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Dynamic representation of time in 
brain states
Fernanda Dantas Bueno*, Vanessa C. Morita*, Raphael Y. de Camargo, Marcelo B. Reyes, 
Marcelo S. Caetano & André M. Cravo

The ability to process time on the scale of milliseconds and seconds is essential for behaviour. A growing 
number of studies have started to focus on brain dynamics as a mechanism for temporal encoding. 
Although there is growing evidence in favour of this view from computational and in vitro studies, 
there is still a lack of results from experiments in humans. We show that high-dimensional brain states 
revealed by multivariate pattern analysis of human EEG are correlated to temporal judgements. First, 
we show that, as participants estimate temporal intervals, the spatiotemporal dynamics of their 
brain activity are consistent across trials. Second, we present evidence that these dynamics exhibit 
properties of temporal perception, such as scale invariance. Lastly, we show that it is possible to predict 
temporal judgements based on brain states. These results show how scalp recordings can reveal the 
spatiotemporal dynamics of human brain activity related to temporal processing.

Humans and non-human animals are able to estimate temporal intervals across a wide range of scales1,2. Intervals 
ranging from hundreds of milliseconds to seconds are especially critical for sensory and motor processing, learn-
ing and cognition. On this scale, the theoretical dominant models are based on the existence of an internal clock, 
consisting of a pulse-emitting oscillator and an accumulator that counts the pulses3–5. Electrophysiological evi-
dence for this model consists mainly in ramping activity as a possible correlate of the accumulation of pulses, 
and has been found using invasive recordings in brain regions as prefrontal, parietal and motor areas. In human 
electroencephalography (EEG), it has been suggested that the contingent negative variation (CNV), a slow corti-
cal potential of developing negative polarity, could be a reflection of such processes, given its similarity with the 
hypothesised characteristics of an accumulation process6. However, in both cases (invasive recordings and human 
EEG) it is not clear whether ramping activity is coding time or using temporal information to anticipate or react 
to events7. Moreover, the existence of an internal clock has been criticised based on behavioural findings and for 
being biologically unrealistic8.

For this reason, a number of alternate models of timing, which take into account neural data, have been put 
forward as biologically-plausible explanatory candidates, such as state-dependent networks models9. For this 
class of models, neural circuits would be inherently capable of temporal processing as a result of the complexity of 
cortical networks coupled with the presence of time-dependent neuronal properties8. In this view, neural systems 
can take advantage of the temporal evolution of their states, caused by the variation in neural and synaptic prop-
erties. When activated, a neural system would follow a unique trajectory through its state space. Thus, by adapting 
networks to read out specific activity patterns, they could be tuned to discriminate temporal intervals9. However, 
the vast majority of evidence in favour of these models rely on computational modelling or in vitro studies8,10–12 
and evidence from human and non-human animal recordings are still sparse13,14.

One of the main difficulties of investigating this class of models using non-invasive human electrophysiolog-
ical recordings (EEG) is how to characterise different states and their temporal evolution. On the other hand, 
recent EEG studies have suggested that it is possible to differentiate spatially overlapping brain states by analysing 
participant-specific patterns15–19. This methodology has been successfully applied to magneto-encephalographic 
recordings and was able to dissociate between standard and deviant tones, frequent versus rare melodies, visual 
stimulus location and stimulus orientation15. In the present study, we analysed time-resolved EEG signals using 
multivariate pattern analysis (MVPA). We found that the evolution of brain states over time can carry informa-
tion about the temporal interval tracked by participants and also their future behavioural responses.
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Results
Human participants (n =​ 14) performed a temporal categorisation task. The experiment was based on a “shoot 
the target” task that has been previously used to study temporal perception20,21. The task consisted of two types of 
trials. In Regular trials, a visual target transited from the left periphery of the screen towards a central target zone 
taking 1.5 seconds to reach screen centre, where there was an “aiming sight” (Fig. 1a). In these trials, participants 
were instructed to press a button in order to produce a “shot” (an audiovisual stimulus) when the target passed 
the aiming sight. In Test trials, the trajectory of the target was masked by an occluder and only the aiming sight 
remained visible throughout the entire trial. In these trials, participants did not see the movement of the target, 
but only heard the start of its movement by a characteristic sound that targets made when they started moving 

