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ABSTRACT

Succinate dehydrogenase (SDH)-loss pheochromocytoma and paraganglioma 
(PPGL) are tumors driven by metabolic derangement. SDH loss leads to accumulation 
of intracellular succinate, which competitively inhibits dioxygenase enzymes, causing 
activation of pseudohypoxic signaling and hypermethylation of histones and DNA. The 
mechanisms by which these alterations lead to tumorigenesis are unclear, however. 
In an effort to fundamentally understand how SDH loss reprograms cell biology, 
we developed an immortalized mouse embryonic fibroblast cell line with conditional 
disruption of Sdhc and characterize the kinetics of Sdhc gene rearrangement, SDHC 
protein loss, succinate accumulation, and the resultant hypoproliferative phenotype. 
We further perform global transcriptomic, epigenomic, and proteomic characterization 
of changes resulting from SDHC loss, identifying specific perturbations at each 
biological level. We compare the observed patterns of epigenomic derangement to 
another previously-described immortalized mouse chromaffin cell model of SDHB loss, 
and compare both models to human SDH-loss tumors. Finally, we perform analysis 
of SDHC synthetic lethality with lactate dehydrogenase A (LDHA) and pyruvate 
carboxylase (PCX), which are important for regeneration of NAD+ and aspartate 
biosynthesis, respectively. Our data show that SDH-loss cells are selectively vulnerable 
to LDH genetic knock-down or chemical inhibition, suggesting that LDH inhibition may 
be an effective therapeutic strategy for SDH-loss PPGL.
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INTRODUCTION

Pheochromocytoma and paraganglioma (PPGL) 
are rare neuroendocrine tumors arising from chromaffin 
cells of the adrenal medulla and autonomic sympathetic 
and parasympathetic paraganglia, respectively. Each year 
there are approximately 500 to 1600 new PPGL cases in 
the United States, with the combined estimated annual 

incidence of ~0.8 per 100,000 person-years [1]. More 
than 30% of PPGL are hereditary with greater than 40% 
penetrance depending on genotype and up to 50% develop 
metastases in certain hereditary germline mutations [2, 3]. 

Mutations in tumor-suppressing genes encoding 
subunits of the succinate dehydrogenase (SDH) complex 
(SDHA, SDHB, SDHC, and SDHD, i.e. SDHx genes) 
and the required assembly factor that flavinates SDHA 
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(SDHAF2) can inhibit SDH activity and thereby cause 
hereditary and (apparently) sporadic PPGL [4–9]. 
Syndromic PPGL is also seen as a part of multiple 
endocrine neoplasia type 2 (MEN2), von Hippel-Lindau 
(VHL) disease, and neurofibromatosis type 1 (NF1). 
Additionally, novel mutations associated with PPGL 
continue to be discovered. These include mutations in 
transmembrane protein 127 (TMEM127), myc-associated 
factor X (MAX) genes, somatic gain-of-function 
mutations in the gene encoding hypoxia-inducible factor 
2α (HIF2A), and pathogenic germline mutations in the FH 
gene encoding fumarate hydratase [10–13]. 

Decreased activity of SDH due to mutations in SDHx 
genes leads to increased intracellular concentrations of 
succinate, a tricarboxylic acid (TCA) cycle intermediate 
thought to be a crucial tumorigenic oncometabolite SDH-
deficient PPGL [6, 8, 14–17]. Succinate is a 2-ketoglutarate 
analog, and is an inhibitor of an entire class of more than 
40 dioxygenase enzymes that utilize dioxygen, iron, 
and 2-ketoglutarate in hydroxylation and demethylation 
reactions [18]. Inhibition of prolyl hydroxylases by 
succinate is believed to activate pseudohypoxic signaling, 
which may be tumorigenic [14, 15, 19, 20]. Additionally, 
succinate inhibition of TET DNA demethylases and 
Jumonji domain histone demethylases is believed to cause 
hypermethylation of histones and DNA, resulting in global 
transcriptional perturbation [21–24]. Despite these insights, 
however, it remains unclear how SDH loss and resultant 
pseudohypoxia and global epigenomic derangement are 
tumorigenic.

In an effort to fundamentally understand how 
SDH loss reprograms cell biology, we developed an 
immortalized mouse embryonic fibroblast cell line with 
conditional disruption of Sdhc and characterize the 
kinetics of Sdhc gene rearrangement, SDHC protein loss, 
succinate accumulation, and the resultant hypoproliferative 
phenotype. We study this new model of SDH loss by 
performing global transcriptomic, epigenomic, and 
proteomic characterization of changes resulting from 
SDHC loss, identifying specific perturbations at each 
biological level. We compare the observed patterns of 
epigenomic derangement to another previously described 
immortalized mouse chromaffin cell model of SDHB loss, 
and compare both models to human SDH-loss tumors. 

In the absence of a fully functional TCA cycle due 
to SDH deficiency, cells rewire their metabolic network 
and become dependent on alternative pathways for 
proliferation and survival. Genetic and hypoxia-mediated 
disruptions of the TCA cycle have been suggested to 
result in greater reliance on glycolysis and/or reductive 
carboxylation of glutamine for the provision of carbon for 
anaerobic purposes [25–27]. Prior investigations suggest 
that LDHA, an enzyme that catalyzes the reduction of 
pyruvate to lactate for NAD+ regeneration, is critical for 
survival of SDH-deficient cells [28, 29]. In parallel, it 
has been suggested that PCX is an essential enzyme for 

aspartate biosynthesis, particularly in glycolytic cells that 
lack TCA cycle function [30]. In the current study, we 
characterize the sensitivity of our new SDH-loss model 
to genetic loss of LDHA and PCX via lentivirus-mediated 
shRNA knockdown. We additionally characterize the 
sensitivity of SDH loss cells to chemical inhibition of 
LDH. Our data show that SDH-loss cells are selectively 
vulnerable to LDH genetic knock-down or chemical 
inhibition, suggesting that LDH inhibition may be an 
effective therapeutic strategy for SDH-loss PPGL.

