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The understanding and control of the light-induced isomerization of azobenzenes as one of the most important classes of molecular

switches is crucial for the design of light-responsive materials using this entity. Herein, we present the stabilization of metastable

(Z£)-azobenzenes by London dispersion interactions, even in the presence of comparably stronger hydrogen bonds in various sol-

vents. The Z—F isomerization rates of several N-substituted 4,4"-bis(4-aminobenzyl)azobenzenes were measured. An intramolecu-

lar stabilization was observed and explained by the interplay of intramolecular amide and carbamate hydrogen bonds as well as

London dispersion interactions. Whereas in toluene, 1,4-dioxane and tert-butyl methyl ether the hydrogen bonds dominate, the vari-

ation in stabilization of the different substituted azobenzenes in dimethyl sulfoxide can be rationalized by London dispersion inter-

actions. These findings were supported by conformational analysis and DFT computations and reveal low-energy London disper-

sion forces to be a significant factor, even in the presence of hydrogen bonds.

Introduction

The photo-controlled E—Z isomerization of azobenzene has
been known for decades [1] and has originated a wide field of
applications in recent years. This molecular switch has been
utilized inter alia in the rising field of photopharmacology [2,3],
the manipulation of biomolecular processes [4-6] as well as in
molecular machinery [7,8] and materials science [9-11].
Azobenzenes are highly stable, easily synthesized [12] and
show reversible isomerization from the thermally stable E- to

the Z-isomer upon irradiation with UV light. The metastable
Z-azobenzene re-isomerizes to the E-conformer either ther-
mally or upon irradiation with visible light [13,14]. Interest-
ingly, the thermal stability of azobenzene isomers can be
reversed by the incorporation of azobenzene units in macro-
cyclic arrangements [15]. For example, the groups of Tamaoki
[16] and Herges [17] reported azobenzophanes that isomerize

thermally to their energetically lower Z-conformations from
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their corresponding higher energy E-isomers. Moreover, our
group presented a highly strained bisazobenzophane that was
found to be stable exclusively in its (Z,Z)-form. Consequently,
no isomerization, neither photochemically nor thermally, to its
(E,Z)- or (E,E)-state occurred on the observed time scale [18].

The thermal half-lives of acyclic (£)-azobenzenes can be
prolonged dramatically by ortho-fluorine substitution, resulting
in half-lives of up to two years at room temperature [19]. These
highly thermally stable (Z)-ortho-fluoroazobenzenes can be
re-isomerized almost instantaneously in an electrocatalytic
fashion [20]. Furthermore, (Z£)-azobenzenes can also be stabi-
lized without changing their electronic configuration by attrac-
tive London dispersion (LD) interactions [21,22]. In a recent
study, we reported that all-meta-alkyl-substituted (Z)-azoben-
zenes increase in stability with increasingly larger substituents
(Scheme 1) [23]. Supported by density functional theory (DFT)
computations, attractive LD forces were identified as the origin
of this stability trend. Based on this study, LD interactions
represent a valuable tool for the design of novel azobenzene
photoswitches [24]. Herein we provide further evidence for the
importance of LD as unneglectable stabilizing element in

controlling interactions in functionalized molecules.

During studies on cyclobisazodiphenylmethane [18] we noticed
that the bulky (Z2)-4,4’-bis[4-(3,5,5-trimethylhexanoyl-
amino)benzyl]azobenzene (4, Scheme 2a) showed an unexpect-
edly increased thermal half-life compared to other azobenzenes
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Scheme 1: Half-lives for the thermal Z—E isomerization of all-meta-
alkyl-substituted azobenzenes 1-3 in DMSO and n-octane at 53.2 °C
(examples taken from ref. [23], Cy = cyclohexyl, Ad = adamantyl).

5-7 in tert-butyl methyl ether (TBME) as solvent. This observa-
tion is surprising, since azobenzenes 47 are electronically very
similar as the methylene linker prevents conjugation of the
N-aryl and the azobenzene moieties. At first thought, the large
spatial separation of the N-substituted moieties in (Z)-4—7 make
intramolecular stabilizing interactions unlikely. Nevertheless, it
can be envisioned that the freely rotatable Ar—CH,—Ar units
should allow the formation of close proximity conformers of
(Z)-4a in solution, in which attractive interactions, such as
hydrogen bonding and London dispersion, may indeed become
possible (Scheme 2b) [25]. To further investigate this phenome-
non, the rates of the thermal Z—FE isomerization of azoben-
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Scheme 2: Isomerization of N-substituted Z-azobenzenes (a). Rotational equilibrium of (Z)-4 allowing intramolecular interactions (b).
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zenes 4-7 were determined in different solvents and at different
temperatures (for syntheses, see ref. [18] and experimental

section).

