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Background
Atherosclerosis (AS) is the leading cause of peripheral vascular 
disease, coronary heart disease, and cerebral infarction.1 The 
development of atherosclerotic lesions may be caused by low-
density lipoprotein, a lipoprotein that carries cholesterol into 
peripheral tissue cells and can be oxidized to become oxidized 
low-density lipoprotein. Other risk factors contribute to athero-
sclerosis and its thrombotic complications, including diabetes, 
smoking, and high blood pressure.2 Growing evidence also indi-
cates a role for emerging risk factors, including clonal hemat-
opoiesis and inflammation. A range of auxiliary examination 
methods, both invasive (such as selective coronary angiography) 
and non-invasive (such as nuclear scans, CT, stress tests, and 
blood biomarkers), allow assessment of cardiovascular disease 
risk and treatment targets. However, there is no simple blood 
biochemical index or biological target for the diagnosis of ath-
erosclerosis at present; instead, more ultrasonographic screening 
or angiography are used.2 Therefore, it would be valuable to 
identify a biochemical blood marker for atherosclerosis.

With the development of omics and the availability of clini-
cal blood samples, many studies have focused on the blood 
transcriptome of patients with atherosclerosis. Transcriptome 
analysis of blood cells, divided into those of atherosclerotic 
patients and matched controls, will potentially supply biomark-
ers for diagnostic purposes and provide insights into the mech-
anism of atherosclerosis.3-6 One study focused on differences in 

various cells in the blood of patients with AS to explore the 
biological functions of macrophages and CD34 cells7; other 
studies have examined the transcriptome of peripheral blood 
and the transcriptional expression of circulating cells in patients 
with acute myocardial infarction or artery plaque.8 Meanwhile, 
with the development of high-throughput sequencing and bio-
informatics analysis techniques, a bioinformatics gene analysis 
related to the increased risk of atherosclerosis due to familial 
hypercholesterolemia provides a basis for the development of 
therapies for atherosclerosis.9 In addition, bioinformatics anal-
ysis of oncology,10,11 endocrine diseases,12 and respiratory dis-
eases13 drives basic research and provides directions for treating 
patients.

In this study, after the detection of differential expression 
genes in multiple data sets, the Robust rank aggregation algo-
rithm was used for integration evaluation, and 21 possible 
genes were screened out as potential biomarkers for biological 
diagnostic screening. We looked at the expression of these 
genes in different circulating cells. Interestingly, we found a 
good correlation between RPS4Y1, EIF1AY, and XIST.

Methods
Retrieve

Keywords “atherosclerosis” and “blood” were searched in the 
GEO database and the species was limited to “Homo sapiens.” 
Fifty-nine data sets were retrieved, and then we manually 
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excluded the mRNA chip data sets unrelated to the blood of 
atherosclerosis patients and not clearly grouped, and finally 3 
data sets were screened out (Table 1).

Differentially expressed genes (DEGs) analysis, network 
analysis, and functional enrichment analysis. We assessed the 
primary data using R language assessment and quality control, 
all the expression of matrix through log2 processing, and use 
ggpubr package for draw violin plots (Supplemental Figure 
S1). The samples were divided into case and control groups 
according to the information on GEO. The LIMMA package 
was used to analyze the differential genes14 (Supplemental 
Tables S1-S3 and Figure S2). We screened genes with P-value 
less than .01 and |LogFc| > 0.5. We drew the network diagram 
based on the strings database and analyzed the path of the net-
work diagram (Supplemental Figure S3).

Robustrankaggreg

Robustrankaggreg R package was used to integrate the up-
down-regulated genes,15 respectively. RRA is a rank aggrega-
tion method based on sequential statistics, which can achieve 
the purpose of removing the noise of individual experimental 
results while increasing the signal and reducing the proportion 
of false-positive results in high-throughput data integration. 
There were n rank vectors and normalized the rank vectors 
were sorted from small to large. When the l  rank vector was 

greater than or equal to the mean of all rank vectors, the row 
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 −( )1  of all rank vectors was calculated, and 

the minimum value was taken as the score. Genes with a score 
less than 0.05 were screened out as the marker genes we con-
sidered, and a heat map of logFC in different datasets was 
drawn (Figure 1).

Genetic alignment and correlation analysis

The expression matrices of the identified genes were selected 
from the original data set and GSE9820,3 and the unclustered 
and clustered heat maps were constructed with pheatmap func-
tion (Figures 2–6). Correlation analysis was performed for all 
identified markers (Supplemental Tables S4-S6), and regres-
sion analysis was performed for the most interesting genes, and 
scatter plots and residual plots were plotted (Figures 3–5 and 
Supplemental Figure S4). The genes of interest were plotted in 
a scatter plot. P value<.05.