Figure 1.  Experimental task and results. (a) The task consisted of a computerised shoot the target task. In 
regular trials a bulls-eye moved towards the centre of the screen reaching it in 1.50 seconds. Participants were 
instructed to produce a “shot” when the target passed trough the “aiming sight” in the centre of the screen. In 
Test trials, target trajectory was masked and automatic shots were given at seven different intervals (0.80, 0.98, 
1.22, 1.50, 1.85, 2.27 and 2.80 seconds). Participants had to judge whether the shot occurred after an interval 
“shorter”, “equal”, or “longer” than the time the target normally took to reach screen centre. (b) Psychometric 
functions describing performance on Test trials. Right panel shows estimated parameters from the 
psychometric functions: Points of Subjective Equality (PSE), Just Noticeable Difference (JND) and Weber ratio. 
Plots show mean and standard error of the mean (s.e.m.) across participants. (c) Contingent Negative Variation 
(CNV, mean ±​ s.e.m.) for central-parietal electrodes for Test trials longer or equal to 2.27 seconds (dashed lines 
indicates intervals where the shot could have been presented). The CNV peaks at the memorised interval. Right 
panel shows the topographies for the intervals close to possible moments of shot presentation.
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(both in Regular and in Test trials). One automatic shot was given in each Test trial in one of seven different inter-
vals (0.8, 0.98, 1.22, 1.5, 1.85, 2.27 or 2.8 s) after the sound indicated that the target started moving. Participants 
had to judge whether the shot occurred at an interval “shorter”, “equal”, or “longer” than the time the target nor-
mally took to reach screen centre. Test and Regular trials were presented in a pseudo randomised order during the 
experimental session in which more than three consecutive Test trials were not allowed.

The proportion of each response was calculated for each interval and two independent cumulative normal 
functions were fitted to the proportion of responses “shorter” and “longer”. As expected, participants made few 
errors when categorising intervals that were clearly shorter, equal or longer than 1.5 seconds (Fig. 1b). Participants 
demonstrated highest uncertainty (point of subjective equality, PSE) between shorter and equal responses for 
intervals around 1.20 ±​ 0.03 s (mean ±​ s.e.m.) and between equal and longer responses for intervals around 
2.10 ±​ 0.05 s (paired t-test between estimated PSEs, t13 =​ 15.05, p <​ 0.001, Bayes Factor (BF) in favour of the alter-
native >​100).

A hallmark of interval timing is its scalar property (a generalisation of the Weber Law), which states that 
the variability in temporal estimation increases linearly with the magnitude of the interval. That is, errors in 
temporal estimation scale with the durations of the intervals3, which implies that shorter intervals are easier 
to discriminate than longer intervals. Accordingly, in our experiment, participants were more sensitive (i.e., 
responded differentially) to small temporal differences across shorter intervals compared to longer intervals. 
This is illustrated by the smaller Just Noticeable Difference (JND) for the shorter compared to the longer intervals 
(JNDshort =​ 0.287 ±​ 0.031 s, JNDlong =​ 0.438 ±​ 0.032 s, paired t-test, t13 =​ 4.77, p <​ 0.001, BF in favour of the alterna-
tive =​ 77.49). As predicted by the scalar property, when sensitivity was normalised by interval length no difference 
between shorter and longer intervals was observed (Webershort =​ 0.118 ±​ 0.013, Weberlong =​ 0.103 ±​ 0.006, paired 
t-test t13 =​ −​1.39, p =​ 0.187, BF in favour of the null =​ 1.64).

For the EEG recordings, we focused our analyses on trials in which the interval was at least 2.27 s long, col-
lapsing the data from the two longest intervals. The event-related potential for central electrodes can be seen in 
Fig. 1c. Consistent with previous results, there was a clear Contingent Negative Variation potential (CNV) which 
peaked at the reference interval6,7.

For a neural system to be able to read time by its trajectory through state space, the trajectory of the elicited 
activity must be consistent across activations. Thus, we checked if the recorded dynamics were consistent across 
trials. Indeed, the pattern of EEG signals across the scalp followed a structured sequence in time across different 
trials (one-sample t-test, cluster –​ p <​ 0.001, Fig. 2a). Next, we used the Mahalanobis distance19,22 to perform pair-
wise comparisons across time points to determine whether the pattern of the EEG signal contained information 
about the interval between events. As shown in Fig. 2b, multivariate distances between time points followed a 
diagonal-shaped pattern (i.e., a stronger similarity across points closer in time), suggesting a sequential activation 
of overlapping states.

