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Abstract
Exfoliative cytology has been widely used for early diagnosis of oral squamous cell carcino-

ma (OSCC). Test outcome is reported as “negative”, “atypical” (defined as abnormal epithe-

lial changes of uncertain diagnostic significance), and “positive” (defined as definitive

cellular evidence of epithelial dysplasia or carcinoma). The major challenge is how to prop-

erly manage the “atypical” patients in order to diagnose OSCC early and prevent OSCC. In

this study, we collected exfoliative cytology data, histopathology data, and clinical data of

normal subjects (n=102), oral leukoplakia (OLK) patients (n=82), and OSCC patients

(n=93), and developed a data analysis procedure for quantitative risk stratification of OLK

patients. This procedure involving a step called expert-guided data transformation and re-

construction (EdTAR) which allows automatic data processing and reconstruction and re-

veals informative signals for subsequent risk stratification. Modern machine learning

techniques were utilized to build statistical prediction models on the reconstructed data.

Among the several models tested using resampling methods for parameter pruning and per-

formance evaluation, Support Vector Machine (SVM) was found to be optimal with a high

sensitivity (median>0.98) and specificity (median>0.99). With the SVMmodel, we con-

structed an oral cancer risk index (OCRI) which may potentially guide clinical follow-up of

OLK patients. One OLK patient with an initial OCRI of 0.88 developed OSCC after 40

months of follow-up. In conclusion, we have developed a statistical method for qualitative

risk stratification of OLK patients. This method may potentially improve cost-effectiveness

of clinical follow-up of OLK patients, and help design clinical chemoprevention trial for high-

risk populations.
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Introduction
Oral cancer is one of the major public health problems worldwide, as well as a major cause of
cancer morbidity and mortality [1, 2]. In the United States, approximately 28,030 new cases are
estimated and 5,850 cases are estimated to die in 2014 [1]. In China, the overall rates of inci-
dence and mortality for oral cancer were 2.93 and 1.26 per 100,000 persons in 2011, and the
age-standardized rate of incidence was 2.22 per 100,000 persons [3]. Oral squamous cell carci-
noma (OSCC) is the most common type of oral cancer, which usually develops from precan-
cerous lesions such as oral leukoplakia (OLK) and erythroplakia, and histopathologically
follows a step-wise pattern of hyperplasia, dysplasia and squamous cell carcinoma [4, 5]. Over-
all survival of OSCC patients remained unchanged despite the advances in radiotherapy and
chemotherapy [1]. The five-year survival rate for patients with early and localized lesions is
~80%, whereas it is only 19% for patients with distant metastasis [6]. Thus it is important to as-
sess precancerous lesions and diagnose OSCC early.

OLK is defined as “a white plaque of questionable risk having excluded other known dis-
eases or disorders that carry no increased risk for cancer” [7, 8]. And the annual age-adjusted
incidence rates of OLK varied from 1.1 to 2.4 in male and from 0.2 to 1.3 in female per 1,000
persons in India, and the prevalence varied from 0.2 to 4.9% [9]. In Japan, the age-adjusted in-
cidence rate was 4.1 in male and 0.7 in female per 1,000 person-years [10]. Histopathologically,
OLK presents as hyperkeratosis of the squamous epithelium in oral cavity. Months or years are
needed for hyperkeratosis progress to cancer. The overall chance of malignant transformation
is 3.6% [11] and can be up to 12.9% in some populations [12–14]. This situation creates a huge
burden on health care and therefore, there is a need of risk stratification for OLK patients to
improve the cost-effectiveness of clinical follow-up.

OLK lesions with a red component, ulceration, or certain topography (granular, nodular, or
verrucous) are more likely to develop malignancy [8, 15]. Being subjective in nature, visual in-
spection depends on clinical experience of the physician, and mucosal appearance of early-
stage cancer may appear benign [15]. Histopathology remains the golden standard and the
presence of dysplasia often indicates a high risk of cancer [16]. Unfortunately this invasive ap-
proach cannot be repeated during follow-up due to poor acceptance by patients. Diagnosis of
dysplasia is also subject to experience of the pathologist and sometimes consensus among pa-
thologists is poor [17].

