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Abstract
Centromere protein W (CENP-W) is essential for chromosome segregation and 
mitotic assembly and has been recognized as a prognostic marker in several 
cancers. However, its significance in clear-cell renal cell carcinoma (ccRCC) remains 
underexplored. To investigate this, we analyzed transcriptomic data from the 
National Center for Biotechnology Information (NCBI) and The Cancer Genome Atlas 
(TCGA) to evaluate CENP-W expression and its associations with clinical outcomes, 
prognosis, and immune-related markers. Kaplan–Meier survival analysis indicated 
that elevated CENP-W levels are significantly associated with poorer overall survival 
in ccRCC patients. Further meta- and multivariate analyses confirmed CENP-W as 
an independent negative prognostic factor. Gene Set Enrichment Analysis (GSEA) 
revealed the involvement of CENP-W in immune-related pathways, notably PI3K-Akt 
and Wnt signaling. Pearson correlation analysis revealed strong associations between 
CENP-W expression and immune cell infiltration, cancer-associated fibroblasts 
(CAFs), CTLA4, and PDCD1. qRT-PCR assays confirmed elevated CENP-W levels in 
ccRCC samples. Additionally, GSEA and GO enrichment highlighted a relationship 
between CENP-W and lipid metabolism, with reduced CENP-W expression leading 
to a significant decrease in lipid droplet accumulation. This study identifies CENP-W 
as a potential biomarker and prognostic indicator in ccRCC, offering insights into 
personalized therapeutic strategies integrating tumor immunity to enhance the 
efficacy of immunotherapy.

Highlights
1. Renal cancer is often late, making early diagnosis crucial.
2. CENPW is highly expressed in tumor and is associated with poor prognosis.
3. CENPW is related to tumor immune infiltration.
4. The link between CENPW, immune checkpoints, and immunotherapy was 
examined.
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1 Introduction
Renal cell carcinoma (RCC) is a heterogeneous malignancy that originates from the 
renal tubular epithelial cell and accounts for about 90 percent of kidney cancers [1]. It 
is one of the ten most common cancers globally, with epidemiological statistics showing 
that there are more than 400,000 new cases each year [2], and the incidence is higher 
in men than in women [3]. Clear cell renal cell carcinoma (ccRCC) is the predominant 
subtype of renal cell carcinoma (RCC), representing approximately 70%–80% of cases. 
Papillary renal cell carcinoma (pRCC) and chromophobe renal cell carcinoma (chRCC) 
rank as the second and third most prevalent subtypes of renal cell cancer, respectively, 
comprising about 10–15% and 3–5% of RCC cases, respectively.[4]

CENPW, located on chromosome 6q22.32 [5], contains a 267 bp open reading frame 
and is regulated by its upstream promoter region [6], resulting in the transcription 
of a 600  bp mRNA. Also known as cancer upregulated gene 2 (CUG2), expression of 
CENPW has been found to be significantly increased in certain malignancies, such as 
cervical, colon, liver, and lung cancers [7–10]. Current research identifies CENPW as 
a critical component of the kinetochore, where it stabilizes the pre-assembly complex, 
thereby ensuring the proper progression of mitosis [11]. This stabilization is pivotal 
in regulating the cell cycle and promoting tumor cell proliferation [12]. Additionally, 
CENPW has been shown to significantly influence the migratory and invasive capa-
bilities of hepatocellular carcinoma cells, underscoring its potential as a predictive bio-
marker for this type of cancer [13].

Immune checkpoints represent a key mechanism by which tumor cells evade attacks 
from the immune system [14]. Tumor cells primarily achieve this by inhibiting T cell 
activity, thereby reducing the immune system’s ability to recognize and target them. The 
most significant immune checkpoint pathways currently identified are the PD-1/PD-L1 
axis and CTLA-4 [15]. Ongoing research into immune checkpoint molecules and com-
bination therapies continues to yield novel strategies aimed at improving cancer treat-
ment outcomes [16].

2 Materials and methods
2.1 Data sources

Relating data were collected from TCIA (The Cancer Immunome Atlas;  h t t p s : / / t c i a . a t 
/ h o m e     ) ; The Cancer Genome Atlas (TCGA, https://portal.gdc.cancer.gov/); The Gene 
Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/); The Gene Expression 
Profiling Interactive Analysis (GEPIA, https:// gepia.cancer-pku.cn/); Tumor Immune 
Estimation Resource (TIMER, https://cistrome.shinyapps.io/timer/); STRING  (   h t t p s : / / 
c n . s t r i n g - d b . o r g /     ) .  