RESULTS

Genetic and phenotypic characterization of 
SDHC-loss iMEF model

We developed experimental (Sdhc fl/fl) and control 
(Sdhc fl/wt) immortalized mouse embryonic fibroblast 
(iMEF) cell lines in which Sdhc gene rearrangement can 
be triggered by doxycycline induction of Cre recombinase 
expression. These iMEF lines were obtained from mouse 
embryos using animals by FLP recombinase manipulation 
of a Sdhc gene trap allele with exon 4 spanned by Cre 
recombinase recognition sequences, developed by the 
Wellcome Trust Sanger Institute. Both experimental and 
control iMEFs were treated with doxycycline and sampled 
over time to monitor Sdhc gene rearrangement using PCR 
primers flanking floxed exon 4 that reveal a shortened 
PCR product upon Cre-mediated gene rearrangement 
(Figure 1A). Following Sdhc gene rearrangement, loss of 
SDHC and SDHB proteins was verified by Western blot 
analysis (Figure 1B, 1C). Quantification of the Sdhc floxed 
allele and SDHC protein decay rates using exponential 
decay fitting revealed DNA rearrangement and SDHC 
protein half-lives were ~1.8 and ~2.2 d, respectively, 
with midpoints at 1.8 and 3.6 days (Figure 1D).  
Intracellular succinate levels were then profiled using GC/
MS approaches. Succinate was found to be elevated in 
experimental cells following induction of SDHC loss, but 
not control cells (Figure 1E). We then characterized cell 
population doubling time over a time-course, revealing 
increased doubling times for SDH-loss cells (Figure 1F). 

Global transcriptional responses to SDHC loss

We next characterized immediate transcriptome-
wide changes in response to SDHC loss. For this 
purpose, we employed a time-course experimental design 
in which we triggered rearrangement of Sdhc floxed 
alleles in experimental and control iMEF lines and then 
iteratively sampled these cell cultures over time for 
RNA-seq profiling to monitor time-dependent changes in 
gene expression (Figure 2A). To identify differentially-
expressed genes, we leveraged biological triplicate RNA-
seq experiments collected at day 16 post induction to 
perform a differential gene expression analysis [absolute 
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log2(fold-change) >1 and adjusted p-value < 0.05]. An 
unfiltered differential genes expression analysis identified 
610 genes that were differentially expressed between 
experimental and control lines at day 16 (absolute 
log2(fold-change) >1 and adjusted p-value < 0.05, 
Supplementary Table 1). We further filtered the results 
to consider only genes whose expression was similar 
(within two-fold) between experimental and control lines 
at day 0 (Figure 2B, 2C). This filtering retained 161 genes 
(Supplementary Table 2). A majority (111; 69%) of these 
differentially-expressed genes were up-regulated in the 
experimental line relative to control.

Correlation of gene-specific expression change with 
baseline expression levels in the control cell line revealed 
a negative correlation (−0.178, p-value < 1E-16) between 
expression change and baseline expression value genome-
wide (Figure 2D). Further examination of this correlation 

using a linear fit to the full dataset revealed that genes 
having a baseline expression value < 6 fragments per 
kilobase million (FPKM) tend to increase in expression in 
the context of SDHC-loss, while genes having expression 
>6 FPKM tend to decrease in expression. This finding 
that patterns of SDHC-loss transcriptional change 
correlate with baseline expression values in normal cells 
has not previously been reported, and points to distinct 
transcriptional activating and repressing effects that 
operate on these gene subsets in the context of SDHC-loss.

We next asked whether the expression levels of the 
161 genes differentially-expressed at day 16 after SDH 
loss are adequate to classify experimental and control 
time-course samples into distinct groups. We also wished 
to ascertain at what time major differences in gene 
expression begin to emerge. We therefore performed 
unsupervised hierarchical clustering of gene expression 

Figure 1: Genetic and phenotypic characterization of SDHC-loss iMEFs. (A) PCR analysis of Sdhc gene rearrangement 
using primers flanking [floxed] exon 4, resulting in production of a shortened PCR product upon Cre-mediated gene rearrangement. 
(B) Western blot analysis of SDHC and SDHB protein loss following Sdhc gene rearrangement. (C) Western blot quantitation. Colors 
indicate respective iMEF line (red, experimental; black, control). Symbols correspond to quantified protein (circles: SDHC; triangles: 
SDHB). Welch two-sample t-test of SDHC protein amount at day 12 quantified for experimental and control lines yields p-value of 
0.004 (N = 6 experimental replicates). Similar statistical analysis of SDHB protein amount yields p-value of 3E-5. (D) Exponential decay 
models of Sdhc gene rearrangement and protein loss. DNA rearrangement and SDHC protein half-lives are 1.76 and 2.17 d, respectively. 
Midpoints for DNA rearrangement and SDHC protein loss curves occur at 1.8 and 3.6 d, respectively. (E) Measured intracellular succinate 
abundance. Values are normalized to total protein. (F) Quantitation of cell population doubling time. Welch two-sample t-test of doubling 
time difference between experimental and control lines at day 22 yields a p-value of 0.004. 



Oncotarget6112www.impactjournals.com/oncotarget

profiles using the identified differentially-expressed 
genes. This analysis (Figure 2E) reveals that experimental 
time-course day 0 and 5 samples have high similarity 
to the control samples, and that major changes in gene 
expression begin to emerge by day 9, and become more 
pronounced at later time points. This is consistent with 
a model in which transcriptional differences between 
the two iMEF lines emerge after induction of Sdhc gene 
rearrangement, with dramatic differences between day 
0–5 and day 9–20 experimental iMEF line transcriptional 
profiles, and corresponds with the observed delay in loss 
of previously-expressed SDHC protein. 

