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ABSTRACT

Prostate cancer diagnosis and treatment continues to be a major public health 
challenge. The heterogeneity of the disease is one of the major factors leading to 
imprecise diagnosis and suboptimal disease management. The improved resolution of 
functional multi-parametric magnetic resonance imaging (mpMRI) has shown promise 
to improve detection and characterization of the disease. Regions that subdivide the 
tumor based on Dynamic Contrast Enhancement (DCE) of mpMRI are referred to as 
DCE-Habitats in this study. The DCE defined perfusion curve patterns on the identified 
tumor habitat region are used to assess clinical significance. These perfusion curves 
were systematically quantified using seven features in association with the patient 
biopsy outcome and classifier models were built to find the best discriminating 
characteristics between clinically significant and insignificant prostate lesions defined 
by Gleason score (GS). Multivariable analysis was performed independently on one 
institution and validated on the other, using a multi-parametric feature model, based 
on DCE characteristics and ADC features. The models had an intra institution Area 
under the Receiver Operating Characteristic (AUC) of 0.82. Trained on Institution I 
and validated on the cohort from Institution II, the AUC was also 0.82 (sensitivity 
0.68, specificity 0.95).

INTRODUCTION

Prostate cancer is the second largest cause for 
cancer deaths among men in the US with an estimated 
21% of newly diagnosed cancers [1]. Over-diagnosis and 
resulting overtreatment of the disease is a major concern, 

some of which is attributed to the traditional screening 
procedures, including prostate specific antigen (PSA) 
[2-4]. mpMRI has improved the detection of clinically 
significant lesions [5] impacting the staging, diagnosis and 
follow-up of patients with prostate cancer [6]. Dynamic 
Contrast Enhancement (DCE) imaging is routinely 
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included in prostate MRI exams along with T2-weighted 
imaging (T2W), and diffusion-weighted imaging (DWI). 
DCE imaging shows the dynamics of the administered 
contrast agent, while Apparent Diffusion Coefficient 
(ADC) qualifies tissue density by measuring diffusion 
of water molecules. Clinical assessment of lesions on 
MRI is guided by the Prostate Imaging Reporting and 
Data System, version 2 (PIRADSv2) standard [7]. The 
standard reporting restricts use of DCE to peripheral 
zone (PZ) when clinical significance of the lesion in 
DWI is equivocal (DWI PIRADSv2 score of three). 
DCE analysis can be broadly divided in two approaches: 
Quantitative, where a model is used to determine the rate 
of contrast transfer from blood into tissue, and semi-
quantitative, where the analysis uses time activity curve 
characteristics to describe different contrast absorption 
patterns. The difficulty in establishing consistent features 
from the DCE curves, as well as the high inter-observer 
variability affects the use of DCE in a quantitative 
fashion. Even though semi-quantitative DCE analysis 
lacks a formal modeling of contrast uptake, it provides a 
more general characterization of the activity curves. This 
characterization has been used in the automatic detection 
and quantitative scoring of prostate cancer aggressiveness 
[8-10]. Quantitative models study the pharmacokinetics 
of the contrast agent in the prostate, especially with 
the use of arterial input function (AIF) [11]. The model 
proposed by Tofts et al [12] provides an elegant model to 
characterize contrast absorption. It has been shown that the 
pharmacokinetic analysis parameters correlate with lesion 
aggressiveness but with high inter-institution variability 
[13]. Major constraint in the identification of a region to 
derive a reference AIF has prevented these features from 
being used in practice [14].

In this study, we examine the utility of DCE derived 
quantitative characteristics on a habitat region co-localized 
by ADC to discriminate clinically significant prostate 
cancer. We also show ways to improve discriminatory 
ability by adding radiomics features derived on an 
ADC region. The identified model was validated in an 
independent cohort obtained from a different institution.

RESULTS

Data set from Institution I consisted of 173 positive 
for cancer biopsies from 57 patients; data set from 
Institution II consisted of 51 biopsies from 39 patients. 
Biopsies without assigned Gleason Score (GS) were 
discarded, such as those labeled by the clinical pathologist 
as benign prostatic tissue, or as benign prostatic 
hyperplasia. Biopsies with an assigned GS sum of 6 or 
above were included for analysis. The average interval 
between imaging and biopsy sampling was 12 days for 
Institution I and 27 days for Institution II. The data 
from Institution I consisted of 116 clinically insignificant 
and 57 clinically significant biopsies. The data from 

