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Purpose: Accurate neural rim measurement based on optic disc imaging is important to glaucoma severity
grading and often performed by trained glaucoma specialists. We aim to improve upon existing automated tools
by building a fully automated system (RimNet) for direct rim identification in glaucomatous eyes and measurement
of the minimum rim-to-disc ratio (mRDR) in intact rims, the angle of absent rim width (ARW) in incomplete rims,
and the rim-to-disc-area ratio (RDAR) with the goal of optic disc damage grading.

Design: Retrospective cross sectional study.
Participants: One thousand and twenty-eight optic disc photographs with evidence of glaucomatous optic

nerve damage from 1021 eyes of 903 patients with any form of primary glaucoma were included. The mean age
was 63.7 (� 14.9) yrs. The average mean deviation of visual fields was �8.03 (� 8.59).

Methods: The images were required to be of adequate quality, have signs of glaucomatous damage, and be
free of significant concurrent pathology as independently determined by glaucoma specialists. Rim and optic cup
masks for each image were manually delineated by glaucoma specialists. The database was randomly split into
80/10/10 for training, validation, and testing, respectively. RimNet consists of a deep learning rim and cup
segmentation model, a computer vision mRDR measurement tool for intact rims, and an ARW measurement tool
for incomplete rims. The mRDR is calculated at the thinnest rim section while ARW is calculated in regions of total
rim loss. The RDAR was also calculated. Evaluation on the Drishti-GS dataset provided external validation
(Sivaswamy 2015).

Main Outcome Measures: Median Absolute Error (MAE) between glaucoma specialists and RimNet for
mRDR and ARW.

Results: On the test set, RimNet achieved a mRDR MAE of 0.03 (0.05), ARW MAE of 31 (89)�, and an RDAR
MAE of 0.09 (0.10). On the Drishti-GS dataset, an mRDR MAE of 0.03 (0.04) and an mRDAR MAE of 0.09 (0.10)
was observed.

Conclusions: RimNet demonstrated acceptably accurate rim segmentation and mRDR and ARW mea-
surements. The fully automated algorithm presented here would be a valuable component in an automated
mRDR-based glaucoma grading system. Further improvements could be made by improving identification and
segmentation performance on incomplete rims and expanding the number and variety of glaucomatous training
images. Ophthalmology Science 2023;3:100244 ª 2022 by the American Academy of Ophthalmology. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Glaucoma is the leading cause of irreversible blindness and the
second leading cause of blindness worldwide.1 Roughly half
of glaucoma cases are undiagnosed according to population-
based studies.2,3 Early treatment preserves patient quality of
life and reduces disease burden.4 Therefore, identification of
early glaucoma is a key to preventative care.

Glaucoma diagnosis and grading are performed, in part,
by evaluation of the optic nerve head’s neuroretinal rim of
the optic disc. Metrics often include cup-to-disc ratio
(CDR), minimum rim-to-disc ratio (mRDR), and the inferior
> superior > nasal > temporal rule, which compares the
regional width of the neuroretinal rim.5 Recent studies have
shown the advantages of mRDR compared to inferior
> superior > nasal > temporal and CDR for glaucoma
classification accuracy.6
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The mRDR cannot adequately account for the degree of
damage in optic discs with localized rim loss where the
neuroretinal rim is noncontinuous or "incomplete". A solu-
tion can be found in the Disc Damage Likelihood Scale
(DDLS) proposed by Spaeth et al.5 The DDLS accounts for
incomplete rims by measuring the angle for which a rim is
absent. This is called the absent rim width (ARW).
Additionally, the scale accounts for disc size which affects
the significance of the mRDR or ARW.5 It is commonly
accepted and has been incorporated into eye health
guidelines for optometrists and ophthalmologists.7,8 The
DDLS is limited as a diagnostic tool by the need for
expert time to accurately grade images. Automated high-
efficacy DDLS grading could offer a powerful screening
method.
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ISSN 2666-9145/22

Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.xops.2022.100244&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.xops.2022.100244