2.2 Human samples

Tissue samples, comprising ccRCC and non-tumor tissues, were procured from the 
Department of Urology at the First Affiliated Hospital of Anhui Medical University, dur-
ing 2022-2023 years. Pathological diagnosis confirmed the tumor type of each sample, 
and informed consents were acquired from all patients. The present investigation imple-
mented the guidelines outlined in the Declaration of Helsinki and received approval 
from the Ethics Committee of Human Research at the First Affiliated Hospital of Anhui 
Medical University (PJ2024-11-95).

https://tcia.at/home
https://tcia.at/home
https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
https://cistrome.shinyapps.io/timer/
https://cn.string-db.org/
https://cn.string-db.org/
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2.3 Cell culture and reagents

All cell lines used in this study were obtained from Procell (Wuhan, China). Cultures 
were maintained under standard conditions at 37 °C with 5% CO2. The specific growth 
media for each cell line were as follows: CAKI-1 cells were cultured in McCoy’s 5A 
medium with 10% FBS; A-498 and ACHN cells were cultured in MEM medium with 
10% FBS;786-O and OS-RC-2 cells were cultured in RPMI 1640 medium supplemented 
with 10% fetal bovine serum (FBS). Additionally, the HK-2 human proximal tubular cell 
line was cultured in MEM medium with 10% FBS, and human embryonic kidney (HEK) 
293-T cells were maintained in high-glucose DMEM medium supplemented with 10% 
FBS.

2.4 Real-time quantitative PCR

It is common to use TRIzol reagent (Invitrogen, Carlsbad, CA) to extract RNA from 
cells and tissues. First, samples are washed three times with PBS, after adding TRIzol, 
let samples dissolve at room temperature for 15 min. Then samples are centrifuged using 
a high-speed centrifuge. Next, mRNA is extracted using chloroform, and after centrif-
ugation, the upper aqueous phase is discarded while the lower precipitate is retained. 
The precipitate is then washed and purified with anhydrous ethanol. Finally, the RNA is 
dissolved in DEPC-treated water, and its purity and concentrations are measured using 
a spectrophotometer. For cDNA synthesis, mRNA extracted by this method is reverse 
transcribed using the PrimeScript™ RT Reagent Kit (Takara, Japan) according to the 
manufacturer’s instructions. The cDNA was amplified using SYBR Green Master Mix 
(Takara, Japan), and mRNA levels in cells or tissues were quantified on the ABI7500 
platform (Thermo Fisher Scientific, USA). The primers used are:

GAPDH:
F: 5′- T T G C C C T C A A C G A C C A C T T T-3′
R: 5′- T G G T C C A G G G G T C T T A C T C C-3′
CENPW:
F: 5'- A A G C C T C A A C T T C G T C T G G A G-3′
R: 5′- C A C A A G C G T T T G T C C T G G A C T-3′

2.4.1 Cell migration and invasion assay

The 786-O and CAKI-1 cells treated with si-CENPW were trypsinized, centrifuged, and 
then resuspended in a medium devoid of serum. The cells were subsequently seeded 
into the upper chambers of transwell inserts at densities of 3,000 cells/mL for migration 
assays and 5000 cells/mL for invasion assays. Following 36 h of incubation at 37 °C in a 
5% CO2 atmosphere, the cells were treated with 4% formaldehyde, using crystal violet 
for staining. Cell counts were then quantified under a microscope.

2.5 Cell proliferation assay

786-O and CAKI-1 cells treated with sh-RNA were seeded into 96-well plates at a den-
sity of 2000 cells/mL. After the cells adhered, cell proliferation was assessed at 0, 1, 2, 
3, and 4 days using the Cell Counting Kit-8 (GlpBio, #GK10001). Absorbance was mea-
sured at a wavelength of 450 nm using a microplate reader.
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2.6 Oil red O staining assay

Seeded onto six-well plates, cells were evaluated for lipid droplet concentration after 
reaching 70% confluence using the Oil Red O Stain Kit (Solarbio, G1262). The cells were 
first washed twice with PBS and then fixed with a fixing buffer for 30  min. After two 
rinses with distilled water, the cells were incubated in 60% isopropanol for 5 min. Freshly 
prepared Oil Red O staining solution was applied for 20 min, followed by a 2-min incu-
bation with Mayer’s hematoxylin staining solution. The stain was discarded, using PBS to 
wash cells three times. The results were then documented using a microscope.