The evolution of the spatiotemporal dynamics captured by the EEG sensors can be visualised using multidi-
mensional scaling and plotted against the first two dimensions. We focused on the period starting 0.65 s after the 
presentation of the first sound to minimise the influence of the event related potentials. This trajectory represents 
the path linking the sequence of activation states, while the multidimensional distance between time points in 
state space reflects the difference in the overall response captured by all sensors. In line with the pairwise distances 
showing similarity in activations for points closer in time, the recovered trajectory preserves the temporal infor-
mation about the activated states (Fig. 2c). There is a strong correlation between distance in time and distance in 
state space.

To quantify the relation between state space and behaviour, we focused our analysis at time points when the 
interval could have ended. We performed multivariate pairwise comparisons (using Mahalanobis distances) on 

Figure 2.  Spatiotemporal dynamics and temporal perception (a) Similarity index of the spatiotemporal 
dynamics across trials (mean ±​ s.e.m.). Red line at the bottom represents the temporal cluster where similarity 
was significant. (b) Pairwise multivariate distance matrix between all time points. There is a strong similarity 
for time points closer in time, suggesting a sequence of activation states. (c) Multidimensional distance between 
time points for the period between 0.65 s and 2.2 s visualised in two dimensions using multidimensional scaling 
(MDS). The colour of each point represents its physical interval. The trajectory represents the path linking the 
sequence of activation states.
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data for the six first intervals (0.8, 0.98, 1.22, 1.5, 1.85, 2.27 seconds) and used multidimensional scaling to repre-
sent them in a two dimensional plot (Fig. 3a).

To quantify the relationship between distance in time and in state space, we fitted linear functions to the 
log-transformed temporal distance with the state space distance, comparing the first and last interval to all others. 
As shown in Fig. 3b, there was a strong association between both distances, suggesting that states further apart in 
time are also further apart in state space (fitted slope for shortest interval =​ 1.58 ±​ 0.08, t-test to zero: t13 =​ 19.48, 
p =​ 0.001, BF in favour of the alternative >​ 100, fitted slope for longest interval =​ −​1.29 ±​ 0.09, t-test to zero: 
t13 =​ −​13.50, p =​ 0.001, BF in favour of the alternative >​ 100). Importantly, the slope for the shortest interval was 
steeper than for the longest interval (paired t-test on the absolute estimated slopes, t13 =​ 3.348, p =​ 0.005, BF in 
favour of the alternative =​ 9.68). This suggests that, for the shortest interval, the rate of change in state space as 
a function of time is higher than for the last interval, once again in accordance with the scalar property of time.

Thus far, we have shown that the properties of brain states revealed by MVPA follow key characteristics of 
temporal processing. However, if they are related to temporal perception, then it should be possible to decode 
participants’ temporal judgements based on the recovered states. To test this possibility, we focused our analysis 
on single trial data from the two intervals closest to when participants had highest uncertainty about their tem-
poral judgement: (1) 1.22 s, for which participants had a high uncertainty on whether it was shorter or equal to 
1.5 s; and (2) 1.85 s, for which participants had a high uncertainty on whether it was equal or longer than 1.5 s.

When participants had a high uncertainty between shorter/equal responses, positions within the path of state 
space that were closer to the equal state increased the probability of equal responses (t-test on the estimated 
slopes, t12 =​ 2.28, p =​ 0.041, BF =​ 1.84 against the null, Fig. 4b). In a related analysis, we compared the location in 
state space where participants were when they responded shorter or equal. We found that equal responses were 
associated with positions closer to the equal state (t12 =​ 2.20, p =​ 0.048, BF =​ 1.66 against the null, Fig. 4c).

A similar pattern was found when participants had a high uncertainty between equal/longer responses. 
Positions within the path of state space that were further from the equal state decreased the probability of equal 
responses (t-test on the estimated slopes, t12 =​ −​2.81, p =​ 0.016, BF =​ 3.87 against the null, Fig. 4b). We further 
compared the location in state space when participants responded longer or equal. We found that equal responses 
were associated with positions closer to the equal state (t12 =​ 3.41, p =​ 0.0052, BF =​ 9.20 against the null, Fig. 4c).

