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The existence of symbiotic relationships between bacteria and their hosts in various

ecosystems have long been known to science. The human body also hosts vast

numbers of bacteria in several habitats. Emerging evidence from the gastro-intestinal

tract, genito-urinary tract and respiratory indicates that there are several health benefits

to hosting a complex and diverse microbial community. Bacteria colonize the oral cavity

within a few minutes after birth and form stable communities. Our knowledge of the oral

microbiome has expanded exponentially with development of novel exploratory methods

that allow us to examine diversity, structure, function, and topography without the need

to cultivate the individual components of the biofilm. The purpose of this perspective,

therefore, is to examine the strength of current evidence supporting a role for the oral

microbiome in maintaining oral health. While several lines of evidence are emerging

to suggest that indigenous oral microbiota may have a role in immune education and

preventing pathogen expansion, much more work is needed to definitively establish

whether oral bacteria do indeed contribute to sustaining oral health, and if so, the

mechanisms underlying this role.
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Homo sapiens as a Member of the Bacterial Kingdom

Bacteria predate humans on Earth by at least three billion years (Beraldi-Campesi, 2013); and
have successfully survived the vicissitudes of drastic temperature changes, earthquakes, volcanic
eruptions, and the advent of new species, evolving with each age and era. Along with their own
evolution, these organisms have played a major role in shaping eukaryotic evolution, both as
endosymbionts and as ectosymbionts (Pace, 1997). As Homo sapiens evolved, these organisms co-
evolved with their host to such an extent that the human body is considered a super-organism
consisting of functionally, metabolically, and spatially integrated bacterial and human cells (Ley
et al., 2008). Modern-day man plays host to at least 10 times as many bacterial cells as human
cells (Sleator, 2010). In fact, it might be more logical to view the human being as an inhabitant of
the microbial world, rather than the reverse. Given this perspective, it is important to acquire a
comprehensive understanding of the bacteria that inhabit us, and their collective genes (the human
microbiome).

Recent large-scale public, private and crowd funded initiatives such as the Human Microbiome
Project (HMP) (Human Microbiome Project Consortium, 2012), Metagenomics of the Human
Intestinal Tract (MetaHIT) (Li et al., 2014), and UBiome (Costandi, 2013) have allowed us to
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explore human-microbial and inter-microbial interactions to
better understand the implications of hosting our microbial
fellow travelers. Through these and other studies, we are
beginning to learn not only how these bacteria are acquired
and their colonization dynamics, but also how diverse factors,
such as host genotype, host environment and host development
shape these communities (Costello et al., 2009; Zaura et al., 2009;
Kumar et al., 2011; Greenblum et al., 2012; Mason et al., 2013).

The Oral Microbiome as an Ecosystem

The term ecosystem was introduced by Arthur Roy Clapham
to describe a community of living organisms along with their
living and non-living environment, interacting as a system and
linked to each other through energy transfer and nutritional flow
(Blew, 1996). Based on this definition, humansmay be considered
a collection of microbial ecosystems (Prosser et al., 2007). The
body provides several habitats for colonization—the oral cavity,
nasopharynx, gastrointestinal tract, vagina, and skin—each with
differing topographical, nutritional, physical, and environmental
characteristics. For example, the nasopharynx, gastrointestinal
tract, and vagina are all non-keratinized mucosal environments
with varying degrees of oxygen tension and pH levels. In contrast,
the skin provides an aerobic, keratinized epithelial surface for
microbial inhabitance.

The oral cavity is a unique environment in that it is
divided into several smaller habitats—biotic habitats such as
the non-keratinized buccal mucosa, the keratinized mucosa of
the tongue and gingiva, the subgingival sulcus, and abiotic
surfaces such as the enamel, dental restorations, and dental
implants. At any given time, over twenty billion organisms can
be found in this environment (Loesche, 1982), representing
nearly 700 different species (Aas et al., 2005). Since the oral
cavity is an open ecosystem, several of these species may be
allochthonous members (transient visitors), however, certain
organisms colonize these surfaces (autochthonous constituents)
soon after birth and form organized, cooperating communities
within these niches, called biofilms (Savage, 1977). It has been
shown that, in certain niches (for example the tooth surface), this
colonization is a very organized event with a specific temporal
and spatial sequence (reviewed by Kolenbrander et al., 2006),
and can be driven by environmental and host-determined factors
(Mason et al., 2013). The traditional view of these biofilms is that
they are comprised of species that live in equilibrium with the
host immune defenses—the so-called “commensals.” However,
commensalism, by definition, is a symbiotic relationship that
benefits one species without harming the other. The implications
of this are that the oral cavity hosts a diverse microbial
community with no major benefits to the host. Since such one-
sided relationships are not the norm in nature, the purpose of this
perspective is to examine the currently available evidence on the
health benefits of hosting a complex oral microbial ecosystem.

