

2

𝑖
(1 − 𝑐
𝑖
)
2
𝑑𝑐
𝑖
/ ∫

1

0
𝑐
2

𝑖
(1 − 𝑐
𝑖
)
2
𝑑𝑐
𝑖
}(1 − 𝑐

𝑖
)]

[24, 28, 33]. The diffusion coefficient of chemotherapeutic
drug in the ECM is obtained from MD simulations. There
is no viable result to investigate the diffusion coefficient of
chemotherapeutic drug in cancer cells. Some experimental
observations indicated that drug molecules diffuse with the
higher diffusivity in the ECM than in cancer cells [7, 8].
Suppose that the diffusion coefficient of chemotherapeutic
drug in cancer cells is approximately 50% of that in the
ECM. 𝑀drug is a dimensionless number normalized by the
calculated diffusion coefficient that is obtained from MD
simulations.

From the experiment, it is introduced that the treatment
of solid tumors is difficult to achieve the desirable results
because the chemotherapeutic drug reaching to target cells is
based on diffusion [6].Thediffusion coefficient of a particular
anticancer drug in a specified medium provides information
about measuring whether the drug would diffuse in a favor-
able state. In in vitro or in vivo systems, the measurement
of delivery of chemotherapeutic drug at the precise site can
be facilitated by the computational results. From a targeting



BioMed Research International 5

Table 1: Parameters used in the system.

Parameter Definition Value
𝛾 Degradation rate of ECM by MDEs 1.0 × 10

−6

𝜀 Released rate of MDEs by cancer cells 1.0 × 10
−6

𝜆 Natural degradation rate of enzymes 1.0 × 10
−6

𝛼 Significance of the haptotaxis 2.0
𝑐ℎ
𝑖𝑗 Cahn number 1.0

perspective, providing the different diffusion coefficients
of chemotherapeutic drug in different tissues is useful in
improving clinical treatment on tumor cells.

2.4. Numerical Implementation. The process of cancer cell
invasion consists of two steps; cancer cells produce MDEs
and the ECM is degraded by MDEs. Meanwhile, it is well
known that cancer chemotherapy is a systemic treatment.
When chemotherapeutic drug is introduced, both cancer
cells and the ECM are destroyed [2, 5, 6]. However, the ECM
is degraded not only by the drug but also by MDEs that are
secreted by cancer cells. Before the numerical discretization
of the derived equations, we assume that 𝜇

1
= 𝜇
0

1
− 𝛽𝜙 =
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12
∇
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𝑐
2
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0
/2𝑓
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the significance of the haptotaxis. Normalize the governing
equations of each multicomponent with a characteristic
length 𝐿

𝑐
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𝑐
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𝑐
/𝑀
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. The normalized equations

of cancer cells and ECM are given by
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𝛾 is the degradation rate of the ECM by MDEs. The last
terms of (8) and (9) denote the capacity of chemotherapeutic
drug in destroying cancer cells and normal cells, respectively.
The initial haptoattractant density 𝜙 and the mobility 𝑀

1
,

𝑀
2
, 𝑀
3
are dimensionless numbers normalized by 𝜙

0
and

𝑀
0
. The values of the parameters used in the multiscale

system are listed in Table 1. The significance of the interface
energy between the components is described by the Cahn
numbers, 𝑐ℎ2

𝑖𝑗
= ℎ
𝑖𝑗
/𝐿
2

𝑐
𝑓
0
. The choice of the magnitudes of

the characteristic quantities depends on physical details to
be resolved and computational convenience. 𝛼 = 𝛽𝜙

0
/2𝑓
0

is chosen to be 2.0 that corresponds to an experiment value
of haptoattractant concentration of fibronectin, which is
200𝜇g/ml, due to 𝛽/𝑓

0
= 0.02ml/𝜇g [29]. A semi-implicit

Fourier spectral method is implemented here to have a high
spatial resolution to resolve the high-order derivatives in the
derived equations as well as the large gradients at the interface
region [24]. This method is to treat the linear term implicitly
and the nonlinear term explicitly to allow for larger time steps

without losing numerical stability and satisfies the require-
ments for the numerical effectiveness [40]. Furthermore,
the Semi-Implicit Backward Differentiation Formula (SBDF)
scheme is applied to solve the kinetic equations without a
harsh time-step constraint which has the strongest high-
modal decay among the second-order multistep methods
[41].

