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Abstract: Understanding the genetic basis of reproductive isolation is a central issue in the study
of speciation. Structural variants (SVs); that is, structural changes in DNA, including inversions,
translocations, insertions, deletions, and duplications, are common in a broad range of organisms
and have been hypothesized to play a central role in speciation. Recent advances in molecular and
statistical methods have identified structural variants, especially inversions, underlying ecologically
important traits; thus, suggesting these mutations contribute to adaptation. However, the contribu-
tion of structural variants to reproductive isolation between species—and the underlying mechanism
by which structural variants most often contribute to speciation—remain unclear. Here, we review
(i) different mechanisms by which structural variants can generate or maintain reproductive isolation;
(ii) patterns expected with these different mechanisms; and (iii) relevant empirical examples of each.
We also summarize the available sequencing and bioinformatic methods to detect structural variants.
Lastly, we suggest empirical approaches and new research directions to help obtain a more complete
assessment of the role of structural variants in speciation.

Keywords: reproductive isolation; hybridization; suppressed recombination

1. Introduction

Identifying the genetic basis of reproductive isolation (RI) is important for understand-
ing the speciation process, including how speciation begins and is completed [1–4]. Various
genetic changes can contribute to RI and promote speciation. In some cases, mutations
in a few genes are known to contribute substantially to RI, suggesting a relatively simple
genetic basis for speciation. Such speciation genes have been linked to hybrid inviability
in Drosophila (Hmr) [5], melanoma formation in Xiphophorus (Xmrk-2) [6], and changes in
the mating system in Solanum spp. (STYLE2.1) (reviewed by [7–9]). However, speciation
often involves many genes [10], and details of the genetic architecture of RI, including the
types of mutations involved, could be critical for understanding the speciation process.
The theory suggests that structural variants (see Figure 1A); that is, a type of mutation
that cause a change in chromosomal location (translocation), orientation (inversion), or
copy numbers (deletion, insertion and duplication) might be particularly important for
speciation, especially in preventing species from merging upon secondary contact [11–13].
Here, we review this body of theory about the ways in which structural variants can
contribute to RI, evaluate evidence in support of or against this theory, and discuss future
avenues of productive research on the role of structural variants in speciation, with an
emphasis on advances made possible by new molecular and statistical tools for detecting
and analyzing structural mutations. Although SVs are highly variable in size, we focus on
SVs greater than 50 bp in length [11].
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Figure 1. (A) Types of structural variants. (B) Underdominance of heterozygotes due to structural variants. Red Xs in (1) 
and (2) suggested meiotic pairing failure, while red Xs in (3) indicate reduced fitness of the individual. (C) Structural 
variants suppress recombination as a mechanism to prevent species from hybridizing. Allele a and b would cause hybrid 
inviability/sterility when present in the same genetic background. Without an inversion, recombination can break up the 
link between alleles at locus A and locus B and then selection can purge alleles a and b (see [14]). Red crosses indicate 
reduced fitness of the individual. (D) Gene duplications as a mechanism for DMI (Dobzhansky–Muller Incompatibilities). 
The 0 stands for loss of function at the locus. Red crosses indicate reduced fitness of the individual. 

The study of structural variants dates back to the early 1920s, when Alfred Sturtevant 
identified an inversion while comparing the chromosomes of D. simulans with its sister 
species D. melanogaster [15]. Since then, large structural variants have been identified us-
ing cytologic techniques in various species, including Drosophila [16], grasshoppers [17], 
and corn [18]. Due to the prevalence of structural variants in Drosophila and their easy 
identification with cytogenetic techniques, structural variants were among the first ge-
netic markers used in population genetics [19]. Biologists in the 1930s–1960s hypothesized 
that these chromosome-level changes drove speciation based on the observation that 
many different structural variants were fixed between closely related species [17,20,21]. 
However, with the advent of other molecular markers (first allozymes, and then later mi-
crosatellites and single nucleotide polymorphisms [SNPs]) and an increased focus on the 
role of changes in gene expression versus protein sequences of individual genes, the em-
phasis on structural variants decreased some from the 1970 to the 1990s [1].  

Recent advances in molecular and statistical methods have brought a renaissance in 
the study of structural variants, as these techniques can readily identify and genotype 
structural variants [22–27]. Recent evidence shows that large-scale structural variants, es-
pecially inversions, are associated with adaptive trait variation: including phenology in 
Rhagoletis fruit flies [3], mimetic wing patterns in Heliconius butterflies [28,29], cryptic col-
oration in Timema stick insects [30], the repeated evolution of distinct marine and fresh-
water ecotypes of three-spined sticklebacks [31], and ecotypes of Helianthus sunflowers 
[26]. However, in most cases, it is unclear whether the SVs associated with local adapta-
tion represent balanced polymorphisms versus the early stages of speciation (or both). 