Evidence for Habitat Specific Colonization as a

Health Benefit
A central characteristic of an ecosystem is habitat-specific
colonization. For example, a wetland consists of several habitats

extending from tidal creeks into low marshes and climax
maritime forests, each with a specific community of flora, fauna,
and microflora (Cherry, 2011). According to the physiological
hypothesis, habitat specificity offers several benefits to the
colonizing species, ranging from predator protection to mating
to nutritional abundance (Smiley, 1978). Thus, organisms that
require few host-associated benefits occupy a wide range of
habitats (generalists), while evolution dictates the emergence of
specialist species that are confined to a single or narrow range
of habitats. Evidence is emerging from microbial ecological
systems that habitat specificity also allows a species to regulate
gene expression and modify its phenotype to segregate its
niche (reviewed by Young, 2006). For example, an organism
determines its shape by complex algorithms that take into
consideration diverse factors such as nutrient access, cell division
and segregation, attachment to surfaces, passive dispersal, active
motility, polar differentiation, the need to escape predators, and
the advantages of cellular differentiation.

Ecologically, habitat specificity offers several benefits to the
hosting species. The presence of certain algal species is important
to enhance the calcifying and metabolic activities of coral-reef
building anthozoans; and therefore, both species maintain their
habitat specificity in all types of environments. In other marine
environments, bacteria within specific habitats protect their hosts
from fungal infections, detoxify host metabolites, and inhibit
epibionts (White and Torres, 2009).

It is well-known that human microbial communities vary
significantly by habitat. The oral microbiome is distinct from
that of the gut, the ear, and the nasopharynx, even though
it is geographically connected to these habitats through the
esophagus, Eustachian tubes, and fauces, respectively (Frank
et al., 2003; Heinemann and Reid, 2005; Flint et al., 2007; Costello
et al., 2009). Within the oral microbiome, structural, spatial,
functional, and compositional characteristics of supragingival
and subgingival biofilms are remarkably different (Socransky and
Manganiello, 1971), as are the characteristics of mucosal and
tongue biofilms when compared to these tooth-related habitats
(Ximenez-Fyvie et al., 2000; Socransky and Haffajee, 2005; Zaura
et al., 2009). For example, Streptococcus mitis, S. pneumoniae,
and Granulicatella adiacens appear to be generalists in the oral
ecosystem, occupying both dental and mucosal habitats; while
Rothia dentocariosa, Actinomyces spp., S. sanguinis, S. gordonii,
and A. defectiva preferentially colonize teeth, and Simonsiella
muelleri only colonizes the hard palate (Aas et al., 2005).
Even with the same environment (supragingival or subgingival),
bacterial composition varies considerably based on tooth location
and site (Sreenivasan et al., 2010; Simon-Soro et al., 2013a). For
example, abundances of C. gingivalis and S. sanguinis correlate
with lower incisors and canines, while Actinomyces naeslundii 2
(also known as A. oris) demonstrates a positive association with
upper anteriors (Haffajee et al., 2009).

While evidence demonstrates the existence of habitat-specific
microbial communities in the oral cavity, the benefits conferred
by this spatial segregation to community members and the
implications of this phenomenon for oral health have not been
as well-studied. Most of our current knowledge comes from
investigations of specific species, for example, Porphyromonas
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gingivalis (iron availability and anaerobiosis), Fusobacterium
nucleatum (pH, anaerobiosis, etc.) and oral Streptococci (salivary
glycans, simple carbohydrates, etc.). Investigating the effect of
spatial segregation on community membership and function
would be critical to elucidating the role played by distinct
bacterial consortia in the etiology of site-specific diseases such as
caries and periodontal disease.