2.7 Lipid droplet staining and quantification

Lipid droplet detection was performed using BODIPY 493/503 (Invitrogen, #D2191). 
Cells were seeded into six-well plates, and when they reached 50% confluence, the detec-
tion was carried out. First, wash the cells twice with PBS, then fix them with 4% form-
aldehyde at room temperature for 20 min. Next, incubate the cells with 2 μM BODIPY 
493/503 at 37 °C in the dark for 15 min. Stain the cells with Hoechst 33342 (10 μg/mL, 
MCE, HY-15559) for 5  min. Finally, use a fluorescence microscope to detect the lipid 
droplet content in the cells.

2.8 Statistical analysis

Statistical analysis was conducted with R-4.3.1 and GraphPad Prism 10.0. For statistical 
differences analysis, students’ t-tests or ANOVA analyses were utilized.

3 Results
3.1 CENPW is abnormally upregulated in ccRCC

First, using the TIMER database, the authors investigated the changes in CENPW 
expression levels in cancer tissues compared to normal samples. The results showed that 
CENPW is significantly upregulated in most cancer types, including ccRCC (Fig. 1a, b). 
CENPW expression profiles from the GSE36895 and GSE53757 datasets also confirmed 
our conclusion (Fig.  1c, d). To further validate the results based on high-throughput 
sequencing and gene microarray, samples collected from clear cell renal cell carcinoma 
patients were subjected to an RT-qPCR experiment. There was a significant upregula-
tion of CENPW mRNA expression in clear cell renal cell carcinoma tissues (Fig. 1e). A 
detailed statistical analysis of the sample characteristics used in these experiments is 
presented in Table 1.

3.2 High expression of CENPW is associated with clinical characteristics

The objective of this work is to investigate the role of CENPW in ccRCC pathogenesis by 
analyzing the correlation between CENPW expression and clinical features of ccRCC. 
Using the TCGA-KIRC dataset, authors identified that CENPW expression levels were 
significantly associated with T-stage, N-stage, M-stage, clinical stage, and patient’s vital 
status but had no correlation with gender and age (Table  2). Furthermore, CENPW 
expression was elevated in advanced T-stage (Fig.  1f ), N-stage (Fig.  1g), and M-stage 
(Fig. 1h). Additionally, high CENPW expression was associated with poorer histologic 
grade and clinical stage (Fig. 1i, j).
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3.3 High expression of CENPW predicts poor clinical outcomes

From the above analysis, the authors demonstrated elevated CENPW expression in 
ccRCC and its correlation with clinical characteristics. However, whether CENPW is 
positively associated with ccRCC malignancy is still largely unknown. To address this, 

Table 1 The samples information used in this study
Pathological pattern Gender Age(y) Position Size TNM

Case 1 ccRCC, Fuhrman 2 Male 59 Right 4.2×3.9×4.2 cm T1bN0M0
Case 2 ccRCC, Fuhrman 2 Female 65 Right 12×4.0×4.0 cm T2bN0M0
Case 3 ccRCC, Fuhrman 2 Male 57 Right 6×4.5×4.5 cm T1bN0M0
Case 4 ccRCC, Fuhrman 2 Male 52 Left 10×9×9 cm T2bN0M0
Case 5 ccRCC, Fuhrman 2 Male 68 Left 8×6×4 cm T3bN1M0
Case 6 ccRCC, Fuhrman 2 Male 59 Left 5.5×5.0×4.5 cm T1bN0M0
Case 7 ccRCC, Fuhrman 1–2 Male 61 Left 3.2×2.2×1.1 cm T1aN0M0
Case 8 ccRCC, Fuhrman 2 Female 71 Left 3×3×2.5 cm T1aN0M0
Case 9 ccRCC, Fuhrman 2 Male 64 Right 5.7×2.9×2.7 cm T1bN0M0
Case 10 ccRCC, Fuhrman 2 Male 54 Right 5×4.5×4 cm T1bN0M0