Several other measures are available for clinicians to assess OLK lesions: 1) Visual assess-
ment of the physico-chemical properties, such as toluidine blue staining [18], fluorescence
spectroscopy [19]: These methods are easy and quick to use, yet less specific [15, 18, 20]. 2)
Laboratory assessment of cellular markers: Exfoliative cytology in conjunction with DNA
quantitative analysis [21], micronucleus analysis [22] and nucleolar organizer regions [23], has
already been used routinely for diagnosis of OSCC [24]. Its sensitivity and specificity has been
reported up to 100% [6, 21, 25–27]. However, some other studies have shown that exfoliative
cytology is of no value in detecting mucosal changes that are not readily visible to the naked
eyes [18]. Although qualitative assessment (“negative for OSCC”, “positive for OSCC”, or
“atypical lesion”) works well for OSCC diagnosis, this method has limited use in assessing can-
cer risk of those negative and atypical cases. 3) Laboratory assessment of molecular markers:
Chromosome in situ hybridization, immunohistochemistry, real-time PCR, gene microarray
and proteomics have been used for detection of alterations in DNA, mRNA and protein [28].
Although these molecular tools have shown promising results with improved accuracy of can-
cer diagnosis, they are usually expensive and require high-quality biopsy samples.

In this study, we developed a statistical model for quantitative risk stratification of OLK. A
risk index metrics was established to reflect the probability of OSCC. Our main purpose is to
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distinguish high-risk OLK from low-risk OLK based on data collected by exfoliative cytology,
and therefore to potentially improve cost-effectiveness of clinical follow-up.

Materials and Methods

Clinical subjects, clinical data and follow-up
We recruited and followed patients fromMarch 2008 to October 2014. The mean, maximum
and minimum follow-up time for the OLK patients was 46 months, 74 months and 20 months
respectively. During follow-up, changes in clinical signs and symptoms of all subjects were doc-
umented through clinical examination and phone calls. Malignant transformation was con-
firmed by histopathology.

Exfoliated cells were collected from oral mucosa of patients with OLK (n = 82), OSCC
(n = 93), and healthy subjects (n = 102) in the outpatient clinic (Table 1). Those who smoked
more than 1 pack year were defined as smokers, and a pack year is defined as twenty cigarettes
smoked every day for one year. Those who drunk more than 14 g alcohol per day for one year
were regarded as drinkers. A ‘standard drink’ is equivalent 14 g alcohol per day [29]. OSCC
was classified according to the TNM classification: Stage 0: Tis (carcinoma in situ), N0 (no re-
gional lymph node metastasis) and M0 (No distant metastasis); Stage I: T1 (tumor 2 cm or less
in greatest dimension), N0 and M0; Stage II: T2 (tumor more than 2 cm but no more than 4
cm in greatest dimension), N0 and M0; Stage III: T1/T2, N1 (metastasis in a single ipsilateral
lymph node, 3 cm or less in greatest dimension) and M0, or T3 (tumor more than 4 cm in
greatest dimension), N0/N1 and M0; Stage IV: T4 (tumor invades through cortical bone, into
deep/muscle of tongue, maxillary sinus, or skin of face; tumor invades masticator space, ptery-
goid plates, or skull base, or encases internal carotid artery), N2 (metastasis in a single ipsilater-
al lymph node, more than 3 cm but not more than 6 cm; metastasis in multiple ipsilateral
lymph nodes, none more than 6 cm in greatest dimension; metastasis in bilateral or contralat-
eral lymph nodes, none more than 6 cm in greatest dimension)/N3 (metastasis in a lymph
node more than 6 cm in greatest dimension), or M1 (distant metastasis). The early stage Stage
0, I and II are defined as the early stage, while the advanced stage is defined as Stage III or IV

Table 1. General characteristics of normal subjects, OLK patients and OSCC patients.