Evidence for Colonization Resistance as a Health

Benefit
One of the most important benefits a resident microbial
community can offer to the host is resistance to invasion.
In environmental ecology, invasion is defined in the process
by which an exogenous species establishes itself within a
resident community (Shea and Chesson, 2002). However,
many human diseases are polymicrobial infections, sometimes
occurring due to an overgrowth of opportunistic resident
species, suggesting that “pathogens” are already present in a
health-compatible environment. Hence, in human microbial
ecosystems, several lines of evidence have demonstrated that
the role of indigenous bacteria in controlling pathogenic
colonization is by preventing pathogen expansion rather than
by retarding exogenous acquisition (van der Waaij et al.,
1971; Winberg et al., 1993; Drenkard and Ausubel, 2002;
Wardwell et al., 2011). Disruption of resident communities with
antibiotics is consistently associated with increased colonization
by pathogenic species or pathologic overgrowth of certain
commensals, leading to disease (Pavia et al., 1990; Pepin et al.,
2005; Adams et al., 2007). This effect has been seen in the gut,
vagina, and oral cavity (van der Waaij et al., 1971; Winberg et al.,
1993; Ubeda et al., 2010). In certain cases, loss of colonization
resistance can lead to take-over of the community not only
by pathogenic bacteria, but also by higher order organisms,
for example Candida, in both the vagina and the oral cavity
(Budtz-Jörgensen, 1990; Spinillo et al., 1999). On the other
hand, replenishing the resident microbiome using probiotics has
been shown to reverse the effects of antibiotic-induced pathogen
disease in the urinary tract, gut, and the dentition (Madden et al.,
2005; Whorwell et al., 2006; Amdekar et al., 2011; Culp et al.,
2011). Also, recent evidence from fecal biotherapy studies have
demonstrated that restoring a native commensal population has
been able to reverse pathogenic Clostridium difficile infection
(Gough et al., 2011).

Although early evidence from non-microbial ecosystems
indicated that highly diverse communities (as defined by those
with more types of species) resisted exogenous invasion better
than communities with fewer species (Fargione and Tilman,
2005), evidence has been emerging since then to indicate that
species abundance (that is, the relative levels of each species
within the community) plays a very important role, in some
instances, a greater role than does species-richness (Kumar
et al., 2006, 2011; Griffen et al., 2012). The first line of defense
in colonization resistance is niche saturation, an ecological
phenomenon where a certain number of species dominate the
community, and resist colonization by pathogenic organisms
(Brockhurst et al., 2007). This saturation phenomenon helps
create a barrier for exogenous colonization (van der Waaij

et al., 1971), prevent pathogen expansion (Gao et al., 2014), and
maintains community stability, resulting in mucosal health (Abt
and Pamer, 2014).

Change in species diversity is a hallmark of many bacterial
dysbiotic conditions; certain diseases like bacterial vaginosis
(Fredricks et al., 2005; Oakley et al., 2008), are associated with
increase in diversity, while some others, for example, respiratory
tract infections (influenza and bacterial pneumonia), and certain
gut infections (H. pylori and C. difficile) are associated with
decreased diversity. Interestingly, within the oral ecosystem,
while periodontal diseases are associated with an increase in
diversity (Loe et al., 1965; Listgarten, 1976; Loesche and Syed,
1978), dental caries is associated with a decrease in diversity
(Simon-Soro et al., 2013b). Thus, any deviation from the
stringently controlled diversity that is associated with health
appears to result in disease.

In summary, literature is emerging in the gut, respiratory,
urinary, and vaginal microbiomes supporting the role of
colonization resistance as a health benefit. These lines of evidence
include (i) pathogen colonization resulting from loss of resident
microflora following antibiotic therapy, (ii) reversal of pathogen
colonization by probiotic use, (iii) pathogen acquisition following
changes in indigenous diversity, and (iv) reversal of pathogenic
colonization following bacterial remediation (fecal transplants).
Within the oral cavity, the lines of evidence have not been as
robust or defined; possibly because bacteria implicated in the
etiology of periodontal diseases and dental caries are already
present within the health-compatible microbiome (pathobionts)
(Jiao et al., 2014). Thus, the role of the oral microbiome in
maintaining health may be more to prevent pathogen expansion
rather than preventing exogenous acquisition. It is important to
recognize the uniqueness of this ecosystem, and target research
toward examining the implications of microbial homeostasis in
an open, polymicrobial ecosystem.