Figure 1. (A) Types of structural variants. (B) Underdominance of heterozygotes due to structural variants. Red Xs in
(1) and (2) suggested meiotic pairing failure, while red Xs in (3) indicate reduced fitness of the individual. (C) Structural
variants suppress recombination as a mechanism to prevent species from hybridizing. Allele a and b would cause hybrid
inviability/sterility when present in the same genetic background. Without an inversion, recombination can break up the
link between alleles at locus A and locus B and then selection can purge alleles a and b (see [14]). Red crosses indicate
reduced fitness of the individual. (D) Gene duplications as a mechanism for DMI (Dobzhansky–Muller Incompatibilities).
The 0 stands for loss of function at the locus. Red crosses indicate reduced fitness of the individual.

The study of structural variants dates back to the early 1920s, when Alfred Sturtevant
identified an inversion while comparing the chromosomes of D. simulans with its sister
species D. melanogaster [15]. Since then, large structural variants have been identified
using cytologic techniques in various species, including Drosophila [16], grasshoppers [17],
and corn [18]. Due to the prevalence of structural variants in Drosophila and their easy
identification with cytogenetic techniques, structural variants were among the first genetic
markers used in population genetics [19]. Biologists in the 1930s–1960s hypothesized that
these chromosome-level changes drove speciation based on the observation that many
different structural variants were fixed between closely related species [17,20,21]. However,
with the advent of other molecular markers (first allozymes, and then later microsatellites
and single nucleotide polymorphisms [SNPs]) and an increased focus on the role of changes
in gene expression versus protein sequences of individual genes, the emphasis on structural
variants decreased some from the 1970 to the 1990s [1].

Recent advances in molecular and statistical methods have brought a renaissance in the
study of structural variants, as these techniques can readily identify and genotype structural
variants [22–27]. Recent evidence shows that large-scale structural variants, especially
inversions, are associated with adaptive trait variation: including phenology in Rhagoletis
fruit flies [3], mimetic wing patterns in Heliconius butterflies [28,29], cryptic coloration in
Timema stick insects [30], the repeated evolution of distinct marine and freshwater ecotypes
of three-spined sticklebacks [31], and ecotypes of Helianthus sunflowers [26]. However,
in most cases, it is unclear whether the SVs associated with local adaptation represent
balanced polymorphisms versus the early stages of speciation (or both). Here, we take



Genes 2021, 12, 1084 3 of 17

advantage of these recent advances in the discovery and analysis of structural variants to
review theory and evidence for structural variants causing RI and leading to speciation
(Table 1), especially speciation with ongoing or episodic gene flow [3]. Then we discuss
productive next steps and future directions for the study of structural variants, including
highlighting methods for detecting and analyzing structural variants.

Table 1. List of studies that identified structural variants involved in reproductive isolation.

Mechanism by Which
SV Contributes to RI SV Type Study Organism Affected RI References

Underdominance TSL
Sunflower hybrid species
and their parental species

(H. annuus and H. petiolaris)
Pollen sterility in hybrids. Lai et al., 2005 [32]

Underdominance TSL House mouse Mus musculus
domesticus

Hybrid subfertility and
sterility

Hauffe and Searle 1993 [33];
Nachman and Searle 1995 [34];

Pialek et al., 2008 [35];
Garagna et al., 2014 [36]

Underdominance TSL, INV Fission yeast
Schizosaccharomyces pombe Intrinsic hybrid inviability Jeffares et al., 2017 [37]

Underdominance TSL, INV Red brocket deer Mazama
americana

Hybrid subfertility and
sterility

Abril et al., 2010 [38],
Cursino et al., 2014 [39]

Underdominance DEL Mountain pine beetle
Dendroctonus ponderosae Hybrid male sterility Bracewell et al., 2017 [40],

Dowle et al., 2017 [41]

Underdominance INS Fruit flies Drosophila simulans
and D. melanogaster Hybrid lethality Ferree and Barbash 2009 [42]

Suppressed
recombination and
underdominance of
heterokaryotypes

INV, TSL Monkeyflowers Mimulus
cardinalis and M. lewisii

Ecological isolation caused
by adaptation to different

elevation ranges and
pollinators. Hybrid sterility.

Fishman et al., 2013 [43]

Suppressed
recombination and
underdominance of

heterokaryons

INV Mosquito Anopheles funestus

Assortative mating and
postzygotic isolation

resulting from
underdominance of

heterozygotes in particular
habitats.