Institution II consisted of 22 clinically insignificant and 
29 clinically significant biopsies. Patients with temporal 
resolution larger than or equal to 15 sec were excluded 
(Institution I, n=14; Institution II, n=6). Patients with 
DCE motion artifacts were also excluded (Institution 
I, n=5; Institution II, n=3). The final analysis included 
38 patients (99 biopsies; 84 clinically insignificant, 
15 clinically significant: nine with GS 3+4, four with 
GS 4+3, and two with GS 5+3) for Institution I and 
30 patients (42 biopsies; 17 clinically insignificant, 25 
clinically significant: sixteen with GS 3+4, six with GS 
4+3, two with GS 4+4 and one GS 4+5) for Institution 
II. Prior preliminary study had shown detrimental 
effects of using low temporal resolution on the estimated 
curve characteristics [15]. The intra-modality temporal 
alignment of DCE was measured as the percentage 
difference between the mean prostate time activity 
curve and its fitted model. Before registration, the mean 
difference was 11.17% (standard deviation, 7.64%). After 
registration the mean difference was 7.77% (standard 
deviation, 2.58%).

In this study, classifier models using features on 
the perfusion characteristics were used to discriminate 
between clinically insignificant and significant prostate 
cancer (see Table 1). The highest predictive DCE and 
ADC features were used to develop a multivariable 
predictor model. The wash-in slope habitat and the 
radiologist contours had a Dice score of 0.21 suggesting 
that this habitat was exploring the peritumoral region, 
adding information from the surrounding environment 
to the model. Intra-institution analysis of DCE features 
(diagonal, Table 2) showed that the AUC for Institution 
I was in the range 0.58 to 0.70 and for Institution II it 
was in the range 0.37 to 0.71. For both institutions, the top 
feature based predictors were slope product and finalAUC. 
Pairwise analysis of DCE features (off diagonal, Table 2) 
showed that for Institution I, the AUC increased for the 
pair of features (wash-in slope, initialAUC) to 0.77, with 
sensitivity of 0.68 and specificity of 0.85. For Institution 
II, the AUC increased for the pair of features (time-to-
peak, final AUC) to 0.82, with sensitivity of 0.84 and 
specificity of 0.79.

Statistical analysis showed that for Institution I, 
the feature with the largest number of naïve pair-wise 
significantly different AUC (Supplementary Table 1, 
Feature 27) was the pair (final AUC, slope product). 
After correcting for multiple comparisons, the significance 
level was adjusted to 0.0137 and only 11 out of 27 
experiments had significantly different AUC (Table 3). 
For Institution II, the best pair (Supplementary Table 
2, Feature 12) was the pair (time-to-peak, final AUC). 
The significance level was corrected to 0.0321, resulting 
in 22 out of 27 significantly different AUC curves. The 
remaining 5 feature tuples included either final AUC or 
slope product. Additionally, they correspond to the top-
performing AUC in Table 2, outlining a cluster of well-
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Table 2: Intra-institution evaluation of pairs of DCE features