Importance of Temporal Stability, Resistance,

and Resilience in Health
In any ecosystem, three factors contribute longitudinally to
health—the ability of the ecosystem to maintain its diversity,
structural, and functional framework, as well as its ability
to rebound from episodes of disturbance. In the pharyngeal
microbiome, loss of temporal stability has been suggested the
most proximal cause for the development of respiratory tract
infections (Gao et al., 2014). Gao et al. have reported that patients
with cystic fibrosis (CF) are the most susceptible to secondary
infections, followed by chronic obstructive pulmonary disease
(COPD) and asthma. Interestingly, the levels of Bacteroidetes
were found to be lowest in CF, followed by COPD and asthma.
Thus, it is hypothesized that as the protective “cover” offered by
Bacteroidetes decreases, pathogenic Proteobacteria expand from
their normal niche in the oropharynx and advance down the
respiratory tract; their habitat-specificity being altered by the lack
of competition in the “new” niche.

Oral bacteria are acquired at birth, and their colonization
in the pre-dentate infant is dependent both on host genotype
and on nutrition (van Steenbergen et al., 1997; Kobayashi
et al., 2008). Following the development of dentition, a stable
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microbiome is acquired that persists into adulthood. There is
evidence that bacterial composition remains stable over long
periods of time (Rasiah et al., 2005; Kumar et al., 2006),
even following routine dental prophylaxis and recolonization
(reviewed by Teles et al., 2013). Less is known about resilience
of oral bacterial communities. We have recently demonstrated
that subgingival and marginal biofilms return to nearly 90%
of their original compositional structure following repeated
episodes of gingivitis (Joshi et al., 2014) in never smokers,
but that this resilience is lost in current smokers. The host
response to this “newer” microbiome is a higher than before
pro-inflammatory response, suggesting that repeated episodes of
gingivitis in smokers may present a higher risk for disease than in
nonsmokers.

The Role of Bacterial Cooperativity in

Resistance, Stability, and Resilience of Microbial

Communities
Colonization resistance and temporal stability are mediated
through several inter-bacterial and host-bacterial interactions.
This section will focus on what we currently know about how
bacterial interactions allow species to selectively colonize,
survive, and thrive in a habitat. Bacteria within human
ecosystems depend upon each other for structural and
metabolic cooperativity; a constraint that dictates their
relative proportions within the community (Wintermute
and Silver, 2010). This mutual symbiosis is one important
factor in maintaining the abundances of genetically distinct
species in a community and therefore, contributes significantly
to microbial homeostasis. Bacterial colonization of a habitat
begins through non-random species selection. This non-random
event is facilitated by several inter-bacterial interactions, for
example, nutritional syntrophy, coaggregation, antagonism, and
communication.

Syntrophy or nutritional symbiosis [also known as cross-
feeding (from Greek for eating together)] is one of the
oldest mechanisms facilitating the formation of polymicrobial
communities. Work from the gut has provided insight into
the role of symbionts in shaping the evolution of microbial
components of this microenvironment through lateral gene
transfer. For example, gut dwelling Bacteroidetes have used this
mechanism to vary their cell surface, sense their environment,
and harvest nutrient resources present in the distal intestine (Xu
et al., 2007).

In oral biofilms, this phenomenon is not as well-characterized,
however, it has previously been shown that Veillonella and
Streptococcus, two of the earliest and most abundant genera to
colonize oral biofilms, share a nutritional syntrophy, in that the
Veillonellae utilize the lactate that is produced by the Streptococci
as a food source (Kuramitsu et al., 2007). Also, Streptococcus
sanguis and S. oralis exhibit synergy in degradingmucins, thereby
allowing efficient utilization of host glycopolysaccharides for
nutrition (Van der Hoeven and Camp, 1991).

Coaggregation among the early colonizers is another
important mechanism that controls the composition of
tooth-associated biofilms. Streptococci, due to the presence of
Antigen I/II receptors for salivary agglutinin glycoprotein,

are the primary orchestrators of coaggregation events.
Not only do they bind to salivary pellicle, dentin and
collagen, but also, the presence of these receptors is essential
for acquisition of another early colonizer A. naeslundii
(Kolenbrander et al., 2006). Also, incorporation of the bridge
species, F. nucleatum into the biofilm has been shown to be
dependent on A. naeslundii (Periasamy et al., 2009). Recent
evidence suggests an important role for Candida species in
maintaining oral health, by providing metabolic, chemical,
and physical support for colonization by certain bacteria
(reviewed by Krom et al., 2014).