Within each case, the physical interval tested was identical in all trials, showing how trial-by-trial fluctuations 
in the distance travelled in state space can partially account for the variability in temporal judgements.

Discussion
In this study, we investigated whether time-resolved EEG signals can carry information about time. We have 
shown how dynamic pattern analyses can characterise states correlated with coding of temporal intervals. These 
states show properties classically related to temporal perception, such as scale invariance, and were predictive of 
temporal judgements.

A growing number of studies in non-human animals have investigated if the neural mechanisms of temporal 
perception in the range of hundreds of milliseconds to seconds are related to population dynamics instead of a 
single central clock1,13,23. These studies suggest that, temporal information emerges from neural properties that 
are naturally time-varying, such as short-term synaptic plasticity24. Our results show, for the first time to our 
knowledge, how these dynamics can be captured by non-invasive electrophysiological recordings, addressing an 
important lack of evidence in favour of this population dynamics hypothesis in humans.

The majority of timing studies in humans have focused on the contingent negative variation (CNV) as a 
potential signature of the subjective experience of time6. However, the exact role of the CNV on temporal percep-
tion has been recently criticised both on experimental and theoretical terms7,25. For example, a recent study has 

Figure 3.  Distance in state space is correlated to distance in time (a) Multidimensional distance between the 
activity in the different possible intervals visualised in two dimensions using multidimensional scaling (MDS). 
The colour of each point represents its physical interval. (b) Mean distances in state space (Mahalanobis 
distance) as a function of temporal separation (log10 scale). Blue (red) markers shows pairwise multivariate 
distances (mean ±​ s.e.m.) between the 0.8 s (2.27 s) and all other intervals. The slope of the fitted linear functions 
indicated that the rate of change in state space as a function of time is faster for the first than for the last interval.
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argued that post-interval evoked potentials (e.g., activity evoked by a stimulus that marks the end of an interval) 
can reflect the subjective experience of time better than the CNV25. Our results, on the other hand, suggest that 
temporal experience can be tracked during the interval to be estimated. Although the averaged amplitude of the 
CNV in a group of electrodes might not be a good predictor of the elapsed interval, other subtle differences pres-
ent in individual electrodes, and possibly hindered by the CNV, could carry information about time.

According to state-dependent timing models, when a network is activated it will follow a complex trajec-
tory dependent not only on the synapses directly activated by the input, but also on the ongoing activity of the  
network9. This process leads to distinct spatiotemporal patterns of activity, which, according to our results, pro-
duce different patterns of activation across the EEG sensors. This finding adds to the increasing evidence of how 
multivariate methods represent a powerful approach to decode task-relevant dimensions. As these trajectories 
evolve through time in a consistent way, stimuli presented in different time points will find the network in a dif-
ferent state leading to different activity patterns9. Therefore, although small differences in the state of a network 
might not be detectable using classical EEG methods, they could still lead to marked differences of evoked activity 
by new inputs in different time points, as recently reported25.

Although our results are consistent with state-dependent timing models, it could be argued that our analyses 
are capturing properties of other models of temporal processing, as central clock models. For example, the recov-
ered states could be related to the accumulator process: as pulses are accumulated, they generate activity that is 
reflected across electrodes. However, it is important to mention that, in a broad view, state-dependent models can 
be extended to be consistent with the majority of timing models26, with the different models imposing specific 
constraints on what would define the state space. Thus, although our findings open an important and missing first 
step in how to investigate state dependent models in human EEG, they do not, at the moment, present conclusive 
evidence in favour of such view.

One important question that remains to be answered is whether these recovered brain states are part of a 
coding scheme used to track time or a by-product of other processes that could generate a time-decodable signal. 
For example, in our specific task, the activity decoded could be biased due to particular strategies adopted by 
participants, as imagining the movement of the target to estimate time. Future experiments with different tasks 
could easily test such possibility. Moreover, comparing how well these decoding methods work on different tasks 
can help to determine whether these methods are capturing a more automatic or cognitively controlled system 
for temporal processing27,28.