Institution I Institution II

Sensit. sp tau wi wo AUCi AUCf mio Sensit. sp tau wi wo AUCi AUCf mio

sp 0.59 0.63 0.66 0.64 0.66 0.67 0.71 sp 0.58 0.37 0.47 0.63 0.53 0.53 0.47

tau 0.63 0.78 0.71 0.66 0.74 0.67 tau 0.37 0.53 0.53 0.47 0.84 0.74

wi 0.58 0.68 0.68 0.68 0.71 wi 0.53 0.58 0.58 0.53 0.79

wo 0.51 0.59 0.71 0.60 wo 0.47 0.63 0.74 0.63

AUCi 0.63 0.73 0.71 AUCi 0.68 0.74 0.53

AUCf 0.68 0.75 AUCf 0.79 0.58

mio 0.67 mio 0.63

Specif. sp tau wi wo AUCi AUCf mio Specif. sp tau wi wo AUCi AUCf mio

sp 0.56 0.75 0.60 0.74 0.60 0.77 0.67 sp 0.42 0.42 0.53 0.58 0.42 0.53 0.47

tau 0.64 0.67 0.68 0.82 0.73 0.70 tau 0.37 0.37 0.58 0.42 0.79 0.68

wi 0.60 0.67 0.85 0.68 0.70 wi 0.37 0.63 0.37 0.63 0.74

wo 0.67 0.68 0.73 0.73 wo 0.74 0.58 0.63 0.58

AUCi 0.63 0.77 0.74 AUCi 0.58 0.53 0.37

AUCf 0.70 0.75 AUCf 0.63 0.58

mio 0.73 mio 0.79

AUC sp tau wi wo AUCi AUCf mio AUC sp tau wi wo AUCi AUCf mio

sp 0.58 0.69 0.63 0.69 0.63 0.72 0.69 sp 0.50 0.39 0.50 0.61 0.47 0.53 0.47

tau 0.64 0.73 0.70 0.74 0.73 0.68 tau 0.37 0.45 0.55 0.45 0.82 0.71

wi 0.59 0.68 0.77 0.68 0.71 wi 0.45 0.61 0.47 0.58 0.76

wo 0.59 0.64 0.72 0.66 wo 0.61 0.61 0.68 0.61

AUCi 0.63 0.75 0.73 AUCi 0.63 0.63 0.45

AUCf 0.69 0.75 AUCf 0.71 0.58

mio 0.70 mio 0.71

Sensitivity, specificity and AUC for classification between clinically insignificant and significant cancer is shown, based on 
MRI-guided biopsies. Decision trees were used as classifiers. Leave-one-out(LOO) cross validation was used. The diagonal 
corresponds to the univariate case.

Table 1: List of DCE features analyzed in this paper

# Feature ID Feature Description

1 sp peak enhancement, sm-s0

2 tau time-to-peak

3 wi wash-in slope

4 wo wash-out slope

5 AUCi initial AUC, AUCt0-t0+60

6 AUCf final AUC, AUCt0+240-t0+270

7 mio slope product, wi*wo

Each DCE feature generates a 3D map that is thresholded to converge to a 3D DCE volume. For each feature, it is shown 
the 2D Dice coefficient between each converged volume and the manual radiologist contour of the finding, for the slice 
with the largest manual volume.
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performing features (Table 4). The same intra-institution 
analysis of DCE features was performed for Institution II 
without image registration (diagonal, Table 5). It showed 
that the AUC was in the range 0.44 to 0.59, with the top 
predictor being initialAUC. Pairwise analysis of DCE 
features (off diagonal, Table 5) showed that for Institution 
II, the AUC increased for the pair of features (time-to-
peak, initialAUC) to 0.73, with sensitivity of 0.84 and 
specificity of 0.63. ADC features were ranked by the intra 
institution AUC and the top five pairs (Table 6, description 
of features in Table 7) were considered for inter-institution 
analysis. AUC for both Institution I and for Institution II 
were in the range 0.71 to 0.82. The top performing ADC 
features were associated with histogram gradient, volume/
intensity fraction difference and habitat volume.

Multivariable analysis was performed by joining 
pairs of DCE features (Table 2) with the top five 
performing ADC pairs (from Table 6) as predictors and 
evaluating their predictive power. The quadruples were 
ranked by the cumulative inter institution AUC. The top 
performing couples corresponded to the same ADC feature 
pair: (MaxHistGrad, MinorAxisL). For intra-institution 
analysis (Table 8) the AUC for Institution I was in the 
range 0.75 to 0.88, and for Institution II it was in the 
range 0.45 to 0.76. For inter-institution analysis (Table 9) 
the AUC for Institution I was in the range 0.71 to 0.82, 
and for Institution II it was in the range 0.54 to 0.70.

DISCUSSION

DCE features show promise in discriminating 
between normal appearing versus tumor tissue: In a 
recent study [9], characterization of the prostate region 
(radiomics) in MRI showed predictive of cancer tissue, 
with an AUC of 0.71 for PZ and of 0.68 for TZ. DCE 
features have also shown to be discriminant between 
clinically significant and insignificant prostate cancer: 

wash-in and wash-out slope were two of the parameters in 
a three-variable linear models that showed a classification 
AUC of 0.85 for PZ and 0.92 for TZ in an intra-institution 
setting using whole-mount histopathology contours 
registered unto T2W for lesion characterization [10]. 
The discriminatory power of DCE shows promise in 
this work; only if the procedure could be translated 
in clinical practice to obtain better risk stratification 
therefore avoiding aggressive treatment in patients with 
non-significant cancer. It was already shown that DCE-
based habitats provide significant correlation between 
clinically insignificant and significant lesions in [8] 
where the AUC for the significant quantitative features 
reached 0.88 and 0.95. This previous work supports 
the underlying hypothesis for this study: that DCE 
features are able to differentiate clinical significance of 
identified lesions. It is shown in this paper that DCE 
and ADC radiomics features from a wash-in slope 
induced habitat differentiate clinically significant vs 
insignificant cancer with an AUC of 0.88 and 0.82 for 
intra and inter-institution analysis respectively (Tables 
5 and 6) showing similar discriminating power than 
whole-mount histopathology-based regions of interest 
[10].