Antagonism is the collective ability of the normal microbiota
to prevent colonization of exogenous and opportunistic
pathogens. In the gut, for example, the presence of butyrate, a
short chain fatty acid produced as a metabolic byproduct by
some commensals, down regulates expression of virulence genes
in Salmonella spp. (Gantois et al., 2006) The earliest reports
of bacterial antagonism in the oral environment came from
Hillman and Socransky, who demonstrated that plaque from
periodontally healthy individuals was capable of inhibiting
growth of certain periodontal pathogens (Hillman et al.,
1985). Evidence has shown some commensal oral bacteria
have antagonistic activity against periodontopathogens (van
Essche et al., 2013). Specific examples of bacterial antagonism
by means of producing metabolites in the oral cavity include
hydrogen peroxide production by streptococcal species to
inhibit growth of periodontopathongens (Hillman et al., 1985)
and lactic acid production to prevent Pseudomonas aeruginosa
incorporation into the biofilm (He et al., 2011). Evidence
has shown Streptococci exhibit antagonistic properties toward
certain Staphylococci in the oral cavity as well (Krzeminski and
Raczynska, 1993). Some indigenous microbiota take colonization
resistance a step farther by producing specific antibiotics,
such as bacteriocin production in strains of Streptococcus
salivarius, that act on specific pathogens to prevent their
colonization of the community (Sanders and Sanders, 1982).
This mechanism has also been studied in response to caries-
causing bacteria (reviewed by Kreth et al., 2009). S. sanguinis and
S. gordonii produce hydrogen peroxide, a chemical that decreases
proliferation of S. mutans in a cell-density independent manner.
S. oligofermentans utilizes the lactic acid produced by S. mutans to
generate H2O2.

Microbes are also in direct competition for available nutrients,
and in many cases the indigenous microbiota create food webs
where one species end product is used by another species (Ley
et al., 2006). This sequestration of nutrients by the indigenous
microbiota is designed to make the colonization of non-
indigenous species very difficult (Freter et al., 1983). In the gut
for example, the nutrient depletion provided by the indigenous
microbiota plays a role in suppressing C. difficile overgrowth
(Wilson and Perini, 1988).

In summary, structural, metabolic, and chemical interactions
between bacteria play an important role in maintaining
community hemostasis by supporting the critical proportions of
these species in a health-compatible microbiome. The evidence
for health benefits of these interactions has been exemplified in
the caries literature.
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Educating the Host Immune System as a Health

Benefit
Evidence is emerging to suggest that lack of a bacterial stimulus
can lead to the development of atopy, a genetic predisposition
to general allergic reactions. Several mechanisms have been
postulated to explain this connection, with the “Hormetic
Theory” being the most widely accepted (Bukowski and Lewis,
2007). The Hormetic theory suggests that exposure to a
commensal bacterial flora during early years of life serves to
educate the immune system, enabling it to distinguish between
pathogens and host proteins. Children with low levels of the
commensals Lactobacillus and Bifidobacterium demonstrate a
greater predisposition to allergies (Bjorksten et al., 2001; Sepp
et al., 2005). Further, administration of prenatal Lactobacillus GG
to mothers of high-risk infants decreased the incidence of atopy
(Kalliomaki et al., 2001).

Recent evidence suggests the human microbiome is also
capable of directly stimulating various components of the innate
and adaptive immune responses. Much of this evidence comes
from studying the gut which houses a complex and diverse
microbial community (Hooper and Gordon, 2001; Ley et al.,
2006; Neish, 2009). The first line of immunity to foreign species
is the physical barrier of the epithelial tissue. In the gut, the gut-
associated lymphoid tissue (GALT), is severely underdeveloped
in germ-free mice, but undergoes enlargement when exposed
to antigen (Pollard and Sharon, 1970), thus suggesting a role
of host-microbe interactions in the initial development of early
immunity. Additional animal studies involving germ-free model
systems demonstrate greater antigen transportation compared to
animals with a resident biofilm (Sudo et al., 1997). Further, germ-
free animals mount a severe immune response when exposed to
commensal bacteria.