A more general formulation of the same argument can be proposed. One could argue that the majority of 
neural processing has a temporal structure. If this structure is consistent enough, even if not directly used to 
track time, it could lead to similar results reported by our study. Once again, future studies can address this issue 
by observing how those brain states behave in tasks that have similar temporal structures, but different temporal 
demands.

Figure 4.  Correlation between position in state space and behaviour (a) Schematic representation of the 
methodology used to estimate position in state space for single trials. These analyses focused in intervals where 
participants had maximum uncertainty on whether the interval was shorter than or equal to 1.5 s (1.22 s) and 
equal to or longer than 1.5 s (1.85 s). For each of these trials, multivariate distances between activity in that 
trial and two other landmarks were estimated. The difference between these distances was used as an index 
of position in state space. (b) Proportion of equal responses as a function of position in state space. Each dot 
represents a quartile split of equal responses (mean ±​ s.e.m.) as a function of the position where participants 
are in state space. The continuous line represents the fitted function. For shorter intervals, proportion of equal 
responses increased as activity was more similar to the equal landmark (upper panel). For longer intervals, 
proportion of equal responses decreased when activity was more similar to the longer landmark (lower panel). 
(c) Position in state space as a function of the given response. Upper panel shows mean position in state space 
when participants responded shorter or equal for trials with a 1.22 s interval. Lighter circles and lines show data 
from individual participants and darker circles and lines show the mean across participants. Negative (positive) 
values indicate that activity is more similar to the shorter (equal) state. Lower panel shows mean position in 
state space when participants responded equal or longer for trials with a 1.85 s interval. Negative (positive) 
values indicate that activity is more similar to the equal (longer) state.
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Taken together, our results show an important proof of principle that the analyses of multivariate patterns can 
bring important advances in our understanding of temporal processing. Using a simple unsupervised learning 
methodology, we have shown that activity captured across electrodes carries information that is correlated to tem-
poral perception and to subsequent temporal judgements. Given the absence so far of clear electrophysiological 
correlates of temporal processing in human EEG, we propose that the use of multivariate pattern analyses can 
be of extreme importance, especially in situations where different theoretical models make similar behavioural 
predictions. There is a myriad of temporal tasks and illusions that can be used to study time in humans. Future 
studies can combine these tasks and use similar methods herein described to elucidate how temporal information 
can be encoded at the population level to support time-dependent functions.

Methods
Participants.  Sixteen volunteers (age range, 22–27 years; 9 female) gave informed consent to participate in 
this study. The number of participants was chosen based on previous experiments. All of them had normal or 
corrected-to-normal vision and were free from psychological or neurological diseases. The experimental pro-
tocol was approved by The Research Ethics Committee of the Federal University of ABC. All experiments were 
performed in accordance with the approved guidelines and regulations. Two participants were excluded from the 
analyses because more than 3 channels during EEG recordings presented a high number of artifacts.

Stimuli and Procedures.  The experiment consisted of a computerised “shoot the target” task20. The stim-
uli were presented using Psychtoolbox29 v.3.0 package for MATLAB on a 17–inch CRT monitor with a vertical 
refresh rate of 60 Hz, placed 50 cm in front of the participant. Responses were collected via a response box with 9 
buttons (DirectIN High Speed Button; Empirisoft). Each trial started with the presentation of a target (1.5 visual 
degrees radius, red and black) at the left hemifield of the screen (background RGB-colour 150;150;150) and an 
“aiming sight” (an empty circle with 0.5 visual degree radius) at the centre of the screen. After a random interval 
(500 ms–1000 ms) a beep (1000 Hz, 70 dB, 100 ms duration) was presented simultaneously with the start of move-
ment of the target from left to right. The target moved at a constant speed (9 degrees/sec) taking 1.50 seconds to 
reach the centre of the screen, thus passing through the aiming sight. In Regular trials (350 trials) a button press 
(with the right index finger) produced a “shot” (a green disc, presented inside the aiming sight) and a second 
beep (500 Hz, 70 dB, 100 ms duration), presented simultaneously. Participants were instructed to hit the target by 
pressing the button at the appropriate moment.