To deal with the variable mobility, the right-hand sides of
(5), (8), and (9) need to be rewritten as
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where 𝜇
𝑙𝑟1
, 𝜇
𝑙𝑟2
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𝑚 are implicitly treated and nonlinear terms 𝑠

𝜇1
,

𝑠
𝜇2
, and 𝑠

𝑚
are explicitly treated based on the semi-implicit

Fourier spectralmethod.There are variousways to handle the
linear component [40, 41]. The numerical stability has been
achieved by taking the linear term𝜇

𝑙𝑟
= 𝑐−𝑐ℎ

2
∇
2
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with the semi-implicit Fourier spectral method and the SBDF
time integration scheme, we obtain the following discretized
form:
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Taking the Fourier transform to (11), the governing equations
of each component are given as
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stand for the Fourier transform. 𝑐𝑛+1
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,𝑚𝑛+1, and 𝜃𝑛+1 can
be calculated by the followed sequence. First, we compute
chemical potentials that correspond to the distributions of
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, 𝑐𝑛
2
, 𝑚𝑛, and 𝜃𝑛. Then we can obtain 𝑐𝑛+1
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Fourier transform.The simulation advances by repeating the
procedure.

3. Result and Discussion

3.1. Simulation Details. Here, we quantitatively investigate
the characteristics of cancer cell invasion and then system-
atically analyze the effect of chemotherapy on the inva-
sion process with the developed model. The morphological
evolution and migration of cancer cells and the toxicity of
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Figure 2: Initial configurations of cancer cells and the ECM.

chemotherapeutic drug on the normal cell are specifically
explored. Initial configurations of cancer cells and the ECM
within the domain are illustrated in Figure 2. The domain
size is set to be 200 × 100 × 100. The characteristic length
is taken to be 3.0𝜇m and cancer cells are initially positioned
at (100, 50, 50) in the spatial domain. The radius of a cancer
cell is considered to be 3.6 × 10−2mm, which gives a typical
cancer-cell volume of 1.5 × 10−5mm3 per cell [42, 43]. Initial
numbers of cancer cells, and normal cells that reside in
the ECM, are approximately 5.45 × 10

8 and 1.30 × 10
11,

respectively. Real time is equal to time scale multiplied
by time steps of simulation. Time scale 𝑡

𝑐
= 𝐿
2

𝑐
/𝑀
0
𝑓
0

is chosen to be 3.2 s, due to 𝑓
𝑜

= ℎ
𝑖𝑗
/𝐿
2

𝑐
= 2.8 that

corresponds to an experiment value of the surface energy
of poly(dimethylsiloxane) (PDMS), which is 22 ∼ 25mJ/m2
[44]. In the following sections, we use the time step instead of
real time of simulation to represent the evolution of cancer-
cells invasion with chemotherapy.

3.2. Diffusion of Chemotherapeutic Drug through Cancer Cells
and ECM. We have performed simulations that adequately
expound the diffusion process of chemotherapeutic drug
through both of cancer cells and the ECMbefore investigating
the efficacy including the systemic effect of the drug. Figure 3
shows cross-sectional views of cancer-cells invasion with
chemotherapeutic drug in the computational model. The
color bar presents that the field variables of cancer cells and
the ECM are changing from 1.0 to 0.0. One has that 𝑐

1
= 1.0

(red color); 𝑐
1
= 0.0 (blue color); 𝑐

2
= 1.0 (purple color);