Normal (n = 102) OLK (n = 82) OSCC (n = 93)

Age (yr)

Mean ± SD 44.00 ± 16.00 58.16 ± 11.48 61.70 ± 11.11

Range 22–80 25–85 21–83

Gender

Male (%) 46 (45.1) 37 (45.1) 45 (48.4)

Female (%) 56 (54.9) 45 (54.9) 48 (51.6)

Site

Tongue (%) 28 (27.5) 22 (26.8) 41 (44.1)

Gingival (%) 15 (14.7) 33 (40.2) 27 (29.0)

Other (%) 59 (57,8) 27 (32.9) 25 (26.9)

Smoking

Yes (%) 32 (31.4) 29 (35.4) 31 (33.3)

No (%) 70 (68.6) 53 (64.6) 62 (66.7)

Drinking

Yes (%) 17 (16.7) 16 (19.5) 22 (23.7)

No (%) 85 (83.3) 66 (80.5) 71 (76.3)

doi:10.1371/journal.pone.0126760.t001
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[30, 31]. In this study, 9.7%, 25.8%, 31.2%, 16.1% and 17.2% cases of OSCC are at Stage 0, I, II,
III and IV, respectively, and 24.7% have lymph node metastasis.

Ethics Statement
This study was approved by the ethical committee of the Beijing Stomatological Hospital, Capi-
tal Medical University, and all patients signed the informed consent before the study.

Exfoliative cytology
Exfoliative cells were collected by using Cervibrush (Motic, China) and stored in a fixative
(Motic, China) before Feulgen staining. Cells were smeared onto a dry glass slide and treated
with Bohm-Sprenger solution (80ml methanol, 15ml formaldehyde and 5ml acetic acid) for 50
min at 25C, 5N hydrochloric acid for 60min and Feulgen solution for 75min. After wash, the
smears were dehydrated using graded ethanol and xylene. DNA-image cytometry and CLASSI-
FY software (Motic, China) were used for measurement of the DNA index (DI) and other cyto-
logic parameters (132 in total). Twenty of these parameters were regarded useful, such as DI,
DNA amount, intensity, radius and area (S1 Table). In this study, we only use the DI value, as
show in Fig 1. Rat liver cell nuclear imprint (Motic, China) was used for standardization of
DNA image cytometry [32]: integrated optical density (IOD) of diploid cells was between 108
and 122; the ratio of IOD of tetraploid and diploid cells was between 1.9 and 2.1; and the

Fig 1. Distribution of DNA contents in exfoliative cytology. (A) Selected cells with abnormally high DI values (>2.3). (B) A scatter plot with y-axis as the
area of nucleus and x-axis as DI value. (C) Distribution histogram of DI values of all nuclei. (D) Distribution histogram of DI values of the three cell populations
after simulation from normal distribution, diploid cell population (red; μ = 1.001, σ = 0.19), tetraploid cell population (green; μ = 2.002, σ = 0.25) and
aneuploidy cell population (blue; μ = 2.300, σ = 0.5). When these three cell populations are merged at the ratio of 0.893:0.092:0.005, a composite distribution
histogram (black) can be generated.

doi:10.1371/journal.pone.0126760.g001

Quantitative Risk Stratification of Oral Leukoplakia

PLOS ONE | DOI:10.1371/journal.pone.0126760 May 15, 2015 4 / 16



coefficient of variation was below 5%. According to the diagnostic criteria set by the British Co-
lumbia Cancer Agency, an aneuploid cell was defined as DI�2.3 [33]. A case was defined as
“positive (for dysplasia or OSCC)” if there were more than 5 aneuploid cells. Scatter plots and
distribution histograms can be generated by the software to reflect the overall status of exfoliat-
ed cells (Fig 1B and 1C). A case would be defined as “atypical” if the number of aneuploid cells
was between 1 and 5, or “negative” if there was no aneuploid cell.