Results and Discussion

To further investigate the prior observations, the thermal Z—F
isomerization rates of azobenzenes 4—7 were determined by
UV-vis spectroscopy in several solvents at 25 °C and 35 °C, re-
spectively. The lowest thermal isomerization rates were found
for the crowded 4,4’-bis[4-(3,5,5,-trimethylhexanoyl-
amino)benzyl]azobenzene (4, Table 1, entry 1), expressed in the
longest half-lives 7. However, in the highly polar solvent
dimethyl sulfoxide (DMSO) all azoamides (4, 5, Table 1,
entries 1 and 2) as well as the azocarbamate 6 (Table 1, entry 3)
showed very similar isomerization rates. Additionally, nearly
the same half-lives were observed in all solvents for the Z—E
isomerizations of azoamine 7 (Table 1, entry 4) and azocarba-
mate 6 (Table 1, entry 3). The isomerization rates of bis(tert-
butylcarbonylaminobenzyl)azobenzene S could not be measured
in toluene and TBME due to the insolubility of the compound in
these solvents. In 1,4-dioxane and DMSO the isomerization
depends on the temperature. While the rates are in comparison
rather long at 25 °C, these processes are considerably faster at
35 °C.

Beilstein J. Org. Chem. 2018, 14, 1238-1243.

As outlined before, several stabilizing interactions such as LD,
hydrogen bonding and solvation effects are possible for the
stabilization of Z-azobenzenes 4-7. To estimate the influences
of those effects, a conformer distribution analysis was per-
formed to identify low-lying conformations of the correspond-
ing (Z)-azobenzenes. The energetically favored conformers
found (within 1.5 kcal mol™! for 4 and 5 kcal mol™! for 5-7, re-
spectively, relative to the lowest energy conformer) were then
re-optimized at the B3LYP/6-31G** [26-29] level of theory
with and without D3(BJ) [30,31] dispersion correction (gas
phase) (conformations of one enantiomer of each diastereomer
of 4 were analyzed. The maximum stabilization was found for
(R,S)-4. For the other diastereomer, see Supporting Information
File 1).

As it can be seen in Table 2, the computations reproduced the
stabilization of the tight conformations relative to their open
forms, which is in agreement with the experimentally observed
kinetics of azobenzenes 4—7. Comparing the free energies of
azobenzenes 4-7 relative to their sterically less crowded confor-
mations, where the diphenylmethane units point away from
each other, azodiamide 4 was found to feature the highest stabi-
lization, whereas the fert-butylcarbonylamino compound 5 and
Boc-protected derivative 6 are almost equally stabilized.

Table 1: Thermal Z—E isomerization half-lives T (standard deviations in parentheses) of azobenzenes 4-7 in various solvents.

entry compound T7_e [h]
toluene 1,4-dioxane DMSO TBME
25°C 35°C 25°C 35°C 25°C 35°C 25°C 35°C
1 4 97 322 45 16.7 50.1 14.7 65 26
R =TMH? (6) (0.8) (7) (0.4) (0.2) (0.002) (13) (1)
2 5 - - 46.3 14.0 50.0 14.4 - -
R = COt-Bu (0.6) (0.1) (0.2) (0.2)
3 6 48 14.0 39.7 14.9 51.1 14.4 36 14
R = Boc (2) (0.6) (0.2) (0.1) (0.3) (0.2) (10) (1)
4 7 354 11.5 38 12.0 45.7 12.8 37.6 14.3
R=H (0.2) (0.5) (2) (0.3) (0.01) (0.3) (0.7) (0.3)

a8TMH = 3,5,5-trimethylhexanoyl.

Table 2: Computational results for (Z)-azobenzenes 4-7. AG is the free energy of the most stable Z-conformer relative to the corresponding open (Z)-
conformation (method in parentheses, see Figure S4 in Supporting Information File 1 for graphical representations of the compared conformers).

Compound

AG relative to open conformations (B3LYP-D3(BJ)?) [kcal mol™"]
AG relative to open conformations (B3LYP?) [kcal mol~"]

ONH-—x [A2P

closest dy...H [A]

aBasis set: 6-31G**, PX = O for 4, 5 and 6; X = N for 7.

4 5 6 7
R=TMH R = COt-Bu R =Boc R=H
-16.9 -10.5 -10.7 -3.7
1.2 -0.7 0.6 0.5
1.87 2.14 1.90 2.1
2.38 2.53 2.39 -
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Furthermore, azodiamine 7 shows the lowest relative stabiliza-
tion and thus isomerizes most rapidly. Additionally, all com-
pounds form intramolecular hydrogen bonds between the
N-substituted moieties. However, the higher relative free ener-
gies computed with D3(BJ) dispersion correction, as well as the
close H-H contacts in all compounds of about 2.4 A to 3.0 A
support the stabilizing effect of LD interactions in (Z)-azoben-
zenes 4-7. Figure 1 visualizes the computational findings for
the compared conformers of (Z)-4. A noncovalent interaction
(NCI) analysis [32,33] of (R,S)-4 in its tightly folded conforma-
tion revealed multiple attractive H-H as well as H-r interac-
tions between the amide residues and the aryl groups to be re-
sponsible for the overall stabilization (green and blue isosur-
faces in Figure 1b).