Ayala, Guerrero and
Kirkpatrick 2013 [44]

Suppressed
recombination and

possibly
underdominance of

heterokaryons

TSL Killifish Lucania goodei and
L. parva

Hybrid inviability,
behavioral isolation

Berdan, Fuller and Kozak
2021 [45]

Suppressed
recombination INV Stick insect Timema cristinae

Habitat isolation associated
with different cryptic color
patterns (specialization to

different host plants).

Nosil et al., 2018 [46],
Lucek et al., 2019 [25]

Suppressed
recombination INV Deer mouse Peromyscus

maniculatus

Ecological isolation (local
adaptation to different

environments).
Hager et al., 2021 [47]

Suppressed
recombination INV Three-spined stickleback

(Gasterosteus aculeatus)

Ecological isolation caused
by adaptation to freshwater
and marine environment.

Jones et al., 2012 [31]

Suppressed
recombination INV Yellow monkeyflower

Mimulus guttatus

Ecological isolation
including temporal isolation

and habitat isolation.

Lowry and Willis 2010 [48],
Oneal et al., 2014 [49],

Twyrord and Friedman
2015 [50]

Suppressed
recombination INV Apple maggot fly Rhagoletis

pomonella

Ecological isolation
including temporal isolation

caused by adaptation to
different host plants.

Feder et al., 2003 [51]

Suppressed
recombination INV

Fruit flies Drosophila
pseudoobscura and D.

persimilis

F1 hybrid male sterility,
backcross hybrid inviability,

F1 hybrid male courtship
dysfunction, female

species-specific preferences

Noor et al., 2001 [14]

Suppressed
recombination INV Mosquito Anopheles gambiae

Ecological isolation caused
by divergence in breeding

sites.
Manoukis et al., 2008 [52]
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Table 1. Cont.

Mechanism by Which
SV Contributes to RI SV Type Study Organism Affected RI References

Suppressed
recombination INV

The Northeast Arctic cod
and Norwegian coastal cod
populations of the Atlantic

cod

Ecological isolation caused
by different migration

behaviors.
Kirubakaran et al., 2016 [53]

Suppressed
recombination INV Long-tailed finch Poephila

acuticauda

Unknown. Potentially
prezygotic isolation caused

by differences in bill color or
sperm morphology between

species.

Hooper et al., 2019 [54]

Suppressed
recombination INV Prairie sunflower Helianthus

petiolaris

Ecological isolation caused
by adaptation to different

environments
Huang et al., 2020 [55]

Suppressed
recombination INV Fruit flies Drosophila

mojavensis and D. arizonae Unclear Lohse et al., 2015 [56]

Suppressed
recombination INV

Sunflower species
Helianthus annuus, H.

petiolaris and H. argophyllus

Ecological isolation
including temporal isolation

caused by different
flowering times

Todesco et al., 2020 [26]

Change of gene position
caused by gene
duplication and

functional loss of
ancestral copy in one

species.

DUP Monkeyflowers Mimulus
guttatus and M. nasutus F2 hybrid inviability Zuellig and Sweigart 2018 [57]

Ancestral gene
duplication has

predisposed one of the
paralogs for fast

evolutionary rates.

DUP Fruit flies Drosophila
mauritiana and D. simulans Hybrid male sterility Ting et al 2004 [5]

Reciprocal gene loss
after duplication DUP Wild strains of the plant

Arabidopsis thaliana Hybrid lethality in F2 cross Bikard et al., 2009 [58]

Change of gene position TSL Fruit flies Drosophila
melanogaster and D. simulans F2 hybrid sterility Masly et al., 2006 [59]

Mutations induced by
SV INS Crow subspecies Corvus

corone corone and C. c. cornix Premating isolation Weissensteiner et al., 2020 [60]

Source of mutations DEL
House mouse Mus musculus

musculus and M. m.
domesticus

Assortative mating in the
secondary contact zone

(reinforcement)
North et al., 2020 [61]

2. Reproductive Isolation Caused by Structural Variants: Theory and Evidence

2.1. Underdominance of Heterokaryotypes (Hybrid-Sterility Models)

Structural variants such as inversions, translocations, and fusions were first proposed
to promote reproductive isolation by producing sterile hybrids due to underdominance
of the heterokaryotypes (i.e., reduced fitness of heterokaryotypes compared to homokary-
otypes, Figure 1B, [62–64]). Specifically, mispairing of the rearranged chromosomes of
heterozygotic individuals can prevent proper gametogenesis, leading to nonfunctional
gametes. For example, Homolka et al. (2007) showed that being heterozygous for an
autosomal translocation was responsible for male sterility in lab breeds of mice [65]. The
incomplete synapses of the rearranged chromosome lead to meiotic silencing of unsy-
napsed chromatin. This process disturbs normally inactive single X chromosome in males,
which causes male-limited sterility. As another example, Delneri et al. (2003) verified that a
reciprocal translocation caused hybrid sterility among yeast by showing that fertility was
recovered after engineering the genomic region to be collinear [66] (Table 1).