Histopathology
For OLK and OSCC, a resection biopsy was taken immediately from the same area under local
anesthesia after brush biopsy. Tissues were fixed with buffered formalin and processed for clin-
ical histopathology. Paraffin tissue sections were evaluated by our pathologist according to the
standard criteria of the WHO Classification System of Head and Neck Tumors [33]. The fea-
tures used for diagnosing dysplasia contains: irregular epithelial stratification, loss of polarity
of basal cells, drop-shaped rete ridges, increased number of mitotic figures, abnormally superfi-
cial mitosis, premature keratinization in single cells, keratin pearls within rete pegs. Mild, mod-
erate, or severe dysplasia is defined if general architectural disturbance is limited to the lower
third of the epithelium, extending into the middle third of the epithelium, or greater than two
thirds of the epithelium, respectively [34].

Expert-guided data transformation and reconstruction (EdTAR)
In this proof-of-concept study, we only used DI for statistical analysis. EdTAR (Fig 2) was
made up of four parts, peak identification, extraction of diploid/tetraploid and isolation of an-
euploid, signal amplification, and data reconstruction. Parameter estimation, signal amplifica-
tion and data reconstruction were carried out with R [35].

Peak identification
We first aimed to differentiate three possible cell populations, diploid, tetraploid and aneuploi-
dy. We defined the thresholds for peaks that represented each cell population, diploid [0.8,
1.2], tetraploid [1.5, 2.2] and hypertetraploid/aneuploidy [>2.3]. The DI values obtained from
the software normally represent a mixture of cell populations and can be displayed in a histo-
gram (Fig 1C). In order to estimate the parameters for each individual cell population, we
adopted the procedure of kernel density estimation with the kernel density estimator,

f̂ hðxÞ ¼ n�1
Xn

i¼1
Khðx � XiÞ Equation1

where Khð:Þ ¼ 1
h

� �
Kð :

h
Þ represents a “kernel function” K and a “bandwidth” h. We assumed

that DI values were independently selected from a background distribution. To smoothen the
histogram, we chose Gaussian distribution as the kernel [36], and finalized on the bandwidth
to minimize the mean integrated squared error (MISE), as

MISEðhÞ ¼ E
Z

ðf̂ h � f Þ2 Equation2

When two or more populations were observed with a fairly large proportion of overlap, bimod-
al or multi-normal based assumption was made. For such cases, a reflection point was identi-
fied if a change in the first derivative sign was observed.
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Extraction of diploid/tetraploid peaks and isolation of aneuploid peak
One key component in our approach was to extract non-informative cell populations, i.e. dip-
loid/tetraploid cell population. To do so, we proposed the sequential steps in the following
pseudo code.

1. With the parameter set θdt for data transformation

2. Candidate peaks obtained on the density distribution from the empirical DI values
were stored

3. for each i = 1..n peaks do

Estimate the sample statistics from the left part of the peak

Estimate the right part of the distribution

Filter out the candidate ith family and retain the mean, SD and count

Check the next available peak, if any, against threshold

Fig 2. Work flow of expert-guided data transformation and reconstruction (EdTAR). Starting with DI
values as the raw data, EdTAR first identified candidate peaks of cell populations. Diploid cell population was
extracted and further filtered if more than one population is detected. The same procedure was applied to
extract the tetraploid cell population and thus the aneuploid cell population was isolated. Data of these three
cell populations were reconstructed across a wide rage [0–8] using the discrete density at each interval. The
newly constructed data was used for training the statistical model and calculation of the Oral Cancer Risk
Index (OCRI).

doi:10.1371/journal.pone.0126760.g002
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Go back to 3.1 if the peak is< upper bound

end
4. Summarize for candidate cell populations representing the diploid, tetraploid and aneu-

ploid, and store the summary statistics of each population

The total number of DI values

Mean and standard deviation

The number and locations of peaks

Signal amplification
Our main goal was to quantify the risk via sufficient stratification, which relied on amplifying
the informative signals. First, we defined ratios of these three populations as R1, R2, and R3 re-
spectively, with the constraint that