To gain insight into functional implications of SDH 
loss in the fibroblast context, we performed functional 
annotation enrichment analysis and term clustering on the 
list of identified differentially-expressed genes using the 
DAVID functional annotation database [31]. This analysis 
(Figure 2F, Supplementary Table 3) revealed several 
clusters of terms describing the fibroblast response to 
SDHC loss. The most highly enriched term sets (clusters 
#1, #2, and #3) reveal significant induction of genes 
involved in innate immunity and antiviral response. Other 
prominent patterns in the enriched term sets include 
induction of genes involved in disulfide bond formation 
(cluster #4), interferon genes (cluster #5), and extracellular 
matrix genes (cluster #6). 

Genome-wide DNA methylation patterns in 
response to SDHC loss

To extend our analysis of SDH loss to epigenetic 
effects, we performed global profiling of DNA methylation 
patterns. As in gene expression analysis, we adopted a 
time-course experimental design in which we monitor 
differences in DNA methylation that emerge between 
experimental and control iMEF lines upon induction 
of SDHC loss with doxycycline. For each time point, 
isolated genomic DNA from experimental and control 
cell lines was profiled by reduced representation bisulfite 
sequencing (RRBS) [32] to map genome-wide patterns of 
DNA methylation. Using functionality of the RnBeads R 
package, we performed a differential DNA methylation 
analysis to identify CpG site methylation differences 
between experimental and control sample series, excluding 
the day 0 experimental sample, with the goal of identifying 
changes that emerge between the iMEF lines after day 0.  
The results of this differential methylation analysis  
(Figure 3A) display the calculated DNA methylation beta 
value difference for individual CpG sites on the x-axis 
and the significance of the statistical comparison on the 
y-axis, highlighting the top 0.1 quantile of the dataset in 
blue as quantified by DNA methylation combined rank. 
We also performed this analysis on CpG sites mapping 
to annotated CpG islands and promoters (Supplementary 
Figure 1A and 1B, respectively).

The top 0.1 quantile of differentially-methylated 
CpG sites were then used to perform unsupervised 
hierarchical clustering of time-course samples following 
induction of SDHC loss (Figure 3B). Impressively, 
the methylation information at these loci was sufficient 
to produce a relational dendrogram that reveals high 
similarity between experimental day 5–20 specimens and 
similarly clusters all control specimens together. This CpG 
site methylation-based clustering also indicated a high 
degree of similarity between the control specimens and 
the experimental day 0 specimen, as expected. Clustering 
analyses were also performed for CpG sites mapping to 
annotated CpG islands and promoters (Supplementary 
Figure 1C and 1D, respectively). All three analyses 
support the conclusion that meaningful differences in 
methylation between iMEF lines emerge after day 0 and 
are attributable to SDHC loss in the experimental line. 

We then examined specific patterns of DNA 
methylation change at CpG sites that emerge between 
experimental and control iMEF lines following induction 
of SDHC loss. For this analysis, only CpG sites in the 
top 0.1 quantile of differential expression combined rank, 
and which did not have significant difference at day 0 
(beta value difference < 0.2) were considered. Shown in 
Figure 3C, and seen most prominently at days 12 through 
20, dramatic differences emerge in CpG site methylation. 
In particular, CpG sites that have either a very low or very 
high beta value in the control line tend to display an off-
diagonal gradient of beta values between 0 and 1 in the 
experimental line. A similar phenomenon was observed 
to a lesser extent when performing the analysis on CpG 
sites mapping to annotated CpG islands and promoters 
(Supplementary Figure 1E and 1F, respectively).

Since the majority of CpG sites in the control cell 
line appear to have either a very low or very high beta 
value, we then asked how these two CpG site populations 
change in methylation following induction of SDHC 
loss. We filtered the dataset to keep only CpG sites that 
have low (beta value < 0.2) or high (beta value > 0.8) 
methylation at day 0 in both experimental and control lines 
and analyzed the patterns of methylation change separately 
for these respective CpG site lists (Figure 3D). For CpG 
sites with a low day 0 beta value, the dominant pattern 
of CpG site methylation change after induction of SDHC 
loss was found to be hypermethylation, with 44% of CpG 
sites hypermethylated in the experimental line at day 
12, and only 15% of sites hypomethylated. This result is 
consistent with the current paradigm of succinate-mediated 
inhibition of Tet demethylases, resulting in global 
hypermethylation of DNA [33]. We estimate that this 
pattern of hypermethylation of CpG sites having initially 
low methylation beta values affects approximately 13% of 
CpG sites genome wide. For CpG sites with a high day 0  
beta value, however, the pattern was opposite. Among 
these CpG sites, 24% were seen to be hypermethylated in 
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Figure 2: Transcriptomic characterization of SDHC-loss iMEFs. (A) Schematic representation of Sdhc loss time-course design 
used for RNA-seq experiments. Both Sdhc fl/fl (experimental) and Sdhc fl/wt (control) iMEFs are treated with doxycycline and sampled 
over time to monitor transcriptional responses to Sdhc loss. Asterisks (*) indicate time point used for collection of biological replicate  
(N = 3) specimens used for differential gene expression analysis. (B) Volcano plot showing expression differences between experimental 
and control lines at day 16. Subset of genes identified as differentially expressed (log2FC > 1 and adjusted p-value < 0.05 and which 
showed less than 2-fold expression difference between the two lines at day 0; N = 161 genes) are highlighted in blue. (C) Heat map showing 
relative expression of identified differentially expressed genes between experimental and control cell lines and biological replicates. (D) 
Analysis of observed gene expression changes as a function of baseline expression value in control cells. Subset of differentially-expressed 
genes is highlighted in green. (E) Unsupervised hierarchical clustering of time-course experiment gene expression profiles for experimental 
and control iMEF lines using identified differentially-expressed genes. Experiment design is as depicted in A. Dendrogram structure at top 
of plot indicates degree of similarity between clustered gene expression signatures. (F) DAVID functional annotation enrichment analysis 
and clustering of impacted gene ontologies. Color indicates average gene expression change for impacted genes mapping to each ontology 
(green: up-regulation in experimental line; red: down regulation in experimental line).
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the experimental line at day 12, whereas 44% were seen 
to be hypomethylated. This finding that highly methylated 
CpG sites tend to become hypomethylated in the context of 
SDHC loss is novel and challenges the simple paradigm of 
global hypermethylation due to Tet enzyme inhibition and 
suggests a genome-wide averaging of DNA methylation. 
We estimate that this pattern of hypomethylation of CpG 
sites having initially high methylation beta values affects 
approximately 6% of CpG sites genome wide.