Ophthalmology Science Volume 3, Number 1, Month 2023
In recent years, a confluence of several factors has led to
efforts in automated glaucoma diagnosis and grading. First,
studies have shown that automated algorithms can offer
more consistent and reliable grading than human graders.8

Second, there has been a rapid advancement in image
segmentation, image processing, and deep learning neural
networks. In other fields, several neural networks
outperformed human graders in image classification tasks.9

This could allow for unprecedented accuracy in optic rim
segmentation and glaucoma grading.10 Finally, the optic
disc exhibits characteristic alterations in glaucomatous
patients, a prime candidate for automated segmentation
and analysis. Together, these factors make automated
glaucoma diagnosis and grading a possibility.

While DDLS also requires disc size analysis, automated
rim segmentation with mRDR calculation for intact neuro-
retinal rims and ARW calculation for incomplete neuro-
retinal rims offers a step towards creating an efficacious,
high-throughput diagnostic system for glaucomatous disc
damage. Such a segmentation algorithm would need to be
broadly applicable. Additionally, it would require an
expansive learning capacity that could be applied to a va-
riety of fundus images taken with different imaging mo-
dalities and with concurrent pathologies and normal
variations. Convolutional neural networks offer such an
approach.11

The goal of this paper is to present a novel convolutional
neural network algorithm for neuroretinal rim segmentation,
automated mRDR calculation for intact rims, and ARW
calculation for incomplete neuroretinal rims. This neural
network algorithm offers an important step towards building
an automated DDLS screening tool.

Methods

The study adhered to the tenets of the Declaration of Helsinki, was
approved by the University of California, Los Angeles Human
Research Protection Program, and conformed to the Health In-
surance Portability and Accountability Act policies.

Dataset

Optic disc photographs were taken from the UCLA Stein Eye
Glaucoma database. The images were of varied magnifications and
taken from slides and 3 different digital fundus cameras. All
cameras were visible light cameras. No infrared, laser scanning,
red-free, autofluorescence, or hand-held smartphone-based cameras
were used. Slide films were scanned and digitized at a third-party
location.

The enrolled images met the following inclusion and exclusion
criteria as deemed by 2 board-certified glaucoma specialists (L.G.
and A.D.G.). Inclusion criteria include: (1) evidence of glaucom-
atous damage in the posterior pole; (2) images had to be in focus,
with discernible posterior pole and vasculature details. Exclusion
criteria were concurrent nonglaucoma disease including optic
neuritis, optic disc neovascularization, and vitreous hemorrhage
that would impair visualization of the posterior pole. Globally, it
was ensured that the full spectrum of glaucomatous damage, from
early-stage intact neuroretinal rims to late-stage incomplete rims,
were included while abiding by the inclusion and exclusion
criteria. Figure 1 shows the mRDR distributions of our train,
validate, and test set. The neuroretinal rim and optic cup were
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then manually segmented by 1 of 3 glaucoma specialists with a
smart tablet and the image editing program GIMP. These masks
were used as ground truth. The diagnostic categories for patients
are shown in Table 1.

RimNet Model and Hyperparameter
Architecture

A deep learning model for rim segmentation was developed as the
centerpiece of the RimNet pipeline. The model was developed with
Python 3.9.7.12 Libraries used include TensorFlow 2.6.0,
Segmentations Models 1.0.1, Keras Tuner 1.04, OpenCV Python
4.5.3, Numpy 1.19.5, Scipy 1.7.1, and Scikit-learn 0.24.2.13e16

Optimizing the deep learning model requires a careful choice of
model architecture and hyperparameters. The choice of hyper-
parameters can greatly influence the prediction speed, processing
requirements, and accuracy of a neural network model.17 These
hyperparameters include the decoder, learning rate, optimizer,
and loss function as shown in Table 2. The optimal combination
of these parameters is task-dependent. While trial and error has
been used in the past, newer architecture search techniques allow
for the rapid evaluation of combinations of hyperparameters with
the goal of optimizing a selected metric.17

To narrow the search space, an encoder of InceptionV3 was
chosen based on literature review and computational efficiency.
InceptionV3 was first published in 2015, outperforming popular
encoders at the time with a fraction of the computation costs.18 It
has previously been used for medical segmentation.19,20 Our
workstation uses NVIDIA 2080 RTX Ti graphics cards.
Therefore, with limited computational efficiency, the selection of
InceptionV3 was appropriate.