The intent of this paper is to show utility of DCE 
habitats accurate predict cancer status and to show adding 
multiple modality information (ADC metrics) shown 
improvement in the predictability. The analysis presented 
here did not break down the tumors by prostatic zone 
because of the small sample size for clinically significant 
lesions, but the segmentation step was aware of the 
prostate zone containing the largest percentage of the 
lesion.

Although DCE plays a minimal role in PIRADSv2, 
finer quantification of perfusion characteristics may 
have a greater role. As shown in this study, pairs of DCE 
features had an AUC of 0.71 for Institution I, and 0.82 

Table 3: Significant differences in AUC for Institution I

Institution I

pValue sp tau Wi wo AUCi AUCf mio

sp 0.054 0.307 0.008 0.064 0.008 0.012 0.076

Tau 0.000 0.001 0.053 0.058 0.026 0.008

Wi 0.000 0.035 0.009 0.035 0.054

Wo 0.037 0.008 0.575 0.027

AUCi 0.022 0.337 0.182

AUCf 0.014 1.000

mio 0.006

DeLong test was used between the DCE feature tuple (AUCf, mio) and all other tuples to establish statistical difference. 
Significance level (α) was set to 0.05. False discovery rate (FDR) was used to correct for multiple comparisons, with an 
adjusted α (adj_α) = 0.0137.
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for Institution II, for intra-institution analysis. For inter-
institution analysis (Table 6), it can be seen that training 
on Institution I had better performance than training 
on Institution II. This might be due to the difference 
in training size (99 and 42 biopsies, respectively) 
suggesting than the radiomics approach requires a 
larger training set. The best performing features in 
this inter-institution analysis (Table 6) for training on 
Institution I were the tuple (AUCi, wo, MaxHistGrad, 
MinorAxisL) with an AUC of 0.82. This tuple had both 
features from early uptake (AUCi) and late uptake (wo) 
suggesting that including descriptors for the whole 
DCE curve improves performance. The ADC features 
suggest that abrupt intensity changes and the volume 
of the ADC habitat play an important role in improving 
classification. Perfusion characteristics associated with 
early enhancement (peak enhancement, time-to-peak, 
start of enhancement) continued to be some of the top 
predictors of clinical significance. In addition, it was 
found that the rate of contrast activity at early and late 
absorption (wash-in slope, wash-out slope, and slope 
product) were consistently top candidates related to 
Gleason tumor grades. A meta-analysis of various DCE 
publications in prostate cancer [16] showed that the 
forward volume transfer (Ktrans) and reverse reflux 
(Kep) are consistently related to tumor aggressiveness 
and these measures were valuable for differential 
diagnosis of prostate cancer. This study found that feature 
descriptors related to perfusion peak, rate and wash-out 
characteristics were predictive of clinical significance. 
Multicenter validation studies in breast cancer finds 
variation in concordance between participants estimate 
of Ktrans, ranging from 0.047 to 0.92 [17].

There are a few studies using quantitative imaging 
in prostate cancer relating features to aggressiveness. 
Some top features correspond to gradients, Gabor filters, 
etc [18]. The predictors showed high specificity (>95%) 

but a low level of sensitivity (≤ 42%). In a recent review 
on prostate cancer, the concern of over-diagnosis was 
addressed by a suggestion to exploit quantitative imaging 
metrics to offset the need for invasive biopsies [19]. A 
quantitative imaging approach such as the one presented in 
this current study has the potential to significantly reduce 
the number of biopsies and associated morbidity. The 
presented approach of using a sphere around the lesion 
to find an appropriate habitat can easily be adapted to a 
deep-learning framework to identify DCE habitats in a 
data-driven fashion that shows promising in imaging 
but requires larger data sets. Center of mass of manually 
drawn contour was used, to co-localized ADC map to 
converge on DCE habitats. Small changes in lesion 
contours will have minimal impact on the habitat region.

The need for registration between different 
modalities of medical imaging has been well documented 
[20]. The measurement of registration accuracy is still 
challenging for 4D DCE data. DCE intensity variances 
over time have been used as a similarity measure 
in registration of DCE data [21]. We used MIM 
PACS registration modules (FDA approved package) 
accessed iteratively using custom routines to minimize 
discrepancy in mpMRI modality alignment. Based on our 
preliminary analysis to study the influence of modality 
alignment to downstream analysis, we find time-to-
peak and initialAUC are early enhancement features, 
that are probably not affected by patient movement 
which predominantly happens during the later parts of 
the scan. The aim of the work presented here is not to 
identify nor delineate suspicious regions in the prostate. 
Our goal is to provide the radiologists and oncologists 
with an accurate prediction of the clinical significance of 
identified lesions.