Contributions of Bacteria in Establishing

Epithelial Barrier Function
Colonization of a germ-free model by B. thetaiotaomicron,
a member of the indigenous gut flora, helps establish the
epithelial barrier by inducing the expression of Paneth cell
proteins (Hooper et al., 2003) and a decay-accelerating factor
that facilitates repair (Hooper et al., 2001). Further, the release
of indole, a microbial quorum-sensing molecule, has been shown
to increase expression of tight junction and adherent junction
molecules in the colonic epithelial tissue (Shimada et al., 2013).
The increased expression of ZO-2, a tight junction protein, has
also been observed following the administration of probiotics,
namely E. coli Nissle 1917, both in vitro (Zyrek et al., 2007) and
in vivo (Ukena et al., 2007).

In the oral environment, Ye et al. characterized an increase in
the expression of tight junction components in oral epithelium
following binding of the normal microbiota species S. gordonii
(Ye et al., 2013) and identified that binding of these commensals
through the CD24 receptor of oral epithelial is responsible for
this health associated tissue phenotype (Ye et al., 2014).

Thus, currently, there is minimal evidence in the oral cavity to
indicate a role for the indigenous microbiome in affecting tissue
phenotype, although emerging evidence suggests that this may an
important avenue of investigation.

Contributions of Bacteria to Developing TLRs
An important link between microbes and epithelial cells
in innate immunity is Toll-like receptors (TLRs). Evidence
suggest that the expression of TLRs on gut epithelial cells is
decreased in germ-free mice when compared to mice with
conventional microbiota (Lundin et al., 2008). TLRs respond
to both commensals and pathogens, but evidence now suggests
TLRs interaction with commensals contributes to intestinal
epithelial homeostasis and protection from injury (Rakoff-
Nahoum et al., 2004). The location of TLR expression in
the gut epithelium has been suggested to play a role in
the hosts ability to tolerate commensals and mount a more
targeted inflammatory attack against pathogens (Furrie et al.,
2005). Evidence also suggests that a benefit of probiotics for
maintaining a healthy gut works through the TLR9 pathway,
which mediates the anti-inflammatory effects observed with
probiotic use (Rachmilewitz et al., 2004). The activation of
TLR2 in a stress-induced inflammation model also suppressed
mucosal inflammation in the gut by promoting tight junction
integrity in the epithelial barrier (Cario et al., 2007). On the skin,
commensal Staphylococcal species inhibit skin inflammation
through the regulation of TLR3 by Staphylococcal lipoteichoic
acid (LTA) activation of a TLR2-dependent pathway (Lai et al.,
2009). Subsequently, the activation of TLR2 by Staphylococcus
epidermis induces keratinocyte expression of antimicrobial
peptides to enhance innate immunity toward pathogens (Lai
et al., 2010).

Bacteria and Neutrophil Function
The cellular components of the innate immune system primarily
include neutrophils. Evidence suggests the recruitment of
neutrophils to tissue is increased by the presence of the
mircobiota (Kanther et al., 2014). Similarly, work from Zenobia
et al. has provided evidence that commensal bacteria in the
oral cavity selectively upregulate CXCL2 expression leading
to an increase in neutrophil recruitment to “prime” healthy
gingival tissue (Zenobia et al., 2013). Interleukin-8 is another
important chemokine in the innate immune pathway known
to attract neutrophils and enhance phagocytosis. The normal
microbiota has been shown to induce IL-8 (Darveau et al.,
1998; Vankeerberghen et al., 2005), presumably to recruit
neutrophils to a potential pathogen colonization site to help
prevent overgrowth of pathogens. Not only does the commensal
microbiota play a role in recruiting neutrophils, but evidence
from a germ-free (Clarke et al., 2010) model suggests that
a lack of commensal microbiota reduces phagocytosis and
antimicrobial killing activity (Ohkubo et al., 1990, 1999).
Commensal bacteria also induce low-level expression of human
beta defensins, presumably to keep the innate immune system
in a limited activation state (Vankeerberghen et al., 2005) and
have been implicated in the regulation of gene expression of the
complement system, another important arm of innate immunity
(Chehoud et al., 2013).

In summary, a large body of evidence suggests that the host
associated microbiome plays an important role in regulating
the innate immune system, through epithelial bacterial function,
bacterial recognition pathways and signals and innate immune
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cell functions. However, a similar level of evidence is currently
lacking in the oral microbiome.