Results
Genes detected according to the integrated DEGs

Deg analysis was performed on all data sets, and specific DEG 
results can be seen in the Supplemental Data. Only 1 pathway 

Table 1. Information of data sets.

GEO PLATFORM NORMAL PATIENT REFERENCE NUMBER

GSE27034 GPL570 18 19 Masud et al5

GSE90074 GPL6480 50 93 Ravi et al6

GSE12288 GPL96 112 110 Sinnaeve et al7

Figure 1. LogFC of Genes were identified in 3 datasets, red represents high values, and blue represents low values.
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“Cytokine Signaling in Immune system” was enriched after 
network analysis and pathway analysis of the genes considered 
significant. We still obtained 21 genes based on RRA algo-
rithm integration with good scores, including up-regulated 
genes: BTNL8, GPR15, STX11, DDX3Y(DBY), TMEM158. 
G0S2, PS4Y1 (RPS4Y), ZNF80, PTGS2, EIF1AY (IF1AY), and 
FFAR2. Among them, BTNL8, GPR15, STX11, and 
TMEM158 have relatively high logFC in multiple data sets, 
while DDX3Y(DBY), G0S2, PS4Y1(RPS4Y), PTGS2, 
EIF1AY(IF1AY), and FFAR2 have relatively high logFC in a 
single data set. The down-regulated genes included BLNK, 

XIST, PSPH, LOC10272435, SCGB3A1, AKR1C3, KLRC1, 
EFHB, KIZ, and FCRL2, among them BLNK showed signifi-
cant differences in multiple data sets, while XIST showed a 
considerable difference in GSE90074. These genes may be 
used for screening and evaluation of AS or vascular plaques.

The correlation between RPS4Y1, XIST, and 
EIF1AY

Because the logFC value is low, the difference between the case 
and control groups is not visible to the naked eye. However, 

Figure 2. Gene expression in 3 datasets. Red represents high expression, blue represents low expression, each column represents a sample, and each 

row represents a gene. Unclustered heat map of gene expression in GSE27034 (A) unclustered heat map of gene expression in GSE90074 (B) 

unclustered heat map of gene expression in GSE12288 (C).

Figure 3. Clustered heat map of gene expression in GSE90074 (A) scatter diagram and regression line of XIST and EIF1AY, regression equation: 

y = −1.32619x − 0.61110, residual standard error: 1.075 on 141 degree of freedom, n:143, multiple R-squared: 0.9411, adjusted R-squared: 0.9407, 

F-statistic: 2253 on 1 and 141 DF, P-value: <2.2e−16 (B) scatter diagram and regression line of XIST and RPS4Y1, regression equation: 

y = −1.19600x − 2.91454, residual standard error: 1.009 on 141° of freedom, n:143, multiple R-squared: 0.9482, adjusted R-squared: 0.9478, F-statistic: 

2579 on 1 and 141 degree of freedom, P-value: <2.2e−16 (C).
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after clustering the heat maps, we found an interesting phe-
nomenon for the first time: XIST is negatively correlated with 
RPS4Y1 in all 3 data sets, and XIST is negatively correlated 

with EIF1AY. The sample expressing XIST, RPS4Y1, and 
EIF1AY are basically not expressed, and vice versa. This mech-
anism may also be involved in atherosclerosis.

Figure 4. Clustered heat map of gene expression in GSE12288 (A) scatter diagram and regression line of XIST and RPS4Y1, regression equation: 

y = −0.67326x + 12.23007, residual standard error: 0.9911 on 220 degree of freedom, N:222, multiple R-squared: 0.7398, adjusted R-squared: 0.7386, 

F-statistic: 625.5 on 1 and 220 DF, P-value: <2.2e−16 (B) scatter diagram and regression line of XIST and EIF1AY, regression equation: 

y = −1.01055x + 12.24370, residual standard error: 1.239 on 220 degree of freedom, N:222, multiple R-squared: 0.5933, adjusted R-squared: 0.5914, 

F-statistic: 320.9 on 1 and 220 DF, P-value: <2.2e−16 (C).

Figure 5. Clustered heat map of gene expression in GSE27037 (A) scatter diagram and regression line of XIST and EIF1AY, regression equation: 

y = −0.61712x + 0.14227, residual standard error: 0.5456 on 35 degree of freedom n:37, multiple R-squared: 0.9219, adjusted R-squared: 0.9197, F-

statistic: 413.2 on 1 and 35 DF, P-value: <2.2e−16 (B) scatter diagram and regression line of XIST and RPS4Y1, regression equation: 

y = −0.51754x − 0.02932, residual standard error: 0.4404 on 35 degree of freedom, n:37, multiple R-squared: 0.9491, adjusted R-squared: 0.9477, 

F-statistic: 652.8 on 1 and 35 DF, P-value: <2.2e−16 (C).
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Validation in different cell types