Fig. 1 The expression level of CENPW in ccRCC and normal tissues. a The expression level of CENPW in TCGA 
projects based on the TIMER2.0 database. b–d The expression changes of CENPW in TCGA-KIRC, GSE36895, and 
GSE53757 datasets. e The mRNA levels of CENPW in paired ccRCC patients’ tissues. f–j The association of CENPW 
expression levels and clinical characteristics. *P < 0.05, **P < 0.01, ***P < 0.001
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the authors stratified patients into high and low CENPW expression groups based on the 
median CENPW expression level in the TCGA-KIRC dataset. Then Kaplan–Meier sur-
vival analysis was conducted, and the findings indicated that the high expression group 
had a notably lower overall survival rate compared to the low expression group (Fig. 2a), 
and the disease-free survival of the high expression group was markedly lower than that 
of the low expression group (Fig. 2b). To evaluate the predictive accuracy of CENPW for 
survival outcomes, the authors performed ROC curve analysis, which demonstrated that 
CENPW serves as an accurate diagnostic indicator for ccRCC patients (Fig.  2a, b). In 
order to confirm the reported findings, Cox regression analysis was employed to ascer-
tain if CENPW was a risk factor for ccRCC patient outcomes. The results showed that in 
addition to Age, Grade, Stage, T-stage, and M-stage, CENPW was a significant risk fac-
tor for the prognosis of ccRCC patients (Fig. 2c). Multivariate analysis further identified 
CENPW as an independent adverse factor, with age, grade, and stage also contributing 
negatively to patient outcomes in the TCGA-KIRC dataset (Fig. 2d). Furthermore, three 
independent datasets validated that CENPW influenced prognosis for patients with 
ccRCC (Fig. 2e).

Table 2 The characteristic of CENPW in clear cell renal cell carcinoma
Characteristic Total (n = 514) CENPW p Value

High(257) Low(257)
Gender
 Male 330 169 161 0.5195
 Female 184 88 96
Age (median [IQR]) 60.500 [52.000, 69.750] 60.000 [51.000, 69.000] 61.000 [52.000, 70.000] 0.2505
T
 T1 257 113 144 0.0066*
 T2 66 30 36
 T3 180 106 74
 T4 11 8 3
N
 N0 + NX 498 244 254 0.0223*
 N1 16 13 3
M
 M0 + MX 435 208 227 0.0277*
 M1 79 49 30
Stage
 I 251 109 142 0.0008*
 II 54 21 33
 III 123 72 51
 IV 83 52 31
 Not report 3 3 0
Grade
 1 13 4 9 0.0004*
 2 217 95 122
 3 201 101 100
 4 75 54 21
 X 8 3 5
Vital status
 Alive 357 159 198 0.0006*
 Dead 154 97 57
 Not report 3 1 2
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3.4 Investigate the function of CENPW in ccRCC

Recognizing CENPW as a deleterious factor in ccRCC, this study further explored the 
potential signaling pathways in which CENPW may be involved. The authors first classi-
fied the data from the TCGA-KIRC dataset into high and low expression groups accord-
ing to the median CENPW expression value. Comparative analysis of gene expression 
profiles between these groups revealed significant differences (Fig. 3a). Then, KEGG and 
Gene Ontology analysis were performed to identify the significant pathways enriched in 
these two groups. The results showed that several pathways often abnormally upregu-
lated in malignancy, such as the PI3K-Akt and Wnt signaling pathways, were enriched 
(Fig. 3b). Interestingly, pathways related to lipid metabolism—such as cholesterol metab-
olism, high-density lipoprotein particle pathways, and fat digestion and absorption—
were also enriched (Fig.  3b, c). High-density lipoprotein is the main carrier involved 
in cholesterol transport, which indicates that CENPW may be involved in cholesterol 
metabolism in ccRCC. The authors also found enriched cytokine-cytokine receptor 
interaction (Fig. 3b), B cell-mediated immunity, antigen binding, and immunoglobulin 
receptor binding (Fig. 3c) indicating that CENPW may impact immune cell infiltration 
and the tumor microenvironment in ccRCC. GSEA was also performed to complete 
GO and KEGG enrichment results. After analyzing the results, the authors found that 
CENPW may promote ccRCC development by activating the P53 signal pathway and 