The American College of Radiology recommends 
use of high DCE temporal resolution (10 seconds or less) 
for characterizing prostatic vasculature [22]. In a recent 

Table 4: Significant differences in AUC for Institution II

Institution II

pValue sp tau wi wo AUCi AUCf mio

sp 0.005 0.032 0.001 0.017 0.010 0.002 0.014

Tau 0.032 0.013 0.007 0.009 1.000 0.258

Wi 0.013 0.031 0.008 0.022 0.471

Wo 0.024 0.017 0.084 0.017

AUCi 0.021 0.009 0.013

AUCf 0.369 0.027

mio 0.290

DeLong test was used between the DCE feature tuple (tau, AUCf) and all other tuples to establish statistical difference. 
Significance level (α) was set to 0.05. False discovery rate (FDR) was used to correct for multiple comparisons, with an 
adjusted α (adj_α) = 0.0321.
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Table 6: Intra-institution evaluation pair-wise, bivariate/variable ADC features

ADC Features Institution I, LOO Institution II, LOO

Sensitivity Specificity AUC Sensitivity Specificity AUC

MaxHistGrad MinorAxisL 0.79 0.84 0.82 0.74 0.79 0.76

MaxHistGrad SurfArea 0.82 0.77 0.79 0.63 0.84 0.74

MaxHistGrad MinHistGrad 0.75 0.67 0.71 0.74 0.89 0.82

VolIFractDiff LeastAxisL 0.68 0.73 0.71 0.74 0.89 0.82

IntVFractDiff LeastAxisL 0.84 0.75 0.79 0.58 0.84 0.71

Pairings of 90 ADC features for intensity statistics, histogram and shape were used for classification between clinically 
insignificant and significant cancer. Sensitivity, specificity and AUC were computed. The cumulative AUC between 
institutions was used for ranking. The top five pairings are shown below. Decision trees were used as classifiers. Leave-one-
out (LOO) cross validation was used for intra-institution evaluation

Table 5: Evaluation of pairs of DCE features for Institution II, without image registration

Institution II

Sensit. sp tau wi wo AUCi AUCf mio

sp 0.80 0.64 0.84 0.64 0.72 0.52 0.68

tau 0.56 0.56 0.52 0.84 0.72 0.80

wi 0.60 0.76 0.72 0.68 0.68

wo 0.60 0.88 0.76 0.68

AUCi 0.84 0.68 0.68

AUCf 0.84 0.44

mio 0.44

Specif. sp tau wi wo AUCi AUCf mio

sp 0.38 0.31 0.44 0.44 0.69 0.19 0.44

tau 0.31 0.38 0.44 0.63 0.19 0.50

wi 0.38 0.38 0.75 0.31 0.38

wo 0.31 0.31 0.50 0.44

AUCi 0.44 0.31 0.44

AUCf 0.25 0.19

mio 0.44

AUC sp tau wi wo AUCi AUCf mio

sp 0.59 0.48 0.64 0.54 0.70 0.35 0.56

tau 0.44 0.47 0.48 0.73 0.45 0.65

wi 0.49 0.57 0.74 0.50 0.53

wo 0.46 0.60 0.63 0.56

AUCi 0.64 0.50 0.56

AUCf 0.55 0.31

mio 0.44

Sensitivity, specificity and AUC for classification between clinically insignificant and significant cancer is shown, based on 
MRI-guided biopsies. Decision trees were used as classifiers. Leave-one-out(LOO) cross validation was used. The diagonal 
corresponds to the univariate case.



Oncotarget37131www.oncotarget.com

Figure 1: Block diagram of the overall processing. A set of 38 patients from Institution I and 30 from Institution II with available 
mpMRI data were included in the analysis. Pre-processing included z-scoring of the ADC data and shifting/scaling of DCE data to the 
pre-contrast images. Voxel-wise parametrization of the DCE curves was performed and a DCE amp was generated for each parameter. A 
perfusion tumor habitat was localized from the DCE map based volume that was most similar to the radiology contour. Features from this 
DCE volume were computed for both DCE and ADC. A bottom-up approach to cluster important features was performed and a final model 
including 2 DCE and 2 ADC features is presented. Classification of these features was performed to evaluate prognostic value.