We then extended this DNA methylation analysis 
by studying aggregate promoter methylation patterns 
and how initial (day 0) methylation state correlated with 
methylation difference between experimental and control 
lines at day 20. Interestingly, we identified a statistically-
meaningful negative correlation (−0.126, p-value = 0.005) 
between initial promoter methylation status and observed 
day 20 methylation difference (experimental minus control 
beta values). This result further supports the conclusion 
that initial methylation status is correlated with observed 
methylation changes (Figure 3E). 

We next asked whether the gene promoters most 
impacted by differential methylation preferentially impact 
specific gene ontologies. We extracted the gene identifiers 
for the top 0.1 quantile of differentially-methylated 
promoters, as quantified by combined methylation 
rank, and used this list to perform functional annotation 
enrichment analysis and term clustering using the DAVID 
functional annotation database [31]. This analysis revealed 
several clusters of terms found to be preferentially 
impacted (Figure 3F, Supplementary Table 4). Notably, 
top impacted functional categories include microtubule-
related components (cluster #1), neuropeptide signaling 
pathway (cluster #2), and proteasome components 
(cluster #3). These ontologies were not among the top 
impacted ontologies at the transcriptome level, suggesting 
that the most meaningful changes in methylation do 
not necessarily correspond to the most meaningful 
transcriptomic changes.  

We assessed whether there is a correlation between 
observed changes in gene expression, quantified via RNA-
seq, and observed changes in promoter DNA methylation, 
quantified via RRBS. We searched for a statistically-
significant correlation between expression difference 
(experimental minus control FPKM values) and promoter 
DNA methylation difference (experimental minus control 
beta values). As shown in Figure 3G we found an intriguing 
negative and statistically-meaningful correlation (−0.11, 
p-value = 0.007) between the two variables, suggesting 
that increased promoter methylation may contribute to 
reduced gene expression. This is consistent with the 
current paradigm of promoter DNA hypermethylation 
being generally repressive of gene expression.  We also 
identified day 0 promoter hypermethylation as correlating 
with increased day 20 experimental line gene expression 
(Supplementary Figure 1G). Furthermore, Supplementary 
Figure 1H shows that genes with increased expression in 

the experimental line tend to have a higher number of CpG 
sites per promoter (median = 23), relative to genes that do 
not change expression (median = 17), and that the opposite 
is true for down-regulated genes (median = 15). The basis 
for these phenomena are unclear.

Next, we assessed whether the observed Sdhc-
dependent differences in promoter methylation patterns 
in our iMEF model correlate with SDHx-loss methylation 
patterns in these same genes in human PPGL tumors. 
Using publically-available datasets, we calculated the 
mean gene-specific promoter beta value differences for 
human SDHx-loss tumors relative to all other PPGL 
tumors. Strikingly, we observed a weak but statistically-
significant correlation (0.03, p-value = 0.01) between the 
observed methylation differences in SDHC-loss iMEFs 
and SDHx-loss human PPGL tumors (Figure 3H). This 
indicates that some fundamental aspect of the observed 
epigenetic response to SDH loss may be conserved 
across species and cell types. We also assessed the degree 
of correlation between average promoter beta values 
averaged across all PGL tumors and day 0 iMEF promoter 
beta values. This analysis revealed a 33% correlation 
(Supplementary Figure 2A). 

Prior to this report, another group reported 
the generation and epigenomic characterization of a 
spontaneously immortalized mouse chromaffin cell 
model system (imCC) for SDHB loss [33]. We therefore 
asked to what degree the epigenomic patterns observed in 
our iMEF model system are similar to this other model. 
Analysis of promoter methylation patterns in control 
iMEFs and imCCs revealed a surprisingly high correlation 
(87%) between these disparate cell types (Supplementary 
Figure 2B). We measured the similarity of differential 
promoter methylation patterns between experimental 
and control lines in these two cell types. This revealed 
a small but statistically significant correlation (0.051, 
p-value = 2E-10) between the observed epigenomic 
responses (Supplementary Figure 2C). We then asked 
how SDH loss patterns of promoter methylation difference 
between SDHC-loss iMEFs, SDHB-loss imCCs, and 
human SDHx-loss PPGL tumors compare. The results 
of this analysis (Supplementary Figure 2D) reveal that, 
although SDHC-loss iMEF methylation differences 
have statistically-significant correlation with SDHx-loss 
PPGL and SDHB-loss imCC methylation differences, the 
correlation between SDHx-loss PPGL and SDHB-loss 
imCC methylation differences is approximately 5-fold 
stronger.  This result suggests that, with respect to gene-
specific differences in the epigenome, the imCC model 
system may more closely approximate human PPGL 
tumors. This result is not surprising given the cell types 
involved.