Fig. 2 The prognosis analysis of CENPW in the TCGA-KIRC dataset. a The overall survival and time-dependent ROC 
curves of 1-, 3-, and 5-year survival rates of ccRCC patients. The area under the curve (AUC) > 0.6 was considered 
as a threshold. b The disease-free survival and time-dependent ROC curves of 1-, 3-, and 5-year survival rates of 
ccRCC patients. The area under the curve (AUC) > 0.6 was considered as a threshold. c Univariate COX regression 
analysis on CENPW expression and other clinical characteristics of ccRCC. d Multivariate COX regression analysis 
on CENPW expression and other clinical characteristics of ccRCC. e The meta-analysis of CENPW prognostic value 
based on four independent datasets
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participating in DNA replication. The cytokine-cytokine receptor interaction pathway 
was significantly enriched in the high-CENPW expression group (Fig.  3d), which was 
consistent with KEGG enrichment results (Fig. 3b).

3.5 PPI network and co-expression analysis of CENPW

A protein–protein interaction (PPI) network was constructed using the STRING data-
base (Fig.  4a). Then, Degree and Maximum Neighborhood Component (MNC) algo-
rithms were carried out to recognize the hub genes from this network. The top 10 genes 
calculated by these two methods showed significant consistency (Fig.  4b). The GO 
enrichment of these hub genes showed that these genes were related to protein-DNA 
complex, chromosome, and kinetochore (Fig. 4c). These findings suggest that CENPW 

Fig. 3 Functional enrichment analysis of CENPW in ccRCC. a Different expression genes between high and low 
CENPW expression groups. b KEGG Enrichment analysis of CENPW in ccRCC. c GO enrichment analysis of CENPW 
in biological process (BP), molecular function (MF), and cellular component (CC). d Gene set enrichment analysis 
(GSEA) of CENPW in ccRCC
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primarily interacts with genes related to DNA replication and cell division, thereby pro-
moting the proliferation of ccRCC cells. The co-expressed genes with CENPW were 
determined based on Spearman correlation analysis across the whole transcriptome 
sequences of TCGA-KIRC. These are the top five positively correlated genes based on 
correlation coefficients (UBE2C, PTTG1, AURKB, CDC20, BIRC5) and the top 5 neg-
atively correlated genes (HOOK1, PRKAA2, OSBPL1A, SPATA18, EMX2OS) were 
selected under the criterion of P-value less than 0.01.

3.6 CENPW is involved in immune cell infiltration of ccRCC

GO enrichment analysis data pointed out that CENPW may be involved in tumor 
immunology. Given that tumor immune cell infiltration is essential in tumor develop-
ment, CENPW and immune infiltration need to be investigated.

First, the TIMER database was used to analyze the correlation between CENPW 
expression and immune cell infiltration. A negative association was seen between the 
expression of CENPW and tumor purity, whereas a positive correlation was found 
between CENPW expression with the quantification of CD8 + cells, CD4 + T cells, B 
cells, Neutrophils, Macrophages, and Dendritic cells infiltrating the tumor (Fig. 5a).

Fig. 4 The PPI network analysis and co-expression analysis of CENPW. a The PPI network of CENPW based on the 
STRING database. b The hubgene of the PPI network identified by MNC and Degree methods. c GO enrichment 
analysis of hubgene. d, e Top 10 co-expression genes of CENPW in TCGA-KIRC dataset
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Then, the ESTIMATE algorithm, applied to TCGA-KIRC expression data, assessed 
differences in tumor-associated stromal and immune cell infiltration between high and 
low CENPW expression groups. Consistent with TIMER findings, tumor purity was 
significantly reduced in the CENPW high-expression group, which exhibited greater 
abundance of immune and stromal cells. The Immune Score, Stromal Score, and com-
prehensive ESTIMATE Score were all significantly higher in the high CENPW expres-
sion group compared to the low-expression group (Fig. 5b).

Next, to supplement TIMER data, CIBERSORT algorithms were employed to compare 
immune cell infiltration between the two groups. Consistent with Fig. 5a, CD8 + T cells 
and M0 macrophages showed higher infiltration in the CENPW high-expression group. 