Whether sterility caused by underdominance of structural-variant heterozygotes is
common in nature remains unclear [2,14,59,67]. Many studies have shown that the X
chromosome has a large effect on male sterility [68–71]. However, the disproportionate
effect of the X chromosome on male sterility is unlikely to be primarily caused by disruption
of meiotic pairing of heterozygotes via structural variants, because males are hemizygous
(X–Y chromosome) for the X chromosome [72]. It is noteworthy that the large-X effect can be
caused by other mechanisms involving structural variants unrelated to the problems with
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meiotic pairing in heterozygotes, such as faster X evolution [73–75]. Another theoretical
challenge for the underdominance-heterozygote model is that such variants are unlikely to
become fixed in natural populations when their initial frequency is low because of the lower
fitness of heterozygotes of structural variants. Specifically, the degree of under-dominance
of a chromosomal rearrangement is inversely proportional to its probability of fixation,
even though chromosomal rearrangement could be fixed by drift in a small population [76].

Interestingly, one form of translocation-centric fusions, which occur when two acro-
centric chromosomes fuse to form a single metacentric chromosome, usually do not cause
reduced fertility in heterozygous individuals within species [2]. However, the presence of
different centric fusions in two species could cause sterility in interspecific hybrids if differ-
ent species accumulate different centric fusions [33,77,78]. For instance, one population
could experience a fusion of chromosomes 1 and 2, while another population experiences a
fusion of chromosomes 1 and 3. Because both fusions involve chromosome 1 in this exam-
ple, hybrids between populations will form quadrivalents or more complex multivalents
during meiosis, causing sterility and promoting speciation [2]. One clear example of centric
fusion contributing to speciation is in European house mouse Mus musculus domesticus.
Different geographically localized races have different numbers of chromosomes, which
is caused by the accumulation of different centric fusions [33,35,36,79] (Table 1). In the
hybrid zone of these races, hybrids that are heterozygous for multiple centric fusions suffer
a substantial loss of fertility.

2.2. Suppressed-Recombination Models

In light of the theoretical difficulties of the underdominance model described above,
it was suggested that structural variants might be more likely to facilitate speciation by
suppressing recombination rather than by directly reducing fitness of hybrids. For example,
structural variants, especially inversions, can limit recombination among sets of alleles
related to local adaptation and reproductive isolation, which can be particularly important
for speciation with gene flow [14,67,80] (Figure 1C). Recombination is suppressed within
inverted regions because of the mechanical problems during meiotic pairing [81], or be-
cause the recombined chromosomes often contain deleterious deletions or duplications
leading to gamete inviability [67,82]. The effect of recombination suppression by inver-
sions is supported by many studies across different taxa (e.g., Helianthus sunflowers [83],
Drosophila [34,84–87], Rhagoletis [3], and fire ants [88]). Nonetheless, recent work has shown
that gene conversion within inverted regions can at least partly homogenize the inverted
sequence between the species even in the absence of recombination [89].