We tested whether specific gene promoters are 
identified as hypermethylated in SDHC-loss iMEFs, 
SDHB-loss imCCs, and human SDHx-loss PPGL 
tumors. For this analysis, we considered only gene 
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Figure 3: Analysis of genome-wide methylation patterns in SDHC-loss iMEFs. (A) Volcano plot showing CpG site mean 
methylation difference versus –log(p-value) from RnBeads differential methylation analysis. Comparison was generated between control 
time series specimens and experimental specimens, excluding day 0. Blue dots correspond to the top 0.1 quantile of the dataset, as 
quantified by methylation combined rank. (B) Unsupervised hierarchical clustering of samples based upon CpG site DNA methylation 
patterns. The data used for clustering includes the top 0.1 quantile of CpG sites, ordered by methylation combined rank. (C) Correlation 
heat maps showing the emergence of CpG site DNA methylation difference between experimental and control iMEF lines following 
induction of SDHC loss with doxycycline. Only differences emerging after day 0 are shown. Colors correspond to data point density 
(red: high; green: intermediate; blue: low). (D) Time course analysis of CpG site methylation change, separated according to day 0 
methylation status. Left histograms illustrate change in DNA methylation for subset of CpG sites with little initial methylation (day 
0 beta value < 0.2). Right histograms illustrate change in DNA methylation for subset of CpG sites with high initial methylation (day 
0 beta value > 0.8). Quantitations overlaid on plots indicate the percentage of data CpG sites having a 10-fold increase or decrease in 
methylation between experimental and control lines. (E) Patterns of promoter methylation change shown as a function of initial (day 0) 
methylation beta value. (F) Analysis of gene ontologies impacted by differential methylation of gene promoters. Dataset used for gene 
ontology searching includes the top 0.1 quantile of data, ranked according to promoter differential methylation combined rank. Color 
scale indicates mean degree of methylation change for promoters of genes identified as impacted and mapping to that given ontology 
(green: hypermethylated; red: hypomethylated). (G) Integrative analysis of promoter methylation change and gene expression change 
at day 20 post doxycycline initiation.  Promoter methylation change is calculated as the difference between experimental and control 
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promoters with a beta difference value (experimental 
minus control) >0.05. A Venn diagram illustration of 
the hypermethylation dataset overlaps is presented in 
Supplementary Figure 2E. 282 genes were identified 
as hypermethylated in all three datasets, representing a 
conserved list of genes that become hypermethylated 
in SDH-loss context regardless of species and cell type. 
DAVID functional annotation enrichment analysis [31] 
and term clustering performed on this list identified 
several annotation term clusters (Supplementary Figure 3).  
Notably, several clusters were identified suggesting a 
conserved pattern of hypermethylation affecting ECM 
components and cell membrane (clusters #2, 13, 14), 
transcription (clusters #4, 16), Wnt signaling (clusters #8, 
10), calcium signaling (cluster #12), homeobox factors 
(cluster #15), and collagen (cluster #17). 

Global proteomic changes in response to SDHC 
loss

We then assessed the global impact of SDHC 
loss upon relative protein abundance in experimental 
and control cell lines to see if observed transcriptomic 
changes are reflected in the proteome. We employed an 
experimental approach in which experimental and control 
cell lines were induced with doxycycline, followed by 
stable isotope labeling with amino acids in cell culture 
(SILAC) analysis. Experimental cells were grown in 
SILAC light medium, and control cells were grown in 
SILAC heavy medium containing C13-labeled lysine and 
arginine. Cell lines were grown for 16 days following 
doxycycline induction, followed by proteolytic digest 
and quantification of relative protein abundance by mass 
spectrometry approaches (Figure 4A). The experiment 
was performed in duplicate, enabling statistical analysis 
of the resulting differential protein abundance data. The 
replicates detected 2138 proteins in common, providing 
SILAC heavy/light ratios for 1081 (Figure 4B, 4C). 
Assessment of the reproducibility of SILAC heavy/light 
ratios measured between protein quantitation replicates 
revealed a strong correlation (0.92, p-value < 2.2E-16), 
validating the robustness and reproducibility of this 
method (Figure 4D).

We assessed whether changes in protein abundance 
preferentially impact specific gene ontologies. We extracted 
gene identifiers for the top 0.1 quantile of differentially-
expressed proteins, and used this list to perform functional 
annotation enrichment analysis and term clustering using 
the DAVID functional annotation database [31] (Figure 4E, 
Supplementary Table 5). This analysis reveals several 

preferentially impacted term clusters. Notably, this analysis 
revealed a strong depletion of the ribosomal translational 
machinery (cluster #1) and a general up-regulation of 
mitochondrial proteins (cluster #2). 

Sub-analysis of the proteins mapping to the 
translation-related cluster #1 revealed strong down-
regulation of both cytosolic and mitochondrial ribosome 
structural components, as well as translation factors, but 
an increase in solute transporters responsible for shuttling 
glutamate, aspartate, citrate, and TCA cycle dicarboxylic 
acids across the mitochondrial membrane (Figure 4F). 
Previously, it has been reported that degradation of mature 
ribosomes is a hallmark of cellular autophagy, suggesting 
that autophagy may be activated in the context of SDHC 
loss [34]. 

Sub-analysis of proteins mapping to mitochondria-
related cluster #2 revealed disparate effects upon several 
different classes of mitochondrial proteins (Figure 4G). 
Down-regulated groups include constituents of the 
mitochondrial ribosome and electron transport chain 
complex I and complex III. Protein groups that are strongly 
identified as up-regulated include TCA cycle, electron 
transport, fermentation, fatty acid metabolism, antioxidant 
defense, and solute transport across mitochondrial 
membrane. Intriguingly, we have previously shown that 
inhibition of alcohol dehydrogenase is synthetically lethal 
with SDH loss in budding yeast, and that the same is true 
for HEK293 cells knocked-down for SDHB [28]. This 
observation, together with the observed up-regulation 
of fermentation components LDHB and ALDH2 in the 
SDHC-loss iMEF cell culture model, suggests that SDH-
deficient cells may become addicted to fermentation, 
which may represent a metabolic vulnerability amenable 
to drug targeting. We pursued this possibility.

Synthetic lethal testing of LDHA and PCX 
depletion in the context of SDHC loss

SDH-deficient cells are thought to increasingly rely 
on the activity of LDHA for regeneration of NAD+ and 
PCX for synthesis of aspartate (Figure 5A). We therefore 
investigated the effects of LDHA and PCX inhibition 
using Sdhc fl/fl (experimental) and Sdhc fl/wt (control) 
iMEFs as models of SDH-deficient PPGL and normal 
cells, respectively. 