𝑐
2
= 0.0 (green color), applying 𝑐

1
= 1.0 with 𝑐

2
= 0.0

and 𝑐
1
= 0.0 with 𝑐

2
= 1.0. The red area at the center

of the domain represents cancer cells and the purple color
in the surrounding area depicts the normal matrix. In the
process of cancer-cells invasion, MDEs play an important
role in degrading the ECM. Cancer cells secrete MDEs that
destroy the normal tissue. As shown in Figure 3, MDEs are
secreted by cancer cells and expressed as the varicolored
region in the ECM.Thenumber ofMDEs is increasing as time
increases because cancer cells secrete MDEs continuously.
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Figure 3: Evolution sequences of cancer-cells invasion with chemotherapy; matrix-degrading enzymes (MDEs) are secreted by cancer cells
and chemotherapeutic drug particles surround cancer cells.

Chemotherapeutic drug that is described by a doughnut-
shape with a dark gray color surrounds cancer cells. The
mathematical model allows the drug to diffuse through
both cancer cells and the ECM. Chemotherapy aims to kill
abnormal or cancer cells but the normal matrix is also
destroyed by the drug, which is plausibly simulated with the
developedmodel.The clear observations supply a particularly
intuitive approach and an easy way for understanding the
detailed process of invasion with chemotherapy. Specialized
protrusions, especially, include chemotherapeutic drug and
MDEs secreted by cancer cells which are both incorporated
in the dynamic model for comprehensive analysis.The three-
dimensional model provides insights into understanding the
mechanisms of each component in cancer-cells invasion
viewing microstructural evolution and focuses our attention
on specialized protrusions involved in multicomponent of

cancer-cells invasion and chemotherapy treatment. Nev-
ertheless, one- and two-dimensional models still provide
important insights into cancer-cells invasionwhich limits our
understanding of multimechanisms and different migration
strategies in cancer-cells invasion. It has been possible to
overcome these difficulties by creating the three-dimensional
model, which presents the real state of cancer-cells invasion
more precisely.

MD simulations have been carried out to study the
diffusion process of chemotherapeutic drug. The diffusion
coefficient can be calculated from the trajectory of the drug.
MSD has been plotted as a function of time in Figure 4. The
diffusion coefficient of the drug is proportional to the slope
of MSD.Thirty cases have been simulated to get the accurate
average value of diffusion coefficients. As shown in Figure 5,
the diffusion coefficient in 60% cases is approximately
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2.0 × 10
−6
∼4.0 × 10

−6 cm2 s−1. The average value of diffusion
coefficient of the drug, 𝑀drug, is 4.13 × 10

−6 cm2 s−1. The
calculated value is consistent with previous study that pre-
sented the base value of diffusion coefficient of diffusant in the
cellular biological medium approximately 2.0 × 10−6 cm2 s−1
[45]. They proposed an expression for the local effective
diffusion coefficient as 𝐷

𝐴𝛽
= 𝜆
𝛽
𝐷
𝐴𝜐
; here 𝐷

𝐴𝜐
represents

diffusion coefficient in water and the base value of it is 20.0 ×
10
−6 cm2 s−1. 𝜆

𝛽
is (0.01–0.99)ℎ that is a function of the com-

position and fundamental geometric and physicochemical
system properties, including the size of solute molecules, the
size of extracellular polymer fibers, and themass permeability
of cell membrane; the base value of 𝜆

𝛽
is mentioned and

equals 0.1. They made their effort on representing the local
effective diffusion coefficient of diffusant in the cellular
biological medium by using the generalized function that

could not provide the accurate value of diffusion coefficient of
a particular diffusant in a specifiedmedium.Theother related
work indicated that the diffusion coefficient of theophylline in
the polymeric membrane is affected by concentration of the
polymer and temperature [46]. The final diffusion coefficient
of this material was 5.00×10−6 cm2 s−1 at 25∘C, but this value
was also obtained from the numerical model. And detailed
analysis of diffuse process was depending on unique structure
of materials and system. Based on the above researches, it
is necessary to perform detailed atomic simulation to get
diffusion coefficient of the particular anticancer drug in
the specified medium as accurate as possible. Our atomic
simulation is primary depending on considering the detailed
structure of systems and run at room temperature with
constant volume and a fixed density of the polymermolecules
system. We believe that the developed computational model
can provide a reliable and efficient method to study the
chemotherapy.