Multiple underlying mechanisms have been proposed to explain how suppressed
recombination promotes speciation. One of the earliest suppressed-recombination models
was proposed by Rieseberg (2001) [67]. Specifically, Rieseberg (2001) argued that chromo-
somal rearrangements that suppress recombination could act synergistically with barrier
genes to protect larger regions of the genome from introgression. As the number of regions
of reduced recombination increases (e.g., as more inversions become fixed between nascent
species), genome-wide differentiation could build up. Moreover, if genetic variants con-
tributing to local adaptation and those contributing to other forms of reproductive isolation
(e.g., assortative mating) are linked within an inverted genomic region, the progress of
speciation could proceed more readily even with ongoing gene flow. Similar to the model
proposed by Rieseberg (2001) [67], Noor et al. (2001) [14] suggested that inversions could
promote speciation by reducing recombination across multiple linked loci each contributing
to RI. This was suggested by Noor et al. (2001) after discovering that genomic regions
associated with hybrid sterility and female species preference were clustered within two
inverted regions of the genome that were fixed between two sister Drosophila species (D.
pseudoobscura and D. persimilis, Figure 2A). Noor et al. posited that if two incompatible alle-
les that reduced hybrid fitness in one genetic background, or the other, are located within
inversions, inversions would prevent the generation of viable hybrids via recombining
genetic regions without incompatible alleles, thus maintaining species boundaries. Then, if
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the inversion(s) prevent species from fusing, there would be additional opportunities for
linkage disequilibrium to build up between loci conferring hybrid inviability or sterility
and those responsible for assortative mating, thereby completing the speciation process via
reinforcement.
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Figure 2. Example cases of structural variants involved in reproductive isolation. (A) Loci associated
with female preference and male hybrid sterility located within an inversion in Drosophila pseudoob-
scura [14]. Blue color represents genomic region from D. pseudoobscura, and orange color represents
genomic region from D. persimilis. (B) Loss of function in duplicated genes lead to hybrid lethality
between Mimulus guttatus and M. nasutus [57]. Black crosses indicate the loss of the gene function,
while the red cross represents the reduced fitness of the hybrid individual. (C) Deletion and inversion
act as large mutation leads to color morph variation among Timema species both increasing (melanic
morph) and decreasing (green versus striped morphs) RI between hosts [30]. Drawings of Drosophila,
Mimulus and Timema credit to Rosa Marin Ribas.
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A key aspect of the models proposed by Rieseberg 2001 and Noor et al., 2001 [14,67] is
that SVs promote speciation by reducing introgression across a large block of the genome
upon secondary contact, thus providing more time for loci conferring reproductive iso-
lation to evolve and fix. However, they did not address: (1) whether genomic regions of
suppressed recombination facilitate the fixation of loci conferring reproductive isolation;
(2) whether suppressing recombination would favor the fixation of these structural variants
between different species, especially in the face of gene flow. The above two questions were
addressed via theoretical models by Navarro and Barton 2003 and Kirkpatrick and Barton
2006 [80,90], respectively. Navarro and Barton 2003 showed that genomic regions with
reduced recombination rates promote the rapid fixation of independent mutations within
each species that lead to DMIs between species, assuming chromosomal rearrangements
had reached high frequency within species due to tight linkage to adaptive alleles. Later,
Kirkpatrick and Barton 2006 showed that the condition of fixation of an inversion is quite
general if it carries a multi-locus set of locally adaptive alleles. By suppressing recombi-
nation across the set of locally adaptive alleles, the inverted genomic region could have a
fitness advantage relative to variants lacking the inversion and thus exhibiting higher rates
of recombination. It is noteworthy that the selection advantage of an inversion depends on
initial levels of recombination [91].

Recently, studies of SVs have found evidence consistent with the predictions from
the hypothesis that SVs promote speciation by suppressing recombination. First, greater
genetic differentiation between species has been found in inverted genomic regions than
in non-inverted regions in fish [53,92], insects [3,25,85,93] and plants [55]. Second, studies
have shown that inversions are more common in sympatric species than in allopatric species
in both Drosophila [14] and passerine birds [94]. This is consistent with the prediction that
hybridization results in selection for the spread of inversions in populations because
specific combinations of alleles on the same chromosome are favored and inversions can
minimize recombination of incompatible alleles from different species. Third, studies in
European corn borer moths and Drosophila suggest that multiple adaptive or barrier loci
occur within inverted regions [95,96], consistent with predictions from Kirkpatrick and
Barton (2006). Last, genomic analyses suggest that adaptive alleles likely predated the
origin and spread of inversions in the plant Boechera stricta [97,98], consistent with the
prediction that newly emerged inversions can quickly spread and fix within species if they
capture preexisting adaptive loci [90]. One caveat in Boechera stricta system is that since
the inbreeding rate is high in the selfing system, the selective advantage of recombination
suppression is low, and thus not sufficient to explain the fixation of the inversion [91].

One possible case of an inversion promoting reproductive isolation is found in Anophe-
les gambiae (mosquito) ecotypes [52] (Table 1). A rare 2Rj inversion is fixed in one ecotype
of A. gambiae that specializes on rock pools as breeding sites. The researchers simulated
the establishment and spread of this rare inversion given the realistic parameter ranges
in A. gambiae, which is consistent with the speciation model proposed by Kirkpatrick
and Barton 2006. They also found that the frequency of 2Rj inversion is highest among
mosquitoes collected from rock pools, consistent with an adaptive role of the inversion to
this specialized habitat. Lastly, they observed almost no heterozygotes for the 2Rj inversion
despite no evidence of postzygotic isolation, suggesting (near) complete assortative mating
between this ecotype and other Anopheles mosquitoes.

While most studies have examined one or a few predictions made by the suppressed-
recombination model, compelling evidence that SVs promote speciation by reducing
recombination requires comprehensive analyses, showing that (1) structural variant fre-
quency differs between reproductively isolated groups; (2) multiple barrier loci are found
within the genomic region of structural variants; and (3) that loci within the structural
variants contribute to reproductive isolation. One of the best cases suggesting that an
inversion not only facilitates local adaptation, but also reproductive isolation involves the
yellow monkeyflower (Mimulus) system [43,48] (Table 1). Lowry and Willis 2010 identified
a chromosomal inversion associated with divergence between inland annual and coastal
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perennial ecotypes of Mimulus guttatus in key ecological traits including flowering time [48].
They further showed that reproductive isolation due to the trait differences associated
with the inversion involved multiple reproductive barriers including immigrant inviability,
temporal isolation, and extrinsic postzygotic isolation. Another study by Fishman et al.,
2013 involving two sympatric sister monkeyflower species, M. cardinalis and M. lewisii,
mapped traits that contribute to reproductive isolation, such as flowering time and hybrid
sterility, to three regions of suppressed recombination, one reciprocal translocation and
two inversions [43]. However, unlike Lowry and Willis 2010, Fishman et al., 2013 did not
link the inversion directly to quantitative estimates of the strength of reproductive isolation
in nature.