Bacteria and Regulatory T Cell Education
Although significant evidence exists supporting the role the
indigenous microbiota plays in fortifying innate immunity,
evidence continues to grow linking commensal microbiota to the
adaptive immunity cascade of events. The peripheral education
of regulatory T cells (Treg) in the colon by antigens derived
from the commensal microbiota ensures the local tolerance of
this microbial community by the host (Lathrop et al., 2011). One
well-identified human commensal, Bacteroides fragilis, directs
Treg cell education using the immunomodulatory molecule,
polysaccharide A (PSA) (Round and Mazmanian, 2010). PSA
induces an IL-10 response in T cells that inhibits Th17 expansion
preventing future mucosal damage (Round et al., 2011). Similar
Treg cell induction and anti-inflammatory effects are seen
with colonization of Clostridia species (Atarashi et al., 2011,
2013; Chiba and Seno, 2011; Nagano et al., 2012). In contrast,
colonization of the gut intestinal tissue by segmented filamentous
bacteria leads to an increase in mature Th17 cells and Th1 cells
(Gaboriau-Routhiau et al., 2009; Ivanov et al., 2009).

Similar evidence exists in the oral cavity where members of
commensal oral bacteria prime dendritic cells for Th2 and Treg
differentiation (Kopitar et al., 2006). Shin et al demonstrated
that F. nucleatum, an oral commensal, induces Th1 and Th3
immune responses, while Treponema denticola, a pathogenic
species, induced a Th1-dominant response (Shin et al., 2013).

Bacteria and B Cell Education
Lastly, evidence indicates that commensal microbiota play a
role in B cell development and maturation. In human infants,
maturation of the mucosal defense system, particularly cells that
secrete IgA and IgM, is dependent on the presence of a normal
gut flora (Klaasen et al., 1993; Gronlund et al., 2000). This
suggests that the development of immune tolerance is dependent
on early and sustained exposure to a stable biofilm. Recent
evidence suggests that B cell maturationmay in fact be dependent
on intestinal bacterial colonization as mice colonized early with
E. coli and Bifidobacteria have an increased population of CD20+
B cells expressing memory marker CD27 (Lundell et al., 2012).
Following development of the lymphoid tissue, the host immune
system faces the challenge of finding balance between mounting
a swift response toward invading pathogens, but controlling that
response against commensals. One way the host controls this
response in mice is by using dendritic cells to “sample” the gut
lumen and keep live commensals engulfed for a few days to

selectively induce IgA production (Macpherson and Uhr, 2004).
This localized production of IgA helps maintain immune system
homeostasis and allows the human host to distinguish between a
commensal and pathogenic colonization providing the necessary
defense mechanisms to control an infection.

Other Benefits
Evidence is emerging to suggest that oral bacteria may play a
critical role in nitric oxide NO homeostasis (Kapil et al., 2013;
Hyde et al., 2014). They do so by reducing dietary nitrate to

bioactive NO, a critical symbiotic relationship since humans
lack the enzymes to carry out this function. The effects of NO
in maintaining cardiovascular integrity are well-established in
literature. Thus, recent studies point to a cardio-protective role
for oral bacteria; and may provide a critical link in the oral-
systemic health connection.

Thus, although the traditional view of an indigenous
microbiome is one that provides a nondestructive inflammatory
stimulus to the host, thereby ensuring host-bacterial equilibrium,
emerging evidence indicates that this community appears to
play an active role in developing the host innate immunity and
priming the adaptive immune response.

Future Steps

The role of the microbiome in maintaining health in several
human ecosystems is an emerging and exciting field of study.
While the health benefits of supporting a large microbial
community are actively being explored in reference to the
gut, genito-urinary tract, and respiratory system; similarly
robust evidence is lacking in relation to the oral microbiome.
Several decades of research have been focused on exploring the
microbiota associated with oral diseases. While the importance
of this quest cannot be downplayed, it is sometimes easy to
forget that the ultimate aim of treating disease is to restore
health, and the only successful method of preventing disease is
by maintaining health. Hence, it is important to focus on the
health benefits provided by our microbial fellow travelers and
to expend some effort in cataloging and characterizing not only
this community, but also the host determinants that play a role in
shaping this population.
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