Taking the calculated diffusion coefficient of chemother-
apeutic drug with MD simulation into the developed three-
dimensional model of cancer-cells invasion, the diffusion
process of chemotherapeutic drug is simulated as shown
in Figure 6(a). The concentration of chemotherapeutic drug
decreases during the chemotherapy treatment. The concen-
tration data of the drug which is obtained from the middle
region of the doughnut-shape and marked in point “𝐴” is
shown in Figure 6(b) and it demonstrates that the highest
concentration of the drug occurs at 𝑡 = 0.0 and the concentra-
tion is decreasing as the time increases due to natural decay
phenomenon of chemotherapeutic drug. A comparison of the
distribution of chemotherapeutic drug in the region “𝐵” at
𝑡 = 1.0 × 10

4 and 𝑡 = 4.0 × 10
4 is presented in Figure 6(c).

It is observed that the concentration of the drug at the
center region decreases and has a wider distribution as time
increases since the drug diffuses into cancer cells and normal
tissues. The presented simulation results adequately explain
the dynamic characteristics of chemotherapeutic drug, which
incorporate the atomic-scale insight obtained from atomic
simulations.

3.3. Effect of Chemotherapeutic Drug on Invasion of Cancer
Cells. To quantify the effect of chemotherapeutic drug on
cancer cells, we investigate themorphological changes of can-
cer cells without andwith chemotherapeutic treatment which
are shown in Figures 7(a) and 7(b), respectively. As shown in
Figure 7(a), the color change from red to blue means that the
variable of cancer cells is changing from 1.0 to 0.0.The change
of dark red color to white color represents haptoattractant
density gradient in the ECM. Higher haptoattractant density
gradient in the dark red color is assigned on the right region
of the ECM to induce cancer cells moving from the left to
the right side. In Figure 7(b), chemotherapeutic drug is used
in the system; the color change from gray to white indicates
the different concentration of chemotherapeutic drug which
is initially assigned as a doughnut-shape surrounding cancer
cells.

As shown in Figures 7(a) and 7(b), the morphological
shape of cancer cells and the number of cancer cells are
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Figure 6: (a) Diffusion of chemotherapeutic drug, (b) evolved concentration of chemotherapeutic drug in the treatment, and (c) distribution
of chemotherapeutic drug in the diffusion process.

changed as the chemotherapeutic drug is introduced. The
population of cancer cells with chemotherapy changes its
shape from spherical to deformed along the distribution of
chemotherapeutic drug that hinders cancer-cells migration.
As shown by two graphs, the total number of cancer cells
with chemotherapeutic drug is decreased by about 14.16%.𝑁
denotes the number of cancer cells. The measured velocity of
cancer-cells migration is 3.22 𝜇m/hr but with the presence of
chemotherapeutic drug, the velocity decreases to 2.83 𝜇m/hr
when the time steps of simulation are 1.0 × 104. The effects of

the ECM on the invasive behavior of cancer cells have been
introduced by an experimental work [47]. Experimentally
observed average velocity of human pancreatic cancer cells
(HPAF-II) in the ECM is 5.5 ± 1.7 𝜇m/hr. The agreement is
reasonably convincing.