Table 7: Description of top performing ADC features

# Feature ID Feature Description

1 MaxHistGrad Maximum Histogram Gradient Grey Level

2 MinHistGrad Minimum Histogram Gradient Grey Level

3 VolIFractDiff Volume at Intensity Fraction Difference

4 IntVFractDiff Intensity at Volume Fraction Difference

5 SurfArea Surface Area (mm2)

6 MinorAxisL Minor Axis Length

7 LeastAxisL Least Axis Length

Table 8: Intra-institution evaluation of pair-wise DCE and ADC features

DCE Features + 2 ADC Features
(MaxHistGrad, MinorAxisL)

Institution I, LOO Institution II, LOO

Sensitivity Specificity AUC Sensitivity Specificity AUC

Tau AUCf 0.84 0.70 0.77 0.58 0.42 0.50

Wi wo 0.78 0.73 0.75 0.58 0.42 0.50

AUCi mio 0.89 0.86 0.88 0.68 0.84 0.76

AUCi wo 0.88 0.74 0.81 0.68 0.74 0.71

sp mio 0.90 0.79 0.85 0.47 0.42 0.45

Pairings of 7 DCE features (Table 1) combined with the top performing 5 ADC (Table 3). Sensitivity, specificity and AUC 
were computed. The cumulative inter-institution AUC was used for ranking. Leave-one-out (LOO) cross validation was 
used for decision tree classifiers. All top DCE-ADC tuples had the same ADC pair (MaxHistGrad, MinorAxisL)
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Figure 2: Quantitative modeling of the DCE-MRI time activity characteristics. A 5-parameter curve is fitted to the DCE-MRI 
representative curve from the tumor habitat. The model consists of initial static intensity s0, plateau sm, start of enhancement t0, time-to-peak 
t, and wash-out slope wo. Peak enhancement sp=sm-s0; wash-in slope wi=sp / t. AUCt1-t2 is the area under the DCE curve (from red dots) 
between times t1 and t2. The AUFCt1-t2 is the area under the fitted curve (blue) between times t1 and t2.

Figure 3: Definition of the wash-in slope habitat. (A) Anatomical structures: Prostate (cyan), peripheral zone, PZ (yellow), and 
radiologist’s lesion contour (blue) along with computed structures: A 3D 15 mm radius sphere (green) located at the center of mass of the 
marked lesion, and bounded by the prostate and the lesion’s zone, in this case the transition zone. This bounded sphere is used as search 
space to select the region with large wash-in slope. The upper quartile is used to converge to the wash-in slope habitat (red). These structures 
are overlapped with the wash-in slope map that is computed by a pixel-wise fitting of the DCE time activity curves within the prostate. 
(B) Mean time-activity curves for the radiologist finding contour (blue) and the wash-in slope habitat (red). It can be seen that this habitat 
includes intra and peritumoral regions

Table 9: Inter-institution evaluation of pair-wise DCE and ADC features

DCE Features + 2 ADC Features
(MaxHistGrad, MinorAxisL)

Institution I → Institution II Institution II → Institution I

Sensitivity Specificity AUC Sensitivity Specificity AUC

Tau AUCf 0.58 0.95 0.76 0.67 0.73 0.70

Wi wo 0.53 0.89 0.71 0.67 0.73 0.70

AUCi mio 0.47 0.95 0.71 0.78 0.58 0.68

AUCi wo 0.68 0.95 0.82 0.38 0.70 0.54

sp mio 0.63 0.95 0.79 0.38 0.74 0.56

The top performing tuples in the intra-institution DCE and ADC feature evaluation (Table 5) are independently tested 
between institutions. Sensitivity, specificity and AUC were computed. Decision trees were used as classifiers.
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study, a sampling resolution of 15 sec and above resulted in 
a statistical insignificance compared to higher resolutions 
[15]. Due to retrospective nature of the study, data sets with 
temporal sampling larger than 15 seconds were removed to 
compromise on the sample size between two centers.

MATERIALS AND METHODS

Patient data

This study evaluated the performance of features 
using two independent data sets: First cohort was collected 
at the University of Miami (Institution I) under approved 
Institutional Review Board (IRB) protocol and de-
identified for retrospective analysis. An additional cohort 
was collected at H. Lee Moffitt Cancer Center (Institution 
II), under protocol approved by the University of South 
Florida’s IRB. The patient’s informed consent was waived 
for retrospective access of de-identified patient records. 
The methods were performed in accordance with the 
approved guidelines. Data consisted of histopathology 
analysis of prostate biopsies acquired with either template 
or targeted biopsy from pre-treatment MRI acquired by 
fusing the MRI and real-time ultrasound images using 
Uronav (Invivo Corporation, Gainesville, FL), which 
allows for accurate measurement of needle location. For 
this study, GS values were grouped in two categories: 
clinically insignificant cancer (=GS6) and clinically 
significant cancer (GS ≥ 7). All statistics were performed 
using this grouping.