Transfer learning with ImageNet weights was used to initialize
InceptionV3. No transfer learning was done for the decoder.
Augmentations were used including a 20� rotation, a 10% vertical
shift, a 10% horizontal shift, a horizontal flip, a vertical flip, up to a
30% random crop, a brightness change by � 50 units, and a
contrast limited adaptive histogram equalization filter. Image down
sampling was completed via a nearest neighbor algorithm. Color
information was encoded using Red, Green, Blue channels with 8
bits per channel. The encoder and decoder were coupled using the
Segmentation Models 1.0.1 library. The total number of trainable
parameters was 29 896 979. No dropout layers were manually
added.

Finally, a random search was performed using the Keras Tuner
library.16 The search parameters included the decoder, loss
function, learning rate, and the optimizer. The rim Intersection
over Union (IoU) was used as the segmentation metric. The full
search space is documented in Table 2.

End-To-End mRDR Calculation Procedure

The mRDR, ARW, and rim-to-disc-area (RDAR) measurements
are the final output of RimNet, which can be accomplished by
accurate rim segmentation followed by image analysis. These 2
steps, along with preprocessing, led to the final framework for
RimNet as shown in Figure 2.

The optic disc photographs were first resized to 224 � 224 with
nearest neighbor interpolation in order to meet model specifications.
A contrast limited adaptive histogram equalization filter was then
applied to highlight distinctive features. The preprocessed image was
submitted to the neural network model which generated a segmen-
tation mask of the optic rim and cup. While a segmentation of the
optic cup is not directly needed for mRDR or RDAR calculations, it
was found that training the model to identify and segment the optic
cup improved identification of incomplete rims and ARW calcula-
tions. Finally, the rim segmentation mask was resized to the



Figure 1. Distribution of minimum rim-to-disc ratios for Train, Validation, and Test Datasets. For each dataset, a frequency histogram is shown above with a
box plot corresponding to the dataset below.

Rasheed et al � RimNet: Automated Rim Identification with mRDR and ARW Calculation
dimensions of the original image to allow for accurate mRDR
calculation and submitted to image analysis algorithms.

For mRDR, the algorithm first identified the center of the
segmented optic cup using OpenCV. Vectors were created from
the center of the cup to the boundary points. Boundary points
were found using OpenCV. The number of vectors depended on the
number of boundary points detected in the segmented rim. The
intersection between the vectors and the segmented rim was taken as
the rim width. The shortest rim width was identified and, through
boundary point analysis of the rim, the disc diameter was found.
Hence, the mRDR was calculated by dividing the rim width by the
diameter. The RDAR was calculated by dividing the number of
pixels of the segmented rim by the number of pixels in optic disc.

The ARW was calculated by first applying contour hierarchies
to identify shapes within the rim segmentation. We rely on the fact
that intact rims will have a ‘second shape’ within the segmentation,
Table 1. Glaucoma Diagnosis for All 1208 Patients Included in
the RimNet Dataset

Diagnosis Count

Primary open-angle glaucoma 530
Glaucoma suspect 403
Chronic angle-closure glaucoma 71
Low-tension glaucoma 47
Secondary open-angle glaucoma 35
Capsular glaucoma with psuedoexfoliation 33
Anatomical narrow angle 27
Glaucoma secondary to eye infection 24
Pigmentary glaucoma 15
Secondary angle closure 11
Congenital glaucoma 7
Juvenile glaucoma 3
Acute angle-closure glaucoma 2
the elliptical or circular form of the optic cup. Incomplete rims will
not have this second shape. If the rim is classified as broken, 360
radial segments from the center are drawn to the edge of the rim.
The radial segments that do not intersect the rim are those within
the "broken" segment of the neuroretinal rim. The number of radial
segments within the incomplete segment is added to give the
ARW, 1 radial segment for each degree. If there were 2 breaks in a
neuroretinal rims, the angles were added together and reported as 1
ARW. Examples of this can be found in the neuroretinal rim
segmentation shown in Figure 3.