Fig. 5 Immune infiltration and immune checkpoint analysis of CENPW. a The correlation between CENPW ex-
pression with tumor purity and immune cells based on the TIMER database. b ESTIMATE analysis of TME differ-
ences between two groups. c Immune cell infiltration differences between CENPW high-expression and CENPW 
low-expression groups. d The expression levels of immune checkpoints between CENPW high-expression and 
CENPW low-expression groups. e, f The correlation between the expression level of CENPW and common immune 
checkpoints
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Additionally, increased infiltration of activated follicular helper T cells, memory CD4 + T 
cells, NK cells, γδ T cells, and dendritic cells was observed in this group (Fig. 5c).

At last, as immune checkpoint therapy has become increasingly important in cancer 
therapy, an exploration of the co-relation between immune checkpoints and CENPW 
expression is necessary. It founded out that 27 immune checkpoints were elevated in the 
CENPW high-expressed group and were positively associated with CENPW expression 
level to varying degrees (Fig. 5d, e). CTLA4, a target of Ipilimumab for immunotherapy, 
was associated with the expression level of CENPW. Another gene, PDCD1 encoding 
PD1 showed positive correlations with CENPW expression. Conversely, CD274 (PD-L1) 
and IDO1 were negatively correlated with CENPW expression (Fig. 5f ).

3.7 Immunotherapy and chemotherapy responsibility of CENPW

To better evaluate the value of immune checkpoint inhibitors targeting CTLA4 and PD1 
and find potential chemotherapy molecules for ccRCC, the authors performed immuno-
phenoscore (IPS) analysis and IC50 analysis based on the TCIA database and the ‘pRRo-
phetic’ R package. The results revealed that the CENPW high-expressed group showed 
greater IPS-CTLA4-pos-PD1-neg and IPS-CTLA4-pos-PD1-pos values but Statistical 
analysis did not reveal a significant difference between the IPS_CTLA4_neg_PD1_pos 
and IPS_CTLA4_neg_PD1_neg values (Fig.  6a), which indicates that high CENPW 
group responded better to CTLA4 inhibitor alone or CTLA4 inhibitor combined with 
PD-1 inhibitor. Patients with high CENPW expression may exhibit greater sensitiv-
ity to CTLA4 inhibitor treatment. Additionally, these patients were more susceptible 

Fig. 6 Response to chemotherapy and immunotherapy between CENPW high-expression and CENPW low-ex-
pression groups. a Response to CTLA-4 and PD-1 inhibitors in the CENPW high-expression and CENPW low-ex-
pression groups. b Sensitivity of several chemotherapeutic molecules in the CENPW high-expression and CENPW 
low-expression groups
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to first-line chemotherapy drugs, including 5-Fluorouracil, Cisplatin, and Doxorubicin. 
In addition, the authors also found other candidate drugs for high CENPW expression 
patients (Fig. 6b).

3.8 Verification of the function of CENPW in ccRCC

The authors also identified the expression level of CENPW in several renal cell carci-
noma cell lines and selected 786-O and CAKI-1 cell lines, which were highly expressed 
CENPW compared to other cancer cells, for further experimental verification (Fig. 7a). 
After knocking down the expression of CENPW by siRNA (Fig.  7b), the cell viability 
(Fig. 7c), migration, and invasion abilities (Fig. 7d) were significantly reduced.

3.9 CENPW regulates lipid metabolism in ccRCC

Through GO pathway enrichment analysis of the CENPW dataset, we found that 
CENPW might be associated with lipoprotein activity, which can enhance the uptake 
of lipid synthesis precursors through the cell membrane. This activity could contribute 

Fig. 7 Inhibit CENPW expression affects renal cell carcinoma cell proliferation, migration, and invasion. a qRT-PCR 
analysis of CENPW expression in renal cell carcinoma cell lines. b Knocked down the expression of CENPW in 786-O 
and Caki-1 cell lines. c Knocked down the expression of CENPW regressed the proliferation ability of renal cell car-
cinoma cells. d Knocked down the expression of CENPW inhibits renal cell carcinoma cell migration and invasion
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to the accumulation of lipid droplets in ccRCC (Fig.  8. a). GSEA enrichment analysis 
revealed that high CENPW is highly expressed, the adipocytokine signaling pathway and 
fatty acids metabolism are activated, thus regulating lipid metabolism in ccRCC (Fig. 8b, 
c). To investigate the functional impact of CENPW on lipid metabolism in ccRCC, we 
performed an Oil Red O staining experiment (Fig. 8d). The results showed that knocking 