MRI acquisition and pre-processing

Routine clinical mpMRI acquisition includes T2W, 
DCE, and diffusion weighted imaging (DWI). DWI 
includes an ADC map generated at acquisition time. 
Institution I imaging was acquired using multiple 
scanners, Siemens (Siemens, Munich, Germany) and GE 
(General Electrics, Boston, MA) with 19 and 38 patients, 
respectively. Both acquired at 3T with an external pelvic 
coil. DWI was acquired using three b-values: 50, 500 and 
1000 (n=37) and 50, 500 and 1400 (n=20). For DWI, the 
median repetition time (TR) was 9.5 sec (range 6.6-9.87 
sec) and the median echo time (TE) was 55.8 msec (range 
52.4-93 msec). For DCE, the median TR was 4.05 msec 
(range 3.04-5.24 msec), the median TE was 1.78 msec 
(range 1.36-2.33 msec), flip angle was 12 deg (n=54) and 
10 deg (n=3), temporal resolution was 7 sec (n=43) and 
30 sec (n=14). Institution II imaging was also acquired 
using multiple scanners, Siemens (Siemens, Munich, 
Germany), Philips (Philips, Amsterdam, Netherlands), 
and GE (General Electrics, Boston, MA) with 31, 5, and 3 
patients, respectively. Acquired using 3T (n=7) and 1.5T 
(n=32) with an endorectal coil (eCoil, Medrad, Pittsburgh, 
PA). For DWI, the median TR was 7.4 sec (range 3.2-9.5 

sec) and the median TE was 95 msec (range 70.5-115 
msec). For DCE, the median TR was 4.72 msec (range 
2.42-4.72 msec), the median TE was 1.34 msec (range 
1.06-2.08 msec), flip angle was 12 deg (n=34) and 10 deg 
(n=5), temporal resolution was 11 sec (n=33) and 16.5 sec 
(n=6).

All modalities were registered locally to the 
prostate using the T2W image as reference. We 
used gradient descent of mutual information on the 
space spanned by 3D affine transformations, using a 
combination of native and custom routines on the MIM 
PACS software (MIM Corporation, Cleveland, OH). 
Manual contours of the prostate, PZ, and the radiologist 
finding in the pre-biopsy MRI were stored as RT-DICOM 
structures. The peak-absorption time point Speak was 
identified in DCE using the AIF signal as reference. All 
other DCE time points were registered to Speak. ADC were 
standardized within the prostate, i.e., ADCz = (ADC-
mean(ADC(prostate)))/std(ADC(prostate)), which has 
been shown to be used to standardize data variability 
[23]. DCE data was normalized using an automatically 
segmented arterial contour as described in [24], which 
makes the signal proportional to the change in relaxation 
rate caused by the contrast agent weighted by the initial 
spin-lattice relaxation time [25]. Image analysis was 
performed using custom routines written in Matlab 
(Mathworks, Natick, MA) which were accessed directly 
from the PACS (MIM Corporation, Cleveland, OH, 
USA).

Image registration in mpMRI

In order to minimize the effects of patient movement 
during the long period of mpMRI scan on the downstream 
analysis has motivated to use image registration to 
align modalities [20]. The measurement of registration 
accuracy is still challenging for 4D DCE data. In prior 
studies intensity variances over time have been used as 
a similarity measure in registration of DCE data [21]. 
This variance was quantified by measuring the percentage 
difference between the mean prostate time activity curve 
and its fitted model. The mean percentage different of 
the signal intensity decreased from 11.17% without 
any to 7.77% after image registration. The standard 
deviation also reduced, from 7.64% to 2.58%, showing 
a larger decrease in the distribution of motion artifacts 
after registration. It was found that the performance of 
DCE features as predictors of accuracy is sensitive to 
patient motion artifacts. We evaluated the performance 
of single DCE features as predictor with respect to 
registration. We find the AUC range shifted from 0.37 to 
0.71 (with registration) to the range 0.44 to 0.64 (without 
registration). Pairwise analysis showed that the feature 
pair (time-to-peak, initialAUC) was not affected by the 
registration process.
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Study design

The overall methodology of this study is shown 
in Figure 1. A wash-in slope map was generated by 
estimating the wash-in slope (Figure 2) of the time activity 
curves associated with the voxels within the prostate. The 
tumor region that was based on the radiologist finding on 
the T2W images was obtained. This region was centered 
based on the TRUS biopsy location that was imported 
directly from the fused TRUS/MRI system. This lesion 
boundary was initialized with a uniform 3D volume 
(extended region of fixed diameter) around the biopsy 
location and converged automatically into a wash-in slope 
habitat based on the upper quartile of the wash-in slope 
map (Figure 3A). The habitat’s average absorption at 
each DCE time point was analyzed and used to generate 
time activity curves that were characterized by computing 
quantitative descriptors. These descriptors were then used 
in a classifier model to find features that discriminate 
clinically significant tumors. Intra-institution classification 
was used to select a set of DCE and ADC features that 
were analyzed in an inter-institution setting, where the 
model was build using the cohort from one institution 
and validated on the other institution. Inter-institution 
analysis of this subset of features was performed and the 
top performing features are shown in Table 5.