R1 þ R2 þ R3 ¼ 1 Equation3

If all three cell populations were detected and their peaks were retained, we achieved the ampli-
fied signal of aneuploid population by redistributing the ratio among R1, R2, and R3. The origi-
nal ratio between two populations (R1 and R2) were retained and was together weighed as 0.9.
If only diploid and tetraploid populations were detected, the original ratio between two popula-
tions (R1 and R2) was retained and together weighed as 0.995, and the hypothetical aneuploid
population was sampled from a normal distribution Norm (2.3, 0.3). If a single diploid popula-
tion was detected, R1 will be sampled from a uniform distribution ~Unif [0.75, 0.8], and kept
R1 + R2 = 0.995 and R3 [1-R1-R2]. The hypothetical tetraploid population was sampled from a
normal distribution ~ Norm (2.0, 0.3) and the hypothetical aneuploid population from ~
Norm (2.3, 0.3).

Data reconstruction
For data reconstruction, new variables were created to represent the discrete interval ranging
between 0 and 8 (DI values) with 0.5 increments. For each interval, the density estimated from
the actual data was used. If any interval is missing, 0.0001 was used as the filler. The procedure
is shown in pseudo code format as follows:

1. With the parameter set θdr for data reconstruction

2. If only diploid population exists do

Sample the three population ratios

Integrate mixture of three theoretical families

Create densities for all 16 discrete intervals

3. Else if both diploid and tetraploid populations exist do

If tetraploid population mean and standard deviation exist next

Else do

Sample the tetraploid population mean and standard deviation

Sample the aneuploidy population

Quantitative Risk Stratification of Oral Leukoplakia
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Compute the ratio between diploid and tetraploid populations, and sample the ratios of
three populations

Integrate mixture of three theoretical families

Create densities for all 16 discrete intervals

4. Else all three populations exist do

If the maximum DI value of aneuploidy cells> 8, set it as 8

If tetraploid population mean and standard deviation exist next

Else do

Sample the tetraploid population mean and standard deviation

Compute the ratio between diploid and tetraploid populations

Finalize ratios for all three populations

Integrate mixture of three theoretical families

Create densities for all 16 discrete intervals

Statistical models and performance evaluation
Statistical modeling, variable selection and performance evaluation were done with R [35] and
caret package (http://caret.r-forge.r-project.org/). Datasets of “normal subjects” (n = 102) and
“OSCC patients” (n = 93) were used to build the prediction models. First of all, we randomly
separated the dataset into two parts with 70% samples for model selection and optimization
and 30% for testing and evaluation. We selected six statistical models and evaluated their per-
formance, Support Vector Machine (SVM), Random Forest (RRF), Penalized Logistic Regres-
sion (PLR), Neural Network (NNET), K-nearest neighbor (KNN), and Classification and
Regression Training (CART). To evaluate each model’s performance, we started with the de-
fault parameters and further optimized the hyperparameters to achieve the best performance.
Using a sampling process, this included ten-fold cross-validation within each pass and repeti-
tion for five times. To ensure objective evaluation, we implemented the same random data
parsing procedures for internal cross-validation by setting the same seed for any random num-
ber generation [37]. These models were ranked according to the area under receiver operating
characteristic (ROC), sensitivity and specificity. Based on the performance evaluation, the
SVMmodel was chosen for the following calculation.

Calculation of the Oral Cancer Risk Index (OCRI)
With the finalized set of EdTAR parameters, the exfoliative cytology data was processed and fur-
ther used in building the SVMmodel with a radial kernel function using R kernlab [38] package.
To optimize the hyperparameters, we used two-class samples (normal and OSCC) and the same
random sampling procedure to recreate the training dataset and test dataset. The training data-
set was processed with median centering and column scaling. For the best outcome, we used
leave-on-out cross validation and evaluated the model performance on the nine grid cost pa-
rameter between 2(-2)–64. The final model had a cost of 32 and a hyperparameter sigma of
0.6456. OCRI was calculated as the probability of OSCC for an unknown sample. It ranges be-
tween 0 and 1, where 0 indicates the lowest risk of OSCC, and 1 the highest risk of OSCC.
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Results
Clinical data of normal, OLK and OSCC subjects including age, sex, site involvement, smoking
and drinking habits are provided in Table 1. According to the original cytology, normal sam-
ples from 102 healthy donors were all “normal”. Among 82 OLK samples, 4 were “positive”, 30
“atypical” and 48 “negative”. Among 93 OSCC samples, 89 were detected as “positive”. One ex-
ample of OSCC is shown in Fig 1A–1C.