Despite some evidence that inversions contribute to speciation by suppressing re-
combination, counter examples and theory also provide evidence against this hypothesis.
First, the efficacy of inversions in suppressing recombination depends on the size of the
inverted region. For instance, increased genomic differentiation was detected within a large
(10-megabase) inversion affecting color in Timema cristinae stick insect, but no evidence
of increased genetic differentiation was documented for other, smaller inversions [25].
Likewise, an analysis of sympatric Heliconius species found no evidence of large inversions
fixed between species, and concluded that species specific inversions were too small (less
than 50 kb) to prevent recombination across genome, and thus unlikely to be central to
maintaining species barriers in this system [99]. Second, theoretical models showed that
even a very low level of recombination within inverted regions would result in the loss of
accentuated differentiation in inverted regions [100]. Two recent studies have found that
gene conversion within inverted genomic regions is pervasive in both intraspecific crosses
and interspecific crosses [89,101]. This suggests that there are some molecular mechanisms
that could decrease the efficacy of inversions in suppressing recombination. Lastly, while
the Kirkpatrick and Barton model indicates inversions carrying adaptive alleles could fix
within the population quickly, inversions carrying a mixture of adaptive and deleterious
mutations could result in within species polymorphism, rather than between population
divergence and speciation [29].

2.3. Gene Duplications as a Mechanism of Intrinsic Postzygotic Isolation

The hypothesis that gene duplications promote speciation, especially by causing
intrinsic postzygotic isolation dates back to Haldane (1933) [102]. Gene duplications can
cause intrinsic postzygotic isolation in two ways: 1) independent loss of the function on one
duplicated gene across two species causing a subset of backcross or F2 hybrids to be sterile
or inviable; and 2) sub-functionalization of the duplicated genes, where gene duplicates
evolve different functions between different species, leading to the reduced function in
hybrids [103,104] (Figure 1D). Since neither the functional loss nor sub-functionalization of
a copied gene is inherently deleterious, this process could be common [103–105]. Moreover,
gene duplication is a common genomic feature that exists broadly across taxa [106–108].
Thus, gene duplication could play a major role in speciation. Nonetheless, empirical
evidence demonstrating loss of function or sub-functionalization of duplicated genes as
the underlying cause of hybrid sterility or inviability remains rare mainly due to the lack of
genetic information in non-model systems (Table 1, but see [5,109]), especially in naturally
hybridizing populations (but see [57]).

One example comes from D. simulans and D. mauritiana, where the gene Odysseus,
which causes hybrid-male sterility, arose via duplication of the ancestral gene unc-4m [5].
Odysseus has undergone rapid evolutionary change in terms of its DNA sequence and
expression levels, consistent with the hypothesis that gene duplication gave the newly
duplicated genes flexibility to evolve new functions ultimately leading to postzygotic
reproductive isolation. Another example of how gene duplication results in evolutionary
flexibility is found in the plant Arabidopsis thaliana, where an essential duplicated gene
occurs in different genomic locations in different A. thaliana accessions resulting in recessive
embryo lethality in crosses [58].
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The first example of gene duplication causing hybrid genetic incompatibility in species
known to hybridize in nature is in sympatric monkeyflower species (Figure 2B). Zuellig
and Sweigart (2018) identified the lack of a functional copy of the critical photosynthetic
gene pTAC14 as the underlying genetic mechanism of hybrid lethality. In M. guttatus, the
ancestral copy of the gene is no longer expressed, while in M. nasutus, the duplicated copy
is missing. Hybrids die when they are homozygous for the nonfunctional M. guttatus
copy and missing the duplicate from M. nasutus. More tests of the contribution of gene
duplication to reproductive isolation in naturally hybridizing species are clearly needed
in order to assess the importance of gene duplication as a genetic mechanism promoting
speciation.