External Validation

The Drishti-GS database is a publicly available dataset of retinal
images of glaucomatous eyes with manual cup and disc segmen-
tations.21,22 The images were first cropped around the optic disk, as
they are available at a field of view of 30�. Then, by subtracting the
Drishti-GS cup segmentations from the disc segmentations, rim
segmentations were acquired. These were used as ‘ground truth’
for validation testing. The database has been used to compare
performance between published optic cup and disc segmentation
models through metrics such as IoU and Dice coefficient.10,23e27

Few investigators have attempted rim segmentations on the
Drishti-GS database.26 Therefore, RimNet rim segmentations were
used to recreate cup segmentations to allow for comparison with
other segmentation models. The IoU for cup segmentations
(CupIoU) and disc segmentations (DiscIoU) were reported.
Additionally, the Dice scores for the cup (CupDice) and disc
(DiscDice) were reported.

Evaluation Criteria

The main outcome measures are the median absolute error (MAE)
difference between the glaucoma specialists and RimNet for 3
metrics: mRDR, RDAR, and ARW. A secondary measure is the
3



Table 2. Hyperparameter Search Space for the RimNet Included the Encoders, Decoders, Loss Functions, Learning Rates, and Optimizer

Hyperparameters

Encoders MobileNetV2, ResNet34, EfficientnetB0, InceptionV3, ResNet101, VGG16, ResNet50
Decoders U-Net, FPN, LinkNet, PSPnet
Loss Function Categorical_Crossentropy, Categorical_Focal_Loss
Learning Rate 10�3, 10�4, 10�5, 10�6

Optimizer Adam, SGD

The optimized metric was intersection over union of the rim.
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RimIoU, the IoU of the RimNet rim segmentation compared to that
of the glaucoma specialists.

The mRDR, RDAR, and ARW were explained earlier. Two
measures of segmentation accuracy are also reported: Intersection
over Union and Dice scores. The IoU, also known as the Jaccard
distance, is a measure of segmentation accuracy. It compares the
ground truth with the segmentation by reporting the ratio of the
intersection area over the union area. The Dice score for cup and
disc segmentations are reported for the Drishti-GS dataset to
compare segmentation performance. The Dice score compares the
ground truth with the segmentation by reporting the ratio of 2 times
the intersection area over the summed area of the ground truth and
segmentation.
Results

A database of 1208 optic disc photographs of 1 to 21 eyes
from 903 glaucoma patients were used for training, valida-
tion, and testing in an 80/10/10 split. Both scanned slides
and original digital images were represented in the dataset.
The average (� standard deviation) age of the patients was
63.7 (� 14.9) with a 43:57 male-to-female ratio. Full de-
mographics including gender, age, and race are listed in
Table 3. The average (� standard deviation) visual field
mean deviation was �8.03 � 8.59 dB (range: �31.64,
3.59). Of the 1208 optic disc photographs, 340 had
incomplete neuroretinal rims. The diagnoses for the
patients are listed in Table 1.
Figure 2. RimNet Pipeline. The raw image first undergoes preprocessing, where
resized to model specifications. A mask is generated after applying the segmentati
to-disc-area ratio (RDAR). If the rim is intact, the minimum rim-to-disc ratio is
RDR ¼ rim-to-disc ratio.
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Hyperparameter Architecture

Optimized parameters were found through the random search
of 64 model combinations, detailed in Table 2.18,28e38 The
combination of the InceptionV3 backbone and LinkNet ar-
chitecture proved to be the most accurate.18,29 LinkNet is a
lightweight decoder first published in 2017.29 Other
parameters identified include the loss function of binary
cross-entropy, learning rate of 10�3, and the Adam
optimizer.38
Segmentation Network Results