Data transformation and reconstruction by EdTAR
The DI values represented a mixture of cell populations, diploid, tetraploid and aneuploid, and
were displayed in a histogram (Fig 1C). In this example, the ratio of the three populations was
roughly 0.893:0.092:0.005. We simulated these three populations from three normal distribu-
tions, diploid cell population (red; μ = 1.001, σ = 0.19), tetraploid cell population (green; μ =
2.002, σ = 0.25), and aneuploid cell population (blue; μ = 2.300, σ = 0.5). The black curve
showed a composite distribution histogram of these three simulated populations at the above
mentioned ratio (Fig 1D).

The first attempt in EdTAR was to identify the peaks. A typical normal sample had one
peak located at the DI value of 0.995 which indicated a diploid cell population (Fig 3A). A typi-
cal OLK sample showed multiple peaks in addition to the major diploid peak (e.g., DI = 0.798)
(Fig 3D). A typical OSCC sample showed a peak pattern similar to that of an OLK sample (Fig
3G) often with more peaks beyond the DI of 2.3. In case there was only one diploid cell popula-
tion, no more data processing was conducted (Fig 3B). Otherwise, data were further processed
for extraction of the diploid and tetraploid cell populations, isolation of the aneuploidy cell
population, and signal amplification. For a typical OLK sample and a typical OSCC sample,
after the first cell population was extracted, the second peak and other small peaks became
much more prominent (Fig 3E and 3H).

The major statistics of the diploid, tetraploid and aneuploid cell populations were then
pooled together for data reconstruction. Along the x-axis of DI value, we defined finite number
variables with a range of 0–8 and 16 intervals. As shown in boxplots, normal samples
(n = 102), OLK samples (n = 82), and OSCC samples (n = 93) showed different patterns (Fig
3C, 3F, and 3I).

Selection of SVM as the statistical model
Six statistical models were tested using data of normal and OSCC samples, which were patho-
logically distinct. Sensitivity, specificity and the area under the ROC curve were reported (Fig
4). Median sensitivity ranged between 0.83 and 1, with the SVM having the highest median
sensitivity (S2 Table). Specificity was high for all six models indicating low false positive rates.
Taking both the sensitivity and specificity into account, the area under the ROC curved provid-
ed a general fair assessment of the performance of a model. The median ranged between 0.91
and 1. As compared with the other five models, SVM performed the best, and thus was chosen
as the statistical model for calculation of OCRI.

Quantitative risk stratification of OLK patients
We further fine-tuned the SVMmodel with leave-one-out cross validation strategy and final-
ized on the key hyperparameters (cost C = 32 and hyperparameter sigma = 0.6456). The model
was built with data of 70% cases (72 normal and 66 OSCC) and tested on data of the remaining
cases. A sensitivity of 0.939, a specificity of 0.9444, and an area under ROC of 0.968 were
reached. To calculate OCRI, we applied the model to data of a new sample, and let the model
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compute the probability that this sample was sampled from an OSCC population given the var-
iables. OCRI was shown on the scale between 0 and 1 (y-axis). Data of 30 normal samples, 27
OSCC samples, and 82 OLK samples tested with OCRI were shown in the same scale (Fig 5).

The majority of normal samples were predicted with an OCRI<0.5 with two exceptions
(0.98, 0.59). The majority of OSCC samples were predicted with an OCRI>0.5with two excep-
tions (0.30, 0.43). Consistent with the clinical nature of OLK, OCRI of the OLK samples spread
across a wide range. Of the 82 OLK samples, 14 had an OCRI above 0.5 (S3 Table).