Test trials followed the same schema, but the trajectory of the target was masked by a gray rectangle (3 visual 
degrees of height, RGB-colour 130;130;130) and automatic shots were given at seven different intervals (0.8, 0.98, 
1.22, 1.5, 1.85, 2.27 or 2.8 s). At the end of each Test trial, participants had to judge whether the shot occurred 
at an interval “shorter”, “equal”, or “longer” than the time the target normally took to reach the screen centre. 
Participants responded using three different buttons. Responses in Test trials were unspeeded and could be given 
starting 800 ms after the automatic shot. Trials were presented in a random order, with the restriction of having a 
maximum of three Test trials in sequence. Participants performed a total of 10 blocks, each with 35 Regular and 
35 Test trials. The first 10 trials in each block were always Regular trials. The experimental session lasted 60 min-
utes on average.

EEG recordings and pre-processing.  EEG was recorded continuously from 64 ActiCap Electrodes (Brain 
Products) at 1000 Hz by a QuickAmp amplifier (Brain Products). All sites were referenced to FCz and grounded 
to AFz. The electrodes were positioned according to the International 10–10 system. Additional bipolar elec-
trodes registered the electrooculogram (EOG). EEG pre-processing was carried out using BrainVision Analyzer 
(Brain Products). All data were down-sampled to 250 Hz, re-referenced to the average of all electrodes, filtered 
(0.05 Hz to 30 Hz), epoched from 500 ms before the first beep to 1000 ms after the second beep and baselined 
from −​150 ms to 0 ms relative to the first beep. An independent component analysis (ICA) was performed to 
reject eye movement artifacts. Eye related components were identified by comparing individual ICA components 
with EOG channels and by visual inspection. The number of trials rejected for each participant was small (13% 
on average). ERP analysis were performed on data using the SPM830 and Fieldtrip31 toolboxes for MATLAB. The 
CNV for Fig. 1c was estimated at central-parietal electrodes (C3, C1, Cz, C2, C4).

Behavioural Analysis.  Behavioural analysis was based on the proportions of each type of response as a func-
tion of interval. For each participant, two independent sigmoidal functions were fitted to the data. The first func-
tion was fitted on the proportion of “shorter” responses and the second on the proportion of “longer” responses. 
The psychometric data from each participant and condition were fitted with Cumulative Normal functions, each 
defined by four parameters: threshold, slope, lapse-rate and guess rate32. Guess rates were fixed at 0 across all 
participants and conditions, and lapse rates were restricted to a maximum of 0.05. The three free parameters 
were fitted separately for each participant. The points of highest uncertainty were estimated as the predicted 
interval corresponding to 50% of “shorter” responses and the predicted interval corresponding to 50% of “longer” 
responses. Quality of fit for each participant was assessed by correlating predicted values to observed responses 
(r-square 0.96 ±​ 0.01; lowest individual r-square =​ 0.88). At the group level, parameters were compared using 
paired t-tests and Bayes Factors in favour of the null or alternative hypothesis are reported33,34.

The parameters for the sigmoidal functions were fitted using maximum likelihood estimation as implemented 
in the Palamedes Toolbox35. To measure temporal sensitivity for shorter and longer intervals, we calculated Just 
Noticeable Difference (JND) scores, which represent the absolute difference in seconds between the intervals at 
which 25% and 75% of shorter or longer responses were given. Weber fractions were estimated as:
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=
× .Weber Fraction JND
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( 0 5)

(1)

Multivariate Pattern Analysis.  Similarity between different trials.  To calculate the similarity of the 
sequence of patterns activated we used a bootstrap approach. For each participant, data from the two longest 
interval conditions were collapsed, divided into two groups of trials, and averaged across trials per split. Then, 
data from each set and time point (two row vectors with the averaged amplitude values of all 62 electrodes) were 
compared using a Pearson correlation (rho). This procedure was repeated 5000 times for each participant and 
Fisher transformed coefficients were averaged across permutations for each participant.

At the group level, Fisher transformed rhos were compared to zero using a paired t-test. Statistics of 
one-dimensional EEG-analyses were inferred non-parametrically19,36 with sign-permutation tests. For each 
time-point, the Fisher transformed rhos of each participant was randomly multiplied by 1 or −​1. The resulting 
distribution was used to calculate the p-value of the null-hypothesis that the mean rhos value were equal to 0. 
Cluster-based permutation tests were then used to correct for multiple comparisons across time using 10,000 
permutations, with a cluster-forming threshold of p <​ 0.05. The significance threshold was set at p <​ 0.05 and all 
tests were two-sided.