The code used to train, run, and evaluate RimNet can be
found on our public repository at https://github.com/Tyler-
ADavis/GlaucomaML. On the test set, an mRDR MAE
(interquartile range [IQR]) of 0.03 (0.05) was achieved on
the intact rims while a ARW MAE (IQR) of 31 (89)� was
achieved on the incomplete rims. Twenty-two of 34 eyes
with incomplete rims were correctly identified as incomplete
on segmentation. A RDAR MAE (IQR) of 0.09 (0.10) was
achieved on all images. A RimIoU of 0.68 was achieved on
intact rims, while a RimIoU of 0.45 was achieved on
incomplete rims. The results of RimNet are presented in
Table 4. Figure 3 demonstrates examples of RimNet
segmentation results. To better examine the accuracy of
the mRDR and RDAR calculations, the difference
between the estimated values and the ground truths were
contrast limited adaptive histogram equalization is applied and the image is
on model to the preprocessed image. Image analysis then calculated the rim-
calculated. If the rim is incomplete, absent rim width (ARW) is calculated.

https://github.com/TylerADavis/GlaucomaML
https://github.com/TylerADavis/GlaucomaML


Figure 3. Segmentation Results. This figure demonstrates several examples of RimNet segmentation compared to physician segmentation. The left-most
column shows the raw image. The middle column overlays the physician segmentation (white) over the raw image. The right-most column overlays the
RimNet segmentation (white) over the raw image. In intact rims, green line shows the diameter and the dark blue shows the thinnest rim. In incomplete
rims, the dark blue shows the edges of the segmentation. ARW = absent rim width; RDAR = rim-to-disc-area ratio.
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calculated. BlandeAltman plots comparing the estimated
and ground truth mRDR and RDAR are shown in Figure 4.

A comparison of RimNet segmentation on the Drishti-GS
dataset to other published works is presented in Table 5. The
mRDR MAE (IQR) was 0.03 (0.04) and the RDAR MAE
(IQR) was 0.09 (0.10). The CupIoU was 0.77 and a
DiscIoU was 0.91. The CupDice was 0.86 and DiscDice
0.95 was achieved.
5



Table 3. Demographic Data for Dataset

Variable Slide Images Digital Camera 1 Digital Camera 2 Digital Camera 3

Gender Distribution
F 407 119 55 12
M 302 85 44 11

Age Distribution
Mean 60.72 67.13 72.80 66.92
SD 13.48 17.43 12.75 17.71
Median 61.87 71.06 73.91 72.37
IQR 15.79 16.33 12.86 22.54
Min 9.36 6.92 16.19 17.48
Max 90.05 96.10 94.41 86.17

Race Distribution
Asian 90 34 24 2
Black 63 22 8 1
Hispanic 66 20 16 6
White 366 100 45 12
Other 53 5 3 0
Unknown 71 22 3 2

F ¼ female; IQR ¼ interquartile range; M¼ male; SD ¼ standard deviation.
Lists the gender distribution, age distribution, and racial distribution by camera type
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Discussion

These results demonstrate that RimNet is capable of
reasonably accurate segmentation and analysis of optic discs
with both intact and incomplete rims. Spaeth et al. distin-
guished different DDLS grades by mRDR steps of 0.1.5 The
MAE of the mRDR is well within this value, showing that
RimNet segmentations are clinically relevant. For more
advanced glaucoma with DDLS grades of 6 and above,
the neuroretinal rim is incomplete and Spaeth et al. uses
the ARW to distinguish grades. The 5 categories are
< 45�, 45� to 90�, 90� to 180�, 180� to 270�, and
> 270�. The minimum step is 45�; the MAE falls slightly
below that category at 31� with 22 of 34 total incomplete
rims correctly identified as incomplete. However, the IQR
demonstrates a broad range of ARW. The error echoes the
difficulties faced by the glaucoma specialists. While
segmenting these severely glaucomatous rims to create the
Table 4. RimNet Results on Internal Test Set and Drishti-GS
Dataset

Variable Internal Drishti-GS

mRDR 0.04 (� 0.03) 0.04(�0.04)
ARW 48.9 (� 35.9) N/A
RDAR 0.10 (� 0.09) 0.10(�0.08)
RimIoU 0.68 0.67
N 120 (87 intact,