We first tested whether SDH-deficient cells are 
more sensitive to LDHA knockdown than are cells with 
intact SDH activity. iMEFs were transduced with two 
independent short hairpin RNA (shRNA)-expressing 
lentiviruses to generate stable LDHA knockdown 

cell line promoter beta values. Gene expression change is calculated as the difference between experimental and control line gene 
expression values (FPKM). Data included in this analysis are the top 0.05 quantile of data ranked according to adjusted p-value from 
differential gene expression analysis. (H) Comparison of iMEF SDHC-loss and PPGL SDHx-loss promoter differential methylation 
patterns. Methylation difference in iMEFs is calculated as a difference of day 20 promoter beta values for experimental minus control 
lines. Methylation difference for human PPGL tumors is calculated as the difference of beta values for SDHx tumors minus all other 
PPGL tumors, using the nearest CpG site to a given gene promoter as a surrogate for promoter methylation beta value. 
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Figure 4: Global proteomic characterization of Sdhc loss iMEFs. (A) SILAC experimental design. Sdhc fl/fl (experimental) 
and Sdhc fl/wt (control) cell lines were induced with doxycycline and grown in SILAC light and heavy medium, respectively. Heavy 
SILAC medium contained C13-labeled lysine and arginine. At day 16, cell pellets were harvested, pooled, proteolytically digested, and 
the ratios of heavy and light peptides quantified via mass spectrometry. (B) Venn diagram showing overlap of detected proteins identified 
in two biological replicate heavy/light labeling experiments. (C) Venn diagram showing overlap of quantifiable proteins in two biological 
replicate heavy/light labeling experiments. (D) Analysis of correlation between replicate protein quantitation experiments. Plot axes show 
calculated heavy/light log2-transormed ratios. Prior to log-transformation, data on each axis were independently normalized to median 
values. (E) Analysis of gene ontologies, KEGG pathways, and INTERPRO terms impacted at the protein level. Bar height corresponds 
to the degree of statistical significance in the function term enrichment analysis. Color of the bar corresponds to the magnitude and 
direction of protein abundance change in experimental vs. control iMEF cell lines (red: down-regulation in experimental line; green: up-
regulation in experimental line). (F) Translation-related changes in protein expression. Shown are log2(fold-change) values (x-axis) for 
all quantified proteins with annotation mapping to translation-related cluster 1 (panel E). Positive values indicate increased expression in 
the experimental iMEF line relative to control. Quantified proteins are ordered according to specific cellular functions. (G) Mitochondria-
related changes in protein expression. Display parameters are the same as in F.  
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iMEF lines (Figure 5B). Controls were generated by 
transducing corresponding Sdhc fl/fl and control Sdhc  
fl/wt cells with a non-targeted shRNA-expressing lentivirus. 
LDHA depletion was confirmed by quantitative Western 
blot analysis showing dramatic reduction in protein levels 
(Supplementary Figure 4A, 4B). The cells were then treated 
with doxycycline to trigger Sdhc gene rearrangement and 
subsequent loss of SDHC protein. Consistent with synthetic 
lethality upon metabolic rewiring of SDH loss cells, LDHA 
deficiency resulted in marked cleavage of caspase substrate 
as a marker for apoptosis in SDHC-deficient cells on day 
9 post doxycycline initiation (Figure 5C, 5D). In contrast, 
apoptosis was rarely observed in LDHA depleted control 
iMEFs and no apoptosis was observed in non-targeted 
Sdhc-deficient and control iMEF cell lines (Figure 5E). 
These results demonstrate that loss of LDHA activity is 
synthetically lethal with SDH loss in iMEFs, and confirm 
the essential role of LDHA in SDH-null cell survival, and 
echoes previous results obtained in SDH-loss yeast cells 
and a SDHB-knockdown mammalian cell model [28]. 

To explore the effects of PCX knockdown in SDH-
loss cells, both Sdhc fl/fl and Sdhc fl/wt iMEFs were 
transduced with two independent shRNA-expressing 
lentiviruses and one non-targeted shRNA-expressing 
lentivirus to generate three stable PCX knockdown 
cell lines (Figure 5B). PCX depletion was confirmed 
via quantitative Western blot analysis of the PCX 
knockdown cell lines (Supplementary Figure 4A, 4B). 
Cells were then treated with doxycycline to induce 
Sdhc gene rearrangement and evaluated for caspase 
substrate cleavage as a marker of apoptosis on day 9 
post doxycycline initiation (Figure 5F, 5G). Interestingly, 
apoptosis levels were not statistically different between 
experimental Sdhc fl/fl and control Sdhc fl/wt iMEFs 
indicating that SDH loss is not synthetically lethal with 
PCX knockdown in this iMEF model (Figure 5H). This 
result suggests that the prior observation of PCX synthetic 
lethality with SDH loss in a different model is not a 
universal characteristic of SDH-loss cell lines [30].

Testing chemical inhibitors of LDH in Sdhc-null 
iMEF model

The observation of synthetic lethality of LDHA loss 
and SDH loss suggested that inhibition of LDH enzymatic 
activity by commercially-available small molecules 
could result in preferential toxicity to SDHC-loss cells. 
To assess this, we performed drug titration assays using 
stable SDHC loss and control lines measuring differential 
cell viability between drug-treated and vehicle-treated 
cells with a standard assay. We tested two commercially-
available small molecule LDH inhibitors: oxamate and 
GNE-140 [35]. Both compounds showed robust cell 
killing in experimental cell lines (Figure 6). Importantly, 
both compounds were relatively non-toxic to control cells, 
even at high doses. This suggests that LDH inhibitors may 

have a large therapeutic window. These results confirm the 
conclusions of the lentiviral shRNA-mediated knockdown 
experiments, suggesting metabolic reliance upon LDH 
activity and vulnerability to LDH inhibition in SDHC loss 
cells. 

DISCUSSION

Development and phenotypic characterization of 
SDHC-loss iMEF model

In the current work, we developed a tet-inducible 
iMEF model with silencing gene rearrangement of the 
Sdhc floxed allele driven by doxycycline-dependent 
expression of cre-recombinase from a tet-inducible 
promoter. Using this model and an isogenic Sdhc fl/wt 
control cell line, we verified that our cell lines displayed 
robust Sdhc gene rearrangement, SDHC and SDHB 
protein loss, and accumulation of succinate following 
induction with doxycycline. 