Clinical follow-up of OLK patients
The mean follow-up time for the OLK patients was 46 months. In one case (Case 128141, this
individual has given written informed consent to publish this case details), the density plot of
DI values obtained from initial exfoliative cytology showed multiple peaks in April 2008 (Fig
6A). The first two peaks represented diploid and tetraploid cell populations as the majority.

Fig 3. Application of EdTAR in processing data of three samples with pathological diagnosis of
normal (A-C), OLK (D-F), and OSCC (G-I). All density plots have x-axis as DI value and y-axis as density.
Panel A, D and G showed density plots before data processing by EdTAR. In Panel A, a major peek with a DI
of 0.995 represents the diploid cell population, where another small peaks (DI = 0.594) was a minor
population possibly due to image processing. In Panel D, a major peek with a DI of 0.798 represents the
diploid cell population (3,590 cells). Other than this peak, four peaks with DI values of 1.25, 1.75, 2.22, and
2.74, were present. In Panel G, a major peek with a DI of 1.02 represents the diploid cell population, and a
second peak with a DI of 1.79 represents the tetraploid cell population. Other than these two peaks, three
peaks with DI values of 3.25, 3.57, and 3.99 were present, and were believed to represent the aneuploidy cell
population. Panel B, E and H corresponding with Panel A, D and G respectively were three plots showing the
net results of data processing by EdTAR. Signals of the aneuploidy cell populations were amplified in Panel E
and H. Panel C, F and I showed boxplots of newly constructed variables after data processing with EdTAR.
The x-axis indicated the new variables along a range of DI [0–8] and y-axis the boxplot of available values for
each variable.

doi:10.1371/journal.pone.0126760.g003
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Following data processing with EdTAR, the second peak became prominent after the first pop-
ulation was successfully extracted (Fig 6B). An OCRI was calculated as 0.88. Although biopsy
histopathology reported mild dysplasia (Fig 6C), this patients was regularly followed up in our
outpatient clinic. A tumor was observed in August 2011, and the histopathology confirmed the
diagnosis of OSCC (Fig 6D).

Discussion
In this study, we developed a statistical modeling method for quantitative risk stratification of
OLK patients. Using a data transformation method (EdTAR) and a machine learning technique
(SVM), we generated a quantitative index, OCRI, for assessment of cancer risk. This index is
potentially useful for guiding clinical follow-up of OLK patients and improving cost-effective-
ness. Further follow-up of our cases of OLK is expected to set a cutoff threshold of OCRI.

OLK, as a definite premalignant lesion of OSCC, is known to carry a cancer risk higher than
normal subjects [14]. However, OLK may develop from multiple mechanisms some of which
may not be associated with cancer risk at all. Visual inspection by clinicians with the aid of var-
ious tools tends to have a high rate of false positivity. As a well-established and widely used
method for early detection of oral cancer, exfoliative cytology provides qualitative results. The
major advantages are its being minimally invasive and inexpensive, and thus better acceptance
by patients [25, 39]. In clinical setting, physicians have to reply on multiple tests during follow-
up before the patient is definitely proved to be “positive”. Therefore there is a need of quantita-
tive risk stratification of OLK. In this study, using DI values of exfoliative cytology we

Fig 4. Assessment of statistical models. Six models (SVM, RRF, PLR, NNET, KNN, and CART) were
tested for their performance using three parameters, ROC, sensitivity and specificity. Each model was trained
on the training data and tested on the testing data. Each boxplot showed the distribution of these three
parameters (R caret package http://cran.r-project.org/web/packages/caret/index.html).

doi:10.1371/journal.pone.0126760.g004

Quantitative Risk Stratification of Oral Leukoplakia

PLOS ONE | DOI:10.1371/journal.pone.0126760 May 15, 2015 11 / 16

http://cran.r-project.org/web/packages/caret/index.html


Fig 5. Oral Cancer Risk Index (OCRI) of normal subjects, OLK patients and OSCC patients.OCRI was
calculated for each case with known pathology, and ranged between 0 and 1, where 0 indicates the lowest
risk of OSCC and 1 indicates the highest risk of OSCC.