33 Incomplete)
101 (101 intact,
0 Incomplete)

ARW ¼ absent rim width; mRDR ¼ minimum rim-to-disc ratio; N/A ¼
not applicable; RDAR ¼ rim-to-disc-area ratio; RimIoU ¼ rim intersection
over union.
The absent rim width cannot be calculated on the Drishti-GS dataset
because all rims are intact.
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"ground truth" masks, glaucoma specialists often differed
regarding where rims were interrupted and if rims were
incomplete or intact. Though a forced consensus was
eventually reached, this demonstrates the difficulty of the
task and the variability of this ‘ground truth’. RimNet
offers 65% accuracy in identifying incomplete rims and a
relatively low ARW MAE. To our knowledge, RimNet is
the first to offer such capabilities in published literature.

This work offers 3 improvements in the current landscape of
optic disc segmentation. First, we utilized a dataset of 1208
images with external validation on Drishti-GS.39 Second, while
we have still reported IoU and Dice scores, we have focused on
more clinically relevant metrics such as mRDR, RDAR, and
ARW. Third, our study focuses on accurate segmentation of
incomplete rims, an often overlooked aspect of optic disc
segmentation. RimNet is a useful step towards completely
automating the DDLS algorithm.

Automated segmentation of the optic disc and cup has been
previously explored. The original studies were initially based
on image processing functions such as thresholding, level set,
active contour, clustering, and component extraction with
success on local and publicly available datasets.40 As early as
2001, Chrástek et al. offered an automated method of optic
disc segmentation with filtering and edge detection, which
achieved a segmentation accuracy of 82%.41 In 2008, Liu
and collaborators used level set and thresholding methods
to achieve 97% accuracy when comparing algorithm-
determined CDR ratio to clinical CDR ratio on a dataset of
73 images from the Singapore Eye Research Centre.42 In
2015, Lotankar et al. used active contouring to achieve a
99% pixel-to-pixel accuracy on a private database of 150
images.43 However, each of these approaches was limited in
scope. Level-setting and thresholding would fail with im-
ages with decreased or increased intensity caused by patho-
logical findings, which can be commonly seen on optic disc
photographs such as peripapillary atrophy. This leads to



Figure 4. Bland-Altman plots showing the agreements in minimum rim-to-disc ratio and rim-to-disc-area ratio (RDAR) between clinician and RimNet in
test images; each black point corresponds to one test set image. Red dashed lines indicate 95% confidence limits. RDR ¼ rim-to-disc ratio.
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overestimating or underestimating CDRs. Active contouring
may similarly be affected by abnormal pathology or bright
artifactsfixating on localmaxima orminimawithin the image.
Therefore, though these methods have proven efficacy, they
can be improved upon.

An automated grading system for glaucoma diagnosis and
progression needs a high efficiency, broadly applicable seg-
mentation algorithm with an expansive learning capacity
which could be applied to a variety of funduscopic images
acquired with different imaging modalities with concurrent
pathologies and variations. Though further work must be
done, deep learning and convolutional neural networks may
play an important role in the solution. They have an enormous
learning capacity relative to their size.11 Rapid advances in
computational memory and processing speed have made
neural networks more accessible for optic disc
segmentation. Zilly et al. used ensemble learning to achieve
89% IoU on disc segmentation and 84% IoU on cup
segmentation on the Drishti-GS dataset.23 Sevastopolsky
et al. furthered this work by using a modified U-Net to
Table 5. DRISHTI-GS Segmentation Performance of RimNet
Compared to Published Segmentation Models11,17e21

Model CupIoU DiscIoU CupDice DiscDice

RimNet 0.77 0.91 0.86 0.95
Zilly et al. (2017)23 0.85 - 0.87 0.87
Sevastopolsky (2017)24 0.75 - - -
Edupuganti et al. (2018)25 0.81 0.69 - -
Al-Bander and Zheng et al.
(2018)26