We picked up the expression of these selected genes in the data 
set of GSE9820,3 which is a sequencing data of Mononuclear 
Cell Transcriptomes, and identified 5 kinds of cells, including 
CD34+ stem cells, CD4+ T-cells, resting CD14+ monocytes, 
stimulated monocytes, and macrophages. It can be seen that 
the expression level of BTNL8 is relatively low in these 5 kinds 
of cells, while it is still relatively high in other data sets, so it 
should be highly expressed in a cell that does not belong to 
these 5 kinds of cells. RPS4Y1 and EIF1AY were not tissued 
specific, but individual specific. GPR15 and ZNF80 were 
highly expressed in T cells, G0S2, PTGS2, and FFAR2 were 
highly expressed in stimulated monocytes, and stem cells 
mainly highly expressed BLNK, AkR1C3, and FCRL2. Good 
consistency between RPS4Y1 and EIF1AY can also be seen in 
the cluster diagram of GSE9820.

Discussions
This study combines 3 coronary atherosclerosis in patients 
with blood samples mRNA array dataset to filter possible coro-
nary atherosclerosis possible genetic detection objects in the 
blood. We found there are 21 genes that may have specific sig-
nificance and also discussed these gene expressions between 
different cells in the blood. This study first reported RPS4Y1, 
EIF1AY own the correlation between XIST.

Many of these genes are associated with inflammation 
and immunity. BTNL8, which has the best score, may stimu-
late the primary immune response acts on T-cell stimulated 
sub-optimally through the TCR/CD3 complex stimulating 
their proliferation and cytokine production.16 G0S2, G0/G1 
switch protein 2, promotes apoptosis by binding to BCL2, 
resulting in preventing the formation of protective Bcl2-Bax 

heterodimers.17 GPR15L is a chemotactic factor that medi-
ates recruitment of lymphocytes to epithelia through binding 
and activation of the G-protein coupled receptor GPR15 
seems to be epithelia related.18 BLNK, B-cell linker protein, 
functions as a central linker protein downstream of the B-cell 
receptor (BCR), bridging the SYK kinase to a multitude of 
signaling pathways, and regulating biological outcomes of 
B-cell function and development.19 What is more, BLNK 
plays a role in the activation of ERK/EPHB2, MAP kinase 
p38, and JNK. Modulates AP1, BCR-mediated PLCG1, Ca2+ 
mobilization, PLCG2, NF-kappa-B, and NFAT. It plays a 
critical role in orchestrating the pro-B cell to pre-B cell tran-
sition20 and may play an essential role in BCR-induced 
B-cell apoptosis. These differentially expressed genes 
between patients and normal controls can explain, to some 
extent, the genetic susceptibility of patients and the body’s 
response to AS.

XIST is a key initiator of X chromosome inactivation in 
Eutherian mammals, which may also be part of the inflamma-
tory response.21 EIF1AY, Eukaryotic translation initiation fac-
tor 1A, seems to be required for the maximal rate of protein 
biosynthesis. Enhances ribosome dissociation into subunits 
and stabilizes the binding of the initiator Met-tRNA(I) to 40S 
ribosomal subunits.22 RPS4Y1, the ribosomal protein S4 40S 
ribosomal protein S4, Y isoform 1, is was extensively involved 
in RNA binding, multicellular organism development, nuclear-
transcribed mRNA catabolic process, nonsense-mediated 
decay, SRP-dependent cotranslational, protein targeting to 
membrane, translation, translational initiation, and viral  
transcription. These genes are involved in the more basic bio-
logical functions of replication, translation, transcription, and 
they are identified by the DEG algorithm.23 The basic blood 

Figure 6. Gene expression in GSE9820. Unclustered heat map of gene expression in GSE9820 (A) clustered heat map of gene expression in 

GSE9820 (B).



6 Evolutionary Bioinformatics 

metabolism of AS patients has certain differences, which may 
be correlated with risk factor clonal hematopoiesis.

Conclusion
These mRNA molecules are still lacking clinical cohort verifi-
cation, and their use as a marker of screening is still to be 
debated. However, the differences between normal population 
and AS patients to some extent can explain their correlation 
with AS, indicating that repeated activation of inflammation is 
involved in the formation and development of AS. The specific 
roles of XIST, RPS4Y1, and EIF1AY in transcription and 
translation and how they are related need to be verified by 
molecular biology, which will be of great help for us to under-
stand the central principle further. In general, we have only 
scratched the surface, which provides some targets for subse-
quent cohort studies. Through bioinformatics analysis, our 
results may be beneficial for the clinical molecular diagno-
sis,24,25 treatment,26 and prognosis.27 The associations we have 
found may also be helpful for more fundamental studies of 
biological function.28
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