doi:10.1371/journal.pone.0126760.g005

Fig 6. Application of EdTAR in clinical follow-up of one patient (Case 128141). Exfoliative cytology was
performed in April 2008 and a density plot of DI data was generated (A).With EdTAR, positive signals were
relatively amplified and an OCRI was calculated as 0.88 (B). Histopathology of biopsy showed mild dysplasia
on H&E stained section, scale bar = 100 μm (C). A tumor was observed in August 2011 with a
histopathological diagnosis of OSCC, scale bar = 100 μm (D).

doi:10.1371/journal.pone.0126760.g006
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successfully developed EdTAR as a method for data transformation and reconstruction. This
strategy overcomes the major problem in statistical analysis of exfoliative cytology data, which
usually contain a big population of diploid cells, a smaller population of tetraploid cells, and a
very small population of aneuploid cells. After EdTAR, the signal of aneuploid cell population
is amplified. Reconstruction of data of three cell populations allows SVM for pattern recogni-
tion and calculation of OCRI. One of our OLK cases had a high OCRI and was found to devel-
op OSCC 40 months later during follow-up.

Several approaches have been employed for quantitative stratification of cancer risk. Cancer
risk index based on clinical risk factors, for example Harvard Cancer Risk Index [40], had only
a modest discriminatory accuracy for several cancers. It is mainly used for the general popula-
tion, but not in a tissue or cancer-specific manner for OLK patients. Recently there has been a
tremendous enthusiam of using molecular markers for cancer risk stratification, such as mRNA
expression data (using gene array, qRT-PCR)[41] and protein expression data (using immuno-
histochemical staining) [42]. This approach has been well developed for clinical use in breast
cancer [43] and colon cancer [41]. However, performance of molecular markers is not much
better than established risk factors. In one study [41], the four tested gene expression-based risk
scores provide prognostic information but only contributed marginally to improving models
based on established risk factors. It is believed that selection of prognostic gene lists and unclear
biological significance of gene signatures contributed to this limitation. Combination with clini-
copathological risk factors and inferring biologically relevant pathway deregulation scores have
been proposed as potential solutions [44]. In oral cancer, a 29-gene predictive model showed
marked improvements in terms of prediction accuracy over the models using previously known
clinicopathological risk factors. The prediction error curves showed that Model 1 (only using
microarray data) can markedly improve the prediction accuracy over Model 3 (clinical data and
protein data). Model 2 (using microarray data, clinical data and protein data) was slightly better
than Model 1, and both models have similar performance with 8% prediction error rate beyond
2 years of follow-up time [45]. Although this approach is promising, high cost, special expertise
in sample analysis and data analysis, and high-quality sampling are obvious hurdles to over-
come before it can be routinely used in clinical setting. It is also a challenge to develop a uniform
gene list according to distinct gene lists generated by various studies [46].

As a laboratory assessment of cellular markers, exfoliative cytology remains a practical and
reliable method for quantitative risk stratification of OSCC. It has been well established that
DNA aneuploidy can predict malignancy prior to histopathology [47, 48]. As a non-invasive
and inexpensive method, this approach has advantages over other methods: cellular morpholo-
gy tends to be relatively stable than molecular markers. However, our method has its limitations
as shown by the presence of 4 outliers, two cases of normal with high OCRI and two cases of
OSCC with low OCRI. It is suggested that exfoliative cytology may be repeated if OCRI is high.
In addition, exfoliative cytology needs a standardized procedure including brushing, Feulgen
staining, and image capturing. Moreover, multiple parameters collected by exfoliative cytology
other than DI value may be potentially used for model construction. One quantitative cytology
study have showed statistically significant differences between aneuploid and diploid samples
in nuclear perimeter, area, diameter, minimum and maximum Feret, etc [49]. With the wide
use of NextGen sequencing in studies on OSCC [50, 51], we believe incorporation of these mo-
lecular markers may further improve the performance of the quantitative prediction model.
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