Dissimilarity Matrix.  To determine whether the pattern of the EEG signal across channels contained information 
about the elapsed time, we used the Mahalanobis distance to perform pair-wise comparisons between different 
time points. Several studies have shown that the Mahalanobis distance is superior to Euclidean distance because it 
accounts for the covariance structure of the noise between features19,37. A similar bootstrap approach as in the above 
analyses was used. For each participant, data from the two longest intervals (2.27 and 2.8) were collapsed, randomly 
split in two halves and averaged within each half. A pairwise multivariate dissimilarity (Mahalanobis distance) of 
each time point from one half to all others time points in the other half were calculated as follows:

= − × × −D EEG EEG pinvC EEG EEG( ) ( ) (2)ti tj ti tj
T

ti tj( , )

where EEGti and EEGtj are row vectors containing the average signals of the two time points being compared from 
the two independent halves. The pinvC is the pseudo inverse of the error covariance matrix, estimated by pooling 
over the covariances of both time points being compared, estimated from all trials, using a shrinkage estimator 
that is more robust than the sample covariance for data sets with many variables and/or few observations19,37. This 
procedure was performed for all time points, from 0 to 2.27 seconds, in 4 ms bins. Pairwise multivariate dissim-
ilarity matrices were estimated separately for each participant and iteration. This procedure was repeated 2500 
times for each participant and the mean dissimilarity matrix was calculated for each participant. The grand mean 
dissimilarity matrix was calculated by averaging individual matrices across participants.

Multidimensional Scaling.  Trajectory in state space was visualised using metric multidimensional scaling (MDS) 
as implemented in MATLAB. In Fig. 2c, MDS was performed on the grand mean pairwise dissimilarity for time 
points between 0.65 s and 2.27 s matrix and data was plotted against the first two dimensions (stress <​ 0.001). For 
Fig. 3a, MDS was performed on the grand mean pairwise dissimilarity for possible intervals and data was plotted 
against the first two dimensions (stress <​ 0.001)

Correlation between dissimilarity and performance.  To calculate how single trial trajectories correlated with per-
formance, we focused on the two intervals closest to the points of highest uncertainty (1.22 s and 1.85 s). To meas-
ure where in the state space trajectory participants were in each trial, we compared single-trial states to two other 
landmarks states, allowing us to estimate the location in the state space where participants were when the interval 
ended. The landmarks consisted of the averaged data from pre-stimuli period (−​100 to 0, relative to target onset) 
for the 0.8 s interval (short landmark), 1.5 s interval (equal landmark) and 2.27 s (longer landmark). Importantly, 
these landmarks were estimated on the averaged data of the two longest intervals (collapsing 2.27 s e 2.8 s, as done 
previously). Thus, the single-trial data and the data used to estimate the landmarks were completely independent.

For the 1.22 s, data from the last 100 ms before target presentation (1.12–1.22 s) was averaged, resulting in 
a row vector for each trial (with each row containing data from one electrode). This was then compared to the 
short landmark and the equal landmark, using the Mahalanobis distance as previously described. The subtraction 
D(1.22,short) −​ D(1.22,equal) resulted in an index of how similar the state in that particular trial was to each landmark. 
Trials where the state is more similar to the equal landmark yields higher values. If these distances are corre-
lated to performance, then the proportion of equal responses should increase as this index increases. To test 
this hypothesis, we performed two separate, although related, analyses: (1) the estimated indexes were used as a 
predictor in a generalised linear model regression, with a probit link for the binomial distribution. This procedure 
was performed separately for each participant and at the group level the estimated slope coefficients were tested 
against zero using a paired t-test. (2) the position for “equal” and “shorter” responses were averaged for each par-
ticipant and compared at the group level using a paired t-test.

Similarly, we compared single-trial data for 1.85 s to equal and longer landmarks and used the difference 
D(1.85,equal) −​ D(1.85,longer). In this case, higher values indicate a stronger similarity to the longer state and should be cor-
related with a decrease in the proportion of equal responses. The same analyses as described above were performed.

In both cases, data from one participant was removed due to a small proportion of one of the response types 
(<​10%).
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