2.4. Structural Variants Act as Mutations of Large Effect Causing RI

In addition to the mechanisms described above, structural variants can have direct and
immediate phenotypic effects that could contribute to speciation. The phenotypic effects of
structural variants might be particularly large if 1) insertions or deletions encompass multi-
ple genes affecting a trait; or 2) the breakpoints of structural variants, such as inversions,
disrupt a reading frame or alter expression at a developmental switch gene [30,110,111].
Many insertions come from transposons, which carry strong promotors that may alter the
expression of nearby genes. For example, the insertion of a large transposable element was
shown to change the expression of nearby genes that lead to the industrial melanism in pep-
pered moths [112], where a retrotransposon insertion was found to reduce the expression of
a gene affecting premating isolation in a genus of songbirds [60]. Another example where
structural variants function as a large effect mutation can be seen in sticklebacks [113],
where deletions in the regulatory Pitx1 gene leads to reduction of pelvic spines, which may
be adaptive in the absence of high piscine predator pressure or specific water chemistry.
When such mutations affect traits contributing to reproductive isolation, the structural
variants can contribute to speciation, but this is not necessarily the case in either the moth
or the stickleback examples (but see an example on an insertion reduces expression of one
gene affecting prezygotic isolation among songbirds, [60]).

Regardless of the effect on reproductive isolation per se, it is important to note that
structural mutations can simultaneously affect traits by altering recombination and by
altering gene expression or protein structure. This is especially true for inversions, as the
mutational process, giving rise to inversions can also create deletions at the breakpoints [30].
This was likely the case for structural variants affecting cryptic color in Timema stick insects
(Figure 2C). Here, several linked genes affecting color (green versus brown) reside within a
small inversion in some species, but in others these color pattern loci reside within a deletion
polymorphism at the breakpoint of a second, larger (10 megabase pair) inversion. Thus, the
initial inversion likely generated suppressed recombination between color morphs, whereas
the deletion associated with the second larger inversion further enhanced the phenotypic
differences between morphs. However, once again this example does not provide evidence
that large-effect structural variant mutations contribute directly to speciation, as the green
versus brown color morphs represent a within species polymorphism, and do not appear
to be directly related to speciation [114].

3. Critical Knowledge Gaps and Future Directions

We summarize a total of 27 studies identifying structural variants underlying re-
productive barriers (Table 1 and Figure 3). Many case studies where structural variants
causing adaptive phenotypic changes that could confer prezygotic isolation were not
specifically connected to speciation (Table 1 and Figure 3). Since prezygotic reproductive
isolation could be critical during the speciation process, especially for speciation-with-gene
flow [115], future studies should quantify the relative strength of prezygotic reproductive
barriers caused by structural variants compared to the total reproductive isolation between
lineages. Furthermore, as many reproductive barriers, especially hybrid inviability and
sterility could accumulate after speciation is complete [2], it is important to know whether
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the reproductive barrier caused by structural variants plays a role during the speciation
process: from initiating speciation to maintaining species boundaries late in the speciation
process.

7

16

2
2 3

Number of studies by  types of SV

TSL INV DEL INS DUP

7

102
4

3 1

Number of studies by taxonomic group

Plant Insect Bird Mammal Fish Microbiome

8

15

3
3

Number of studies by mechanisms

underdominance
suppression recombination
gene duplicaiton
large mutation effect

Figure 3. Summary of studies of structural variants involved in reproductive isolation. TSL, INV, DEL, INS and DUP stand
for translocation, inversion, deletion, insertion and duplication, respectively.

Existing studies connecting structural variants to traits mostly focus on the effect
of inversions in suppressing recombination among loci underlying one or a few traits
conferring reproductive isolation (Figure 3). Such studies mainly concentrate on specific
structural variants [3,14,116], a few reproductive barriers that are easy to identify (e.g.,
hybrid inviability or sterility, see [37,57], and a few model systems that are easy to conduct
hybrid crossing in the lab (e.g., Drosophila; monkey flower Mimulus). While the effect
of other types of structural variants on promoting reproductive isolation and speciation
are less studied. Hybrid zones have long-served as natural laboratories for the study of
speciation, and could be productively used to provide a powerful and more comprehensive
framework for assessing the contribution of structural variants to speciation. Specifically,
barriers to gene flow are tested in hybrid zones under natural conditions, and patterns of
introgression across hybrid zones reflect, in part, the contribution of individual traits and
gene regions to reproductive isolation [117–120]. Despite the power of hybrid zone analysis,
few studies have investigated patterns of introgression for structural variants across hybrid
zones (but see [13]). For example, structural variants could resist introgression across hybrid
zones by preventing recombination among multiple barrier loci in inversions, by negatively
affecting fitness by contributing to DMIs, or function as a large effect variant. Two patterns
in hybrid zones that would suggest a disproportionate contribution of structural variants to
reproductive isolation included reduced introgression (narrow clines) for (1) SNPs within
structural variants (especially inversions) or (2) the structural variants themselves.