Feature extraction

In this study, seven features were extracted from the 
DCE time activity curves, which describe both early and 
late enhancement (see Table 1). DCE curves were fitted 
using a bi-exponential model [26]. This semi-quantitative 
model has five parameters: initial static intensity s0, plateau 
sm, start of enhancement t0, time-to-peak tau, and wash-out 
slope, wo. Figure 2 shows an example DCE curve along 
with these parameters. Peak enhancement sp=sm-s0 ; wash-
in slope wi=sp /tau. In addition, we computed two features 
that describe the area under the DCE curve between a 
time intervals, namely: AUCt1-t2 is the area under the bi-
exponential fitted DCE curve between time, t1 and t2. 
AUCi = AUCt0-t0+60 measures the early wash-in uptake 
curve and AUCf = AUCt0+240-t0+270 measures the late wash-
out curve. The seventh feature computes the multiplicative 
effect of wash-in and wash-out slopes and was computed 
as mio= wi* wo. On the localized region, a set of 90 ADC 
features were computed consisting of intensity statistics, 
histogram and volume features. A subset of pairs of ADC 
features was obtained from the top performing pair-wise 
features selecting those with largest AUC.

Computation of the wash-in slope habitat

The wash-in slope has been useful for cancer 
detection and localization [27], as well as in discriminating 
aggressive versus non-aggressive lesions [28]. It also 
differentiates prostate cancer from non-neoplastic 

lesions [29]. In [28] manual contours on whole mount 
histopathology after prostatectomy were mapped to T2 
and the DCE wash-in slope was significantly different 
between these two groups for both the mean and the 75th 
percentile within the mapped contour. In recent work [30], 
wash-in slope along with time-to-peak induced the highest 
sensitivity (0.89 for linear discriminant analysis, and 0.97 
for SVM) for ovarian cancer. In this study, the wash-in slope 
parameter was used to converge to an intra and peritumoral 
region (habitat) around the biopsy location to characterize 
the surroundings of the biopsied lesion. This was done by 
first forming a sphere (radius r = 15 mm) around the given 
biopsy location to account for TRUS/MRI registration error. 
This region was bounded by the prostatic zone, either PZ or 
transition zone (TZ) allocating the largest lesion volume. 
The values for the wash-in slope within the localized sphere 
were used to obtain the region defined by the upper quartile. 
The corresponding DCE region will be our consensus tumor 
habitat region of interest. The mean DCE signal value at 
the consensus region at each sampling time was used as a 
representative perfusion curve for the patient biopsy. The 
definition of the wash-in slope habitat is shown in Figure 3

Statistical analysis

Univariate analysis of the seven DCE features 
was performed to evaluate the overall discrimination of 
clinically significant to non-significant cancers using 
decision trees [31]. Sensitivity, specificity and AUC 
were computed on the features (see Table 1). Pair-wise 
multivariable analysis was performed by exhaustive 
comparison of all possible DCE feature pairs.

The underrepresented GS class was over-sampled 
using SMOTE [32], calibrated so that both classes 
had exactly the same size. Intra institution classifier 
performance was evaluated using leave-one-out (LOO) 
cross validation. For inter institution validation, a training 
model was built using the whole balanced data set in one 
institution, and tested using the unbalanced data set from 
the other institution. Data from different institutions were 
not mixed to build the classification models.

Pair-wise comparison of AUC was performed using 
DeLong test [33]. False discovery rate [34] (FDR) was 
used to correct for multiple comparisons.

Image processing and segmentations were 
performed on MIM Imaging PACS workstation (MIM 
Corporation, Cleveland, OH, USA). The feature 
computations were developed using custom code written 
in C++ and Matlab (Mathworks Inc., Natick, MA). 
Classifiers were implemented in Matlab. DeLong and 
FDR tests were performed in R.

CONCLUSIONS

This paper describes a systematic approach to 
quantifying the clinical significance of lesions identified 
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by radiology using a DCE-based habitat and evaluating 
both DCE and ADC features. Our approach identifies 
reproducible features for inter-institution prediction and 
can be translated seamlessly into clinical practice to guide 
radiologists and oncologists in the assessment of clinically 
significant prostate cancer.
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