Differential gene expression analysis

We show here that SDHC loss in iMEF cells results 
in differential expression of 161 genes, and additionally 
show that altered gene expression is negatively 
correlated with original gene expression value in the 
control cell line. We additionally show that genes having 
a baseline expression value < 6 RPKM tend to increase 
in expression in the context of SDHC-loss, while 
genes having expression > 6 RPKM tend to decrease 
in expression. This finding that patterns of SDHC-loss 
transcriptional change correlate with baseline expression 
values in normal cells has not previously been reported, 
and points to distinct transcriptional activating and 
repressing effects that operate on these gene subsets in 
the context of SDHC-loss. The basis for these disparate 
effects is not clear.

We also show a preferential impact of SDHC-loss 
on several key gene ontologies involved in antiviral 
response, innate immunity, disulfide bond formation, 
and extracellular matrix production. It is unclear to what 
extent altered expression of these cellular components 
accounts for a malignant phenotype in human PPGL, 
but it is intriguing to consider that altered expression of 
these components, and especially extracellular matrix 
components, could facilitate altered adhesion of a cell to 
its host tissue and enable increased motility, properties 
that are likely essential for malignant invasion of local 
structures and metastasis. 

Genome-wide DNA methylation analysis

Here we show that CpG site methylation information 
is sufficient to correctly classify specimens, and that this 
analysis intriguing suggests that the day 0 experimental 
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Figure 5: Testing synthetic lethality of LDHA and PCX depletion in the context of SDHC loss. (A) Schematics of relevant 
metabolic pathways, including glycolysis and the TCA cycle. (B) Diagram of experimental design for synthetic lethal testing. Experimental 
(Sdhc fl/fl) and control (Sdhc fl/wt) iMEFs are transduced with shRNA-expressing lentiviruses to generate stable knockdowns of LDHA or 
PCX. Stable knockdown lines are then treated with doxycycline to induce Sdhc gene rearrangement and then assessed for apoptosis induction 
at day 9 post doxycycline initiation. (C) Representative confocal microscopy images from LDHA knock-down experiment. (D) Quantitation 
of per cell mean caspase substrate activation, derived from CellProfiler automated image analysis of LDHA knock-down experiment. Vertical 
red line indicates threshold caspase intensity for classifying a cell as apoptotic. (E) Quantitation of percent of total cells found to be apoptotic 
in LDHA knock-down experiment. Brackets and asterisks indicate comparisons found to be statistically significant by Chi-Sq test (p-value < 
0.05). (F) Representative confocal microscopy images from PCX knock-down experiment. (G) Quantitation of per cell mean caspase substrate 
activation, derived from CellProfiler automated image analysis of PCX knock-down experiment. Vertical red line indicates threshold caspase 
intensity for classifying a cell as apoptotic. (H) Quantitation of percent of total cells found to be apoptotic in PCX knock-down experiment. 
Brackets and asterisks indicate comparisons found to be statistically significant by Chi-Sq test (p-value < 0.05).
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specimen is more similar to the control specimens than to 
experimental specimens at days 5–20. This suggests that 
significant differences in methylation state are driven by 
SDHC loss, and that these changes are relatively stable 
across the time-course. 

A major finding in our analysis is that the initial 
methylation value for individual CpG sites and promoters 
is correlated with the methylation difference observed 
upon SDHC loss. Sites with initially low methylation 
values tend to become hypermethylated, consistent 
with the currently-accepted model of succinate-induced 
inhibition of Tet enzyme activity. Counterintuitively, 
for sites with initially high levels of methylation, the 
opposite pattern is true. Sites with initially high levels of 
cytosine methylation tend to become hypomethylated in 
response to SDHC loss. We further show that this pattern 
is true both at the level of individual CpG sites and at the 
promoter level. The basis for this global hypomethylation 
of sites that are initially hypermethylated is unclear. 
SDHC loss in this cell model is therefore best described 
as inducing derangement of DNA methylation. This result 
differs importantly from the prior characterization of a 
hyper-methylator phenotype upon SDH loss. Our data 
would have supported such a hypermethylator phenotype 
if we had focused only on DNA sites that had initial low 
methylation.

We also demonstrate that SDHC-loss-attributable 
patterns of promoter methylation difference correlate both 
with patterns of SDHx-loss in human PPGL tumors, and 
also with patterns of SDHB-loss in imCCs, previously 

described by others. Perhaps unsurprisingly, we find that 
the difference correlations between SDHB-loss imCCs and 
SDHx-loss human PPGL tumors is higher than observed in 
the iMEF comparison, indicating that SDHB-loss imCCs 
may be a better model for approximating the epigenetic 
state and changes of human tumors. However, we were 
nonetheless successful in identifying a conserved subset 
of gene promoters that are hypermethylated across species 
and tissue types in the context of SDH-loss. This indicates 
that some aspects of global epigenomic derangement are 
conserved in response to SDH loss.

Global proteomic characterization of SDHC-loss 
iMEFs

Here we also present a global characterization 
of proteomic changes that occur in response to SDHC 
loss. This analysis features an isotopic labeling strategy 
and mass spectrometry quantitation of relative protein 
abundance between experimental and control cell lines, 
and was found to be highly reproducible between replicate 
experiments. This analysis revealed the unprecedented 
finding that translation-related proteins are dramatically 
down-regulated in the context of SDHC loss, suggesting 
an autophagy stress response. We also show that 
mitochondrial proteins are dramatically impacted, and 
that specific differences correlate with the pathways in 
which the various proteins are involved. Importantly, we 
show up-regulation of fermentation pathway components, 
including LDHB and ALDH2. Taken in conjunction with 

Figure 6: Testing LDH chemical inhibitors for lethality in Sdhc-loss context. Y-axis of plots reflects relative percent reduction 
of Alamar Blue for drug-treated cells relative to vehicle-treated cells of the same line. X-axis shows drug concentration on a log10 scale. Error 
bars show standard deviations calculated over N = 3 experimental replicates. Welch two sample t-test comparing viability of experimental 
and control lines at highest oxamate concentration yields p-values of 0.01 and 0.01 for experimental lines 1 and 7, respectively. Welch two 
sample t-test comparing viability of experimental and control lines at highest GNE-140 concentration yields p-values of 0.03 and 0.07 for 
experimental lines 1 and 7, respectively.  
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our previous published work showing that inhibition of 
alcohol dehydrogenase in yeast is synthetic lethal with 
SDH loss, this is additional evidence suggesting that 
fermentation is up-regulated in SDH-loss context. This 
suggested a potential metabolic vulnerability amenable to 
drug targeting.   