Fig. 8 GO Enrichment analysis of CENPW in ccRCC. a Gene set enrichment analysis (GSEA) of CENPW in ccRCC. b, 
c The Oil Red O staining experiment revealed changes in lipid droplet content in 786-O cells when the expression 
level of CENPW decreased. d BODIPY 493/503 staining demonstrated changes in lipid droplet content
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down CENPW significantly reduced lipid droplet accumulation in the 786-O cell line. 
Then, we conducted BODIPY 493/503 staining on 786-O cells and observed that neutral 
lipid droplets in renal cell carcinoma were markedly reduced after CENPW knockdown 
(Fig. 8e). Therefore, CENPW plays a pivotal role in regulating lipid droplet content in 
ccRCC.

4 Discussion
The treatment of ccRCC is still difficult considering the high metastasis rate and chemo-
resistance occurrence, so the discovery of biomarkers for early diagnosis and targeted 
therapies is of great importance [17]. Advances in next-generation sequencing (NGS) 
have significantly facilitated the identification of novel biomarkers. For instance, Pu et al. 
identified TREM-1 as a potential diagnostic biomarker for ccRCC, which was also linked 
to immune infiltration through bioinformatics analysis [18]. In this study, the author 
identified CENPW as a biomarker and therapeutic target for ccRCC. CENPW expres-
sion is significantly higher in tumor tissues compared to normal tissues through analyses 
of the TCGA and GEO databases. High CENPW expression was associated with tumor 
progression and poor survival outcomes, as shown in the TCGA-KIRC database. Enrich-
ment analyses (KEGG, GO, and GSEA) suggested that CENPW is linked to pathways 
such as fat digestion, absorption, and cytokine receptor interaction. In vitro experiments 
confirmed that CENPW expression is elevated in tumor tissues. Knockdown of CENPW 
in ccRCC cells inhibited proliferation, migration, and invasion, and reduced lipid droplet 
accumulation, as shown by Oil Red O and Bodipy 493/503 assays. In summary, CENPW 
plays a key role in ccRCC progression, with significant associations with immune cell 
infiltration and lipid metabolism. These findings highlight CENPW as a promising prog-
nostic biomarker and therapeutic target for ccRCC.

CENPW, a key protein involved in the formation of centromeric nucleosomes [10], has 
been recognized to be upregulated in various cancers. Wang et al. reported the abnor-
mal expression level of CENPW in breast cancer, and high expression of CENPW was 
correlated with adverse clinical features [19]. Similarly, this study revealed that CENPW 
was elevated in ccRCC patients based on various datasets and laboratory experiments, 
we found that the expression level of CENPW increases with the rise in tumor malig-
nancy. This phenomenon is particularly evident in TNM staging and is also observed in 
histological grading and classification. The results also point out that patients with high 
expressions of CENPW have poor survival rates. Taken together, these results indicate 
that CENPW is an adverse factor to the patient’s prognosis and may serve as a diagnostic 
therapeutic target and biomarker for ccRCC patients. Zhou et al. found that CENPW 
could promote hepatocellular carcinoma progression by activating the E2F signal path-
way [9]. Still, the exact mechanism by which CENPW contributes to the malignancy of 
ccRCC remains unclear.

The most outstanding characteristic of ccRCC is the aberrant metabolic process re-
organization to promote unbridled tumor growth [20–23]. Instead of extracting energy 
from mitochondrial oxidative phosphorylation and lipid decomposition [24–28], ccRCC 
cells rely on the glycolysis [26, 29, 30]. These lead to the remarkable lipid accumula-
tion in the ccRCC. Lipid metabolic reprogramming plays a critical role in ccRCC, sig-
nificantly impacting tumor initiation, progression, and malignant behavior [31]. Key 
characteristics of metabolic reprogramming in tumors include increased lipid storage, 
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alterations in fatty acid metabolism, and cholesterol metabolism dysregulation [32–34]. 
This reprogramming influences ccRCC progression by affecting tumor growth, migra-
tion, invasion, and immune evasion [35]. Li et al. discovered that CTBP1-DT regulates 
lipid synthesis in clear cell renal cell carcinoma (ccRCC), thereby promoting the progres-
sion of renal cancer [36]. In another research, an important regulator of lipid metabo-
lism in ccRCC, the isoform of Annexin A3, was discovered [25]. In our study, we found 
the potential role of CENPW in regulating ccRCC lipid accumulation. Enrichment anal-
ysis revealed that CENPW regulates the adipocytokine signaling pathway and fatty acid 
metabolism, thereby contributing to lipid droplet accumulation in ccRCC. Furthermore, 
our experiments demonstrated that knocking down CENPW significantly reduces lipid 
droplets in clear cell renal cell carcinoma (ccRCC) cells. Since lipid droplets are criti-
cal substances in the development and progression of ccRCC, their significant reduc-
tion notably impacts tumor cell growth. However, the specific mechanisms by which 
CENPW influences lipid droplet synthesis remain to be elucidated.