- - 0.83 0.95

Joshua et al. (2019)10 0.79 - - -
Yu et al. (2019)27 - - 0.88 0.97

Bolded values represent the highest achieved value for each metric.
CupIoU ¼ intersection over union of the optic cup; CupDice ¼ dice score
of the optic cup; DiscDice ¼ dice score of the optic disc;
DiscIoU ¼ intersection over union of the optic disc.
achieve a comparable accuracy in less than a 10th of the
time.24 More on segmentation efforts, both image
processing functions and neural network attempts, can be
found on a review article by Thakur and Juneja et al.40

Several groups have pursued automated mRDR and
RDAR calculations. In 2019, Kumar et al. proposed using
an imaging processing technique called active discs to
segment the optic disc and cup and perform general glau-
coma classification (normal, moderate, severe) based on
mRDR.6 Though direct mRDR accuracy was not reported,
an mRDR-based approach demonstrated high classification
accuracy. In 2020, Martins et al. proposed a smartphone-
based glaucoma diagnosis pipeline, which focuses on
glaucoma classification and calculates RDAR.44 However,
RDAR results were not directly reported. More recently,
Pachade et al. proposed an NENet model consisting of
EfficentNetB4 and adversarial learning that achieved an
area under the curve of 0.901 on RDAR calculation for
Drishti-GS.45

To the best of our knowledge, RimNet is the first engi-
neering attempt to pursue segmentation and glaucoma
grading efforts with incomplete neuroretinal rims. Thus,
direct comparison of RimNet to other segmentation models is
difficult. However, through the Drishti-GS dataset, an
artificially-derived segmentation comparison is possible by
recreating cup and disc masks from the RimNet rim seg-
mentations. Table 5 demonstrates that RimNet performed
well overall compared to recent segmentation models on
the Drishti-GS dataset. While it outperformed several other
models in CupDice, DiscIoU, and DiscDice segmentations, it
was below average in CupIoU. These results must be un-
derstood in the context of 3 factors. First, the Drishti-GS
images were available as 30� field of views. However,
RimNet requires images centered and cropped near the optic
disc margin. Therefore, RimNet has a significant information
loss compared to other models that use the 30� field of view.
Second, RimNet is unique in that it has been trained on both
complete and incomplete rims. The models compared to
7
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RimNet have been trained only on complete rims. It is
reasonable to expect a higher segmentation accuracy in these
cases. Finally, the cup and disc segmentations produced by
RimNet were artificially derived from the RimNet’s rim
segmentation. By not directly predicting on the cup and disc,
accuracy was lost. Considering these 3 factors, RimNet’s
performance on Drishti-GS is acceptable. This is corrobo-
rated by the Drishti-GS mRDR MAE of 0.03 (0.04) and
RDAR MAE of 0.09 (0.10), both of which are low.

The findings of this study need to be interpreted with the
shortcomings in mind. First, the hyperparameter architecture
search was limited by the computating and memory limits of
our workstation, which uses NVIDIA RTX 2080 Ti
graphics cards. We could not include larger models such as
ResNet152 into our search due to these memory constraints.
Second, the number of ground truth masks and optic disc
images, particularly those of more severe glaucoma, is
limited. Greater numbers of diverse samples would allow
RimNet to better learn mRDR and ARW calculations.
8

RimNet brings glaucomatous detection andDDLSgrading
a step closer to full automation.5 Automated grading of disc
size is a necessary step to fully autonomous DDLS grading.
A future goal would be to not only pursue full automation
of DDLS grading, but to test their capabilities as diagnostic
tools. One promising avenue for further investigation would
be screening with smartphone fundoscopy. The increasing
quality of smartphone cameras have made smartphone
fundoscopy viable as a screening method.46,47 This,
combined with automated DDLS grading, could provide a
powerful screening tool to revolutionize glaucoma detection.

In conclusion, RimNet provides a method for high effi-
cacy rim segmentation, mRDR, and ARW calculation. It
also provides an example of how ophthalmic care be
augmented by artificial intelligence. Though more work
remains to be done, we believe that detection, diagnosis, and
care of glaucoma can integrate with approaches such as
these and aid ophthalmologists in decision making to pro-
vide higher quality care for a global population of patients.
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