3.4. Capacity of Chemotherapy to Destroy Cells. Chemother-
apy plays a role in not only affecting the morphology of the
population of cancer cells but also killing cancer cells. It is
also necessary to consider the effect of chemotherapy on the
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Figure 7: Morphological and the number changes of cancer cells (a) without chemotherapeutic drug and (b) with chemotherapeutic drug.
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Figure 8: Reduction ratio of (a) cancer cells and (b) normal cells with various capacity of chemotherapeutic drug on destroying cells, 𝜂, at
𝑡 = 2.0 × 10

4.

normal cells due to the toxicity of the drug. Many researches
have made the efforts to study chemotherapy treatment in
tumor cells [2, 48]. The work of delivery of chemother-
apeutic agents in cancer introduced by the mathematical
model revealed that approximately 60% and 80% of the
initial tumor size and normal cell population reduced when
the chemotherapy is performed in the treatment [2]. The
seriously destroyed phenomenon on normal cells requires
designing a reliable method to kill maximum number of
cancer cells and minimum number of normal cells. Thus,
we study the influence of chemotherapeutic drug to suggest
the enhanced chemotherapy that minimizes cancer cells
while limiting the toxicity on normal cells. The capacity of
chemotherapeutic drug on destroying cells is represented by
a parameter 𝜂. The initial number of cancer cells and normal
cells in the domain is considered to be 5.45 × 108 and 1.30 ×
10
11, respectively. Cancer cells killed by chemotherapeutic

drug from 𝜂 = 0.0 to 𝜂 = 10.0 × 10
−7 at 𝑡 = 2.0 × 10

4

are presented in Figure 8(a). As increasing the parameter
𝜂, more cancer cells are destroyed by a potent drug. It is
observed that at most 14.16% of cancer cells are killed by
the drug when the parameter 𝜂 is greater than or equal
to 5.0 × 10

−7. Even though the parameter is larger than
5.0 × 10

−7, the number of cancer cells killed by the drug
does not considerably increase. Simulation results suggest the
minimum efficacy of the drug with a particular amount in
the cancer-cells invasion. In Figure 8(b), the reductions of
normal cells with various values of parameter 𝜂 are presented.
Approximately 11.48% of normal cells are destroyed by the
drug with 𝜂 = 5.0 × 10

−7 and the reduction of normal
cells increases to 19.97% with 𝜂 = 10.0 × 10

−7. From the
observationwith Figure 8(a), the number of cancer cells is not
appreciably altered with the parameter from 𝜂 = 5.0×10

−7 to
𝜂 = 10.0×10

−7. The performed simulations demonstrate that
the appropriate value for the capacity of chemotherapeutic
drug is about in the range of 1.0 × 10−7∼5.0 × 10−7 to ensure
that the maximum number of cancer cells and the minimum
number of normal cells are destroyed under chemotherapy

treatment. We consider a specific drug that corresponds to a
certain diffusion coefficient and parameter 𝜂. The parameter
𝜂 can be manipulated by a proper carrier by the development
of nanotechnology [49]. Nanoparticles as a carrier provide
a new mode of delivery of anticancer drug to enhance
the capacity on destroying cancer cells. The motivation of
the development of neoadjuvant chemotherapy is to supply
an efficient and reliable drug with applicable value of the
parameter 𝜂 on killing cells. If we consider the totally different
kinds of drug that have obviously different mobility from
other drugs, by recalculating the diffusion coefficient with the
presented process, the expeditious analysis of chemotherapy
process can be carried out with the developed model. For
drugs with the recognized mobility, it would be prompt
investigation. As presented by simulation results, the ECM
is destroyed more seriously than cancer cells since the ECM
were killed by chemotherapeutic drug and MDEs secreted
by cancer cells. In addition, it is experimentally observed
that drug molecules diffuse with the higher diffusivity in the
ECM than in cancer cells [7, 8], because cancer cells are
densely packed in islet, which leads the drug particles hard
to delivery to the inside.Thus, the destroyed phenomenon on
the ECM is more obvious than cancer cells, which is clearly
demonstrated, and a reliable parametric study provided the
developed model for the capacity of chemotherapeutic drug
on killing cells.