Another unexpected finding is the underlying relationship between CENPW and 
immune cell infiltration. Clear cell renal cell carcinoma (ccRCC) is one of the most 
immune-infiltrated tumor types, characterized by a unique tumor microenvironment 
(TME) enriched with abundant immune cells yet exhibiting pronounced immuno-
suppressive properties [37–39]. Multiple regulators could influence the infiltration of 
immune cells, such as miR-29b and miR-198, which could induce CD8+ T cell dysfunc-
tion in ccRCC [40]. Through TIMER analysis, we found correlations between CENPW 
expression and immune cell infiltration, such as CD8 + T cells, CD4 + T cells, and B 
cells. These findings indicated the function of CENPW in tumor microenvironment 
regulation. Recently, emerging evidence also emphasizes the role of certain metabolic 
pathways in regulating tumor microenvironments, such as complements [41] and kyn-
urenine [42]. As an important metabolic process, lipid metabolism could also influence 
the immune microenvironment in ccRCC. For instance, oxidized lipids could induce the 
immune dysfunction of CD8+ T cells [43]. In our study, CENPW was associated with 
immune cell infiltration and lipid metabolic signal pathways. We speculate that CENPW 
may also regulate immune cell activity by augmenting the lipid metabolism process, fur-
ther research focusing on this mechanism would be significant.

Dysregulated tumor microenvironments could also affect the therapy responses of 
ccRCC [44–48]. Studies have shown that the expression levels of programmed death 
receptor-1 (PD-1), its ligand (PD-L1), and cytotoxic T-lymphocyte antigen-4 (CTLA4) 
are significantly elevated in tumor tissues of ccRCC patients [49]. Due to the pivotal 
roles of PD-L1 and CTLA4 in the TME, CTLA4, and PD-1/PD-L1 inhibitors have 
become mainstay treatments for ccRCC in recent years, particularly in advanced or met-
astatic cases [50]. Clinical studies have demonstrated that combination immunotherapy 
(e.g., Ipilimumab combined with Nivolumab) significantly improves overall survival and 
progression-free survival in ccRCC patients [51]. Our study reveals the multifaceted role 
of CENPW in influencing the treatment response of ccRCC. High CENPW expression 
level was correlated with the upregulation of 27 immune checkpoints, including CTLA4 
and PDCD1. TCIA database analysis further showed that patients with high CENPW 
expression respond better to CTLA4 inhibitors and exhibit greater sensitivity to chemo-
therapy drugs like 5-fluorouracil, cisplatin, and doxorubicin. By modulating immune cell 
infiltration, cytokine signaling, immune checkpoint expression, and metabolic pathways, 
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CENPW emerges as a key driver of TME dynamics and tumor progression. Its associa-
tion with immune checkpoint molecules, particularly CTLA4 and PD-1, underscores its 
potential as a predictive biomarker for immunotherapy response. These findings lay the 
theoretical groundwork for future exploration of CENPW’s therapeutic value, whether 
through direct inhibition or by leveraging its role in TME metabolism-immune interac-
tions for targeted interventions.

5 Conclusion
In conclusion, the authors investigated the role of CENPW in ccRCC. CENPW was 
upregulated in tumors compared to normal renal tissues. CENPW was also associated 
with worse clinical outcomes. In addition, CENPW was involved in immune cell infil-
tration and could serve as a potential target for immunotherapy and chemotherapy. 
Finally, by knocking down the expression of CENPW in RCC cells, the authors found 
that CENPW was associated with cancer cell viability, migration, and invasion abilities.
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