Recent advances in molecular and statistical methods make widespread discovery
and genotyping of structural variants more practical than ever. First, long-read sequencing
technologies, such as nanopore sequencing and single molecule real-time sequencing,
allow for easier detection of structural variants, especially complex structural variants, than
earlier approaches, such as mate-pair sequencing with short reads (e.g., [121]). Specialized
computer software for structural variant calling with these new read technologies is also
advancing rapidly (Table 2). Alternative approaches that do not require long-read data
exist for identifying and genotyping some types of structural variants. For example,



Genes 2021, 12, 1084 11 of 17

principal component analysis of SNP genotype data can identify genomic regions with
excessive population structure which may be caused by suppressed recombination within
inversions [26,122], and short-read Illumina DNA sequence data have also proven useful
to identify copy number variants [123,124]. Importantly, once structural variants are
identified and structural variant genotypes have been estimated, these genetic markers can
be analyzed in much the same way and with the same software and models as have been
used for SNP data sets. The one caveat being that models incorporating error sources to
accurately calculate genotype likelihoods have not yet been as well-developed for SVs as
for SNP loci.

Table 2. Methods to detect structural variants.

Sequencing
Method Sequencing Platform Alignment Method

(Software)
Variant Calling

(Software) SV Types Author (Study)

Long-read
sequencing

ONT, PacBio
BWA-MEM [125],
Minimap2 [126],
NGMLR [127]

Sniffles

DEL, DUP, INS,
INV, TRA, nested

SVs (INVDUP,
INVDEL)

Sedlazeck et al.,
2018 [127]

ONT, PacBio Minimap2 [126],
NGMLR [126] SVIM DEL, DUP, INS,

INV, TRA
Heller and

Vingron, 2019 [128]

ONT, PacBio Minimap2 [126],
LAST [129] NanoVar DEL, INV, DUP,

INS, TRA
Tham et al.,
2020 [130]

ONT, PacBio

BWA-MEM [125],
Minimap2 [126],
NGMLR [127],

LAST [129]

NanoSV DEL, INS, DUP,
INV, TRA

Stancu et al.,
2017 [131]

PacBio BLASR [132] PBHoney INS, DEL, INV,
TRA

English et al.,
2014 [133]

PacBio BLASR [132] SMRT-SV INS, DEL, INV Huddleston et al.,
2017 [134]

ONT, PacBio Minimap2 [126] cuteSV DEL, INS, DUP,
INV, TRA

Jiang et al.,
2020 [135]

PacBio PBMM2 [136] PBSV INS, DEL, INV,
DUP, TRA

Short-read
sequencing

Illumina (short read
sequencing platforms

in general)
BWA-MEM [125] LUMPY DEL, DUP, INV,

TRA
Layer et al.,
2014 [137]

Illumina (short read
sequencing platforms

in general)
BWA-MEM [125] DELLY DEL, DUP, INV,

TRA
Rausch et al.,

2012 [138]

Illumina (short read
sequencing platforms

in general)
BWA-MEM [125] Pindel DEL, INS, INV,

DUP, TRA Ye et al., 2009 [139]

Illumina (short read
sequencing platforms

in general)—
paired-end sequencing

reads

MAQ [140], BWA [141],
NovoAlign [142],

Bfast [143]
BreakDancer DEL, INS, INV,

TRA
Chen et al.,
2009 [144]

Illumina

Stampy [145],
BWA [141],

SMALT [146],
MAQ [140]

IMR/DENOM INS, DEL Gan et al.,
2011 [147]

Illumina Stampy [145],
BWA [141] Platypus INS, DEL Rimmer et al.,

2014 [148]

In conclusion, we now know that structural variants can, in principle, contribute to
reproductive isolation by various mechanisms, but we do not know which of these are most
important or about the relative importance of structural variants versus point mutations.
Even though some studies have mapped phenotypic traits underlying reproductive barriers
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to structural variants, such as inversions, very few studies have distinguished whether
structural variants affect RI by suppressing recombination of multiple adaptive alleles, or
large effect of mutations, or other genetic mechanisms (but see [30,98]). Fine-scale genomic
mapping and functional manipulation and validation of genes are necessary to tease apart
the effects, such as changes in gene expression via breaking points vs. carrying functional
genes within the structural variant [149].

Lastly, we need to move from a few cases in model organisms, to understand the
contribution of SVs to speciation across taxa. Thus, more work is needed on the role of SVs
in generating RI in cases of recent or ongoing speciation. Likewise, additional macroevolu-
tionary studies are needed to evaluate the importance of structural variants along a deep
evolutionary time (e.g., mammals [150], lizards [151], birds [94], and butterflies [152]). Only
by combining the micro and macro-evolutionary patterns, can we achieve a holistic view
of the importance of structural variants in promoting speciation.
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