Apparently, hydrogen bonds are much stronger than LD interac-
tions and are mainly responsible for the observed stabilization
effects, which is also represented as a blue surface in the NCI
plot of (R,S)-4 cl. Furthermore, it is known that amides form
stronger hydrogen bonds than carbamates and the strength also
depends on the steric bulk of the amide [34]. This explains the
highest stabilization of the trimethylhexanoylamide 4 (experi-
mentally and computationally), followed by the tert-butylamide
5 and fert-butyl carbamate 6, which are almost equally stabi-
lized. Nevertheless, hydrogen bonds are strongly dependent on
the solvent system and become weaker with increasing dielec-
tric constant of the solvent [35]. This fact becomes obvious
when comparing the half-lives of azobenzene 4 in non-polar tol-
uene or TBME with polar DMSO. In contrast to toluene, the
half-life of 4 decreased almost by 50% in DMSO due to the
weakening of intramolecular hydrogen bonding. As a result, all
azobenzenes despite 7 showed comparable isomerization half-

lives in DMSO. Accordingly, LD interactions can be responsi-

’ }\?‘r‘?@?ﬁ%’,
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(R,S)-4 c0
AG = 0.0 kcal mol!
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ble for the slightly but significantly prolonged half-lives com-
pared to azodiamine 7. Analyzing the isomerization in 1,4-
dioxane, weak hydrogen bonds as well as dispersion interac-
tions are operative, which is expressed by the same isomeriza-
tion half-life trend as in toluene, yet with lower absolute values.
These results show, that LD interactions may indeed contribute
to the overall stabilization of complex molecules even in the
presence of stronger interactions, such as hydrogen bonds
[36,37].

Conclusion

In conclusion, unexpected variations in the isomerization rates
of azobenzenes with different remote nitrogen substituents were
observed. The experimental and computational investigations
reveal a subtle interplay of hydrogen bonding, LD interactions
and solvent effects. In general, intramolecular hydrogen bonds
were found to have the strongest influence on the observed ther-
mal Z—F isomerization half-lives. However, LD becomes the
decisive factor in polar solvents in which hydrogen bonding
plays a minor role. This study demonstrates the importance of
even small energy interactions, such as LD, and provides new
insights for the application of LD as design element in complex

systems in general.

Experimental

Synthesis of bis(tert-butylcarbonylamino)azobenzene 5: To a
solution of 4,4'-bis(4-aminobenzyl)azobenzene (7) [18] (78 mg,
0.20 mmol, 1.0 equiv) and NEt3 (65 puL, 0.44 mmol, 2.2 equiv)
in THF (2 mL), pivaloyl chloride (54.4 pL, 0.437 mmol,
2.20 equiv) in THF (0.5 mL) was added dropwise at 0 °C. Then,
the reaction was allowed to warm to rt while stirring for 2 h.
After quenching with sat. aq. NH4Cl solution (5 mL), the
aqueous phase was extracted with THF (5 mL). The organic

7 (RS)ac
AG =-16.9 kcal mol"

Figure 1: a) Optimized geometry of open conformer (R,S)-4 c0. b) NCI plot of the most stable conformer of (R,S)-4 (green and blue isosurfaces indi-

cate attractive noncovalent interactions).
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phase was washed with sat. aq. NaHCO3 (2 x 10 mL) and was
dried over MgSOQy, filtered and concentrated. The residue was
suspended in hot EtOH and was filtered while hot. After evapo-
ration of the filtrate, the residue was washed with HyO and was
dried under high vacuum to yield the product as a yellow solid
(39 mg, 35%). '"H NMR (400 MHz, DMSO-dg) & ppm 9.14 (s,
2H), 7.79 (d, J = 8.0 Hz, 4H), 7.56 (d, J = 8.2 Hz, 4H), 7.40 (d,
J=28.0 Hz, 4H), 7.18 (d, J = 8.1 Hz, 4H), 3.98 (s, 4H), 1.20 (s,
18H); 13C NMR (101 MHz, DMSO-dg) & ppm 176.3, 150.3,
145.3, 137.5, 135.3, 129.6, 128.7, 122.6, 120.5, 40.7*, 39.5%,
27.2; HRMS (ESI) m/z: [M + Na]" calcd, 583.3043; found,
583.3043. *identified by HSQC and HMBC spectroscopy.

Supporting Information

Supporting Information File 1

NMR spectra of azobenzene 5, UV—vis data and detailed
procedures, details for conformational analysis and DFT
computations.
[https://www.beilstein-journals.org/bjoc/content/
supplementary/1860-5397-14-106-S1.pdf]
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