3.5. Effect of Chemotherapeutic Drug on Cancer-Cells Migra-
tion. The velocity of cancer cells as well as the destroyed
amount of cancer cells could be critical for the design of
chemotherapy especially when the location of cancer cells
is fatal. Simulations with various initial concentrations of
chemotherapeutic drug are performed to provide analytical
information of the capability of the drug in cancer treatment.
The velocities of cancer cells with various concentrations of
chemotherapeutic drug are shown in Figure 9(a) and those at
specific time steps are listed inTable 2.Themaximumvelocity
of cancer cells is obtained with high or low concentration of
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Figure 9: (a) Velocities of cancer-cells migration with various concentrations of chemotherapeutic drug. The initial concentrations of drug
are 0.0, 5.0×10−4, 1.0×10−3, and 5.0×10−3, respectively. (b) Position of cancer cells with different initial concentrations of drug. 𝜉 = (Current
volume of cancer cells/Initial volume of cancer cells) × 100%.

drug depending on the simulation time. Before about 𝑡 =

6.0 × 10
3, the maximum velocity of cancer cells is observed

with the high initial concentration of drug since more ECM
is degraded and more space for cancer cells migration is
generated. Cancer cells, however, are degraded seriously with
high initial concentration of drug.The position of cancer cells
with different initial concentrations of drug is demonstrated
in Figure 9(b). 𝜉 represents the ratio of current volume of
cancer cells to the initial volume of the population of cancer
cells. Within the region with the drug, cancer cells with the
higher concentration of drug are more destroyed and quickly
migrate through the more seriously destroyed ECM region.
After 𝑡 = 6.0 × 103 when cancer cells start to escape from the
region with the drug, the velocity of cancer cells with the low
concentration of drug increases substantially while that with
high concentration of drug decreases. Some experimental
observations revealed that cancer cells couldmigrate through
the connective tissues by their own mobility and response to
the chemoattractant gradient assigned in the tissue matrix
[50, 51]. The directed migration could determine that cancer
cells migrate and escape from the region with the toxic effect
of commonly used cancer drugs. Thus, we make the effort to
incorporate this effect and investigate the velocities of cancer
cells with various concentrations of chemotherapeutic drug
before and after escaping from the region with the drug.
Cancer cells with the high concentration of drug are degraded
more seriously and secrete less MDEs than those with the
low concentration of drug. Thus, after escaping from the
regionwith the drug, cancer cells with the high concentration
of drug have difficulty in generating space for invasion by
degrading the ECM. Hence, the region where the drug is

Table 2: Velocities of cancer-cells migration at different time steps
(𝜇m/hr).

Concentration 0 2000 4000 6000 8000 10000 50000
0.0 0 2.52 2.55 2.53 2.87 3.22 3.20
5.0 × 10−4 0 2.53 2.56 2.59 2.81 3.07 3.01
1.0 × 10−3 0 2.55 2.57 2.60 2.76 2.83 2.80
5.0 × 10−3 0 2.61 2.78 3.00 2.63 2.64 2.60

assigned as well as the amount of it is essential for the high
efficacy of chemotherapy.

4. Conclusion

In this paper, we have presented amultiphysics andmultiscale
model of chemotherapy and studied the invasion process of
cancer cells. Cancer cells secreting MDEs, degrading ECM,
and chemotherapeutic drug are systematically incorporated
and the multiple mechanisms effectively integrated. Atomic
simulations have been carried out and enhanced the reli-
ability of the simulated diffusion process of chemothera-
peutic drug and corresponding estimation of the efficacy
of drug treatment. Simulation results demonstrate practical
morphological evolution and invasive kinetics of cancer
cells under chemotherapy treatment, which is limited with
one- or two-dimensional models. Moreover, the simulation
results performed with the developed model give insights
that chemotherapeutic drug could change the morphological
shape of cancer cells to prevent migration and decrease
the number of cancer cells. Furthermore, the quantitative
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analysis provides the existence of an optimal amount of
chemotherapeutic drug on improving chemotherapy treat-
ment.
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