Metabolic vulnerabilities in SDH loss

SDH-loss PPGL exhibits an increased dependence 
on glycolysis for ATP generation and production of 
carbon skeletons for growth. In the absence of SDH, there 
is evidence for linear metabolic pathways rather than a 
conventional TCA cycle [17, 33, 36]. Thus, metabolic 
reprogramming in SDH-deficient tumors represents a 
potential therapeutic target. A prior high-throughput 
drug screen in SDH-loss yeast pointed to alcohol 
dehydrogenase, the fungal equivalent of mammalian 
lactate dehydrogenase, as synthetically lethal with SDH 
loss [28]. Here we used shRNA depletion of LDHA and 
PCX to probe synthetic lethality in the iMEF cell model 
of hereditary SDH-loss PPGL. In Sdhc fl/fl cells, LDHA 
inhibition showed profound synthetic lethality with SDH 
loss, with induction of robust cell death via apoptosis. 
Induced apoptosis in Sdhc fl/wt cells was significantly 
lower. In contrast, PCX knockdown did not exhibit 
synthetic lethality with SDH loss in these cells. Compared 
to previously published data [30] these data suggest 
differences in the underlying metabolism of the different 
cells lines studied. We conclude that Sdhc fl/fl iMEF cell 
lines show increased reliance on glycolysis for cell survival 
and proliferation. We further confirm that LDH is a point 
of metabolic vulnerability in SDH loss by performing 
drug studies examining the viability of experimental and 
control cell lines in the presence of varying amounts of 
oxamate or GNE-140, two commercially available LDH 
inhibitors. These studies revealed that chemical inhibition 
of LDH in SDH loss cells is lethal, whereas similar 
drug concentrations in the control cell line had little 
effect. Although it is doubtful that currently available 
LDH inhibitors such as oxamate or GNE-140 would 
be suitable for application in animals or humans due to 
limited potency, our studies suggest a rationale for further 
development of more potent molecules. In summary, our 
data on genetic synthetic lethality and drug testing suggest 
that SDH-deficient PPGL may be especially sensitive to 
lactate dehydrogenase inhibitors. 

MATERIALS AND METHODS

Generation of SDHC-loss iMEF lines

A tet-inducible conditional knockout SDHC mouse 
was bred using a gene trap construct obtained from the 
Sanger Institute and converted to a conditional floxed 

Sdhc exon 4 construct by FLP recombination. In this 
model, silencing gene rearrangement of the Sdhc floxed 
allele is driven by doxycycline-dependent expression of 
Cre recombinase from a tet-inducible promoter. 

Through routine mouse breeding, we generated Sdhc 
fl/fl;R26M2rtTA/M2rtTA animals (where fl refers to a 
construct with Sdhc exon 4 flanked by Cre recombination 
sites and R26M2rtTA refers to the reverse tetracycline 
trans-activator) and Sdhc flwt;TetOcre animals (where wt 
indicates the Sdhc wild type allele and TetOcre indicates 
tet-inducible cre-recombinase). We then crossed Sdhcfl/
fl;R26M2rtTA/M2rtT animals with Sdhcfl/wt;TetOcre 
animals to yield R26M2rtTA/wt;TetOcre;Sdhcfl/fl 
(experimental) and R26M2rtTA/wt;TetOcre;Sdhc fl/wt 
(control) genotypes and established MEF cell lines from 
day 13 mouse embryos. Genotypes of cell lines were 
characterized via PCR and cell lines were immortalized 
via SV40 virus.

Induction of Sdhc exon 4 rearrangement and 
time-course serial sampling

The established Sdhc fl/fl cell culture model and 
an isogenic Sdhc fl/wt control line were treated with 
doxycycline (1 µg/mL) to induce robust Sdhc gene 
rearrangement. Cell pellets used for experiments were 
derived at time of passaging by trypsinization, quenching 
with FBS, centrifuging to gently pellet the cells (500 rpm 
for 5 min at 4°C), and washing 2X with PBS prior to 
freezing at −80°C.

Sdhc rearrangement PCR

Genomic DNA was extracted from isolated wet cell 
pellets using the Qiagen Blood and Tissue kit (Qiagen cat# 
69504). 100–200 ng of DNA was amplified using PCR 
primers LJM-4429 (CTTAGAACTGATCCCCTGCCC) 
and LJM-5125 (CCTGGAACTAGAATTATTGATGGATG) 
at 300 nM concentration and PCR Master Mix (Thermo 
Fisher cat# K0171). Thermal cycling parameters include 
15 minutes at 95°C, 38X(30 seconds at 95°C, 90 seconds at 
58°C, 2 minutes at 72°C), 10 minutes at 68°C, followed by 
indefinite hold at 4°C. Sdhc floxed allele yields a product 
of 1774 bp, and the recombined allele gives an expected 
product of 560 bp.

SDHC and SDHB Western blot analysis

Loss of SDHB and SDHC proteins was confirmed 
by Western blot. Briefly, cells were lysed in RIPA buffer 
(50 mM Tris-HCl, 5 mM EDTA, 150 mM NaCl, 0.1% 
SDS, 0.5% DOC, 1% NP-40) on ice with gentle pipetting 
and vortexing. Lysates were centrifuged at 15,000 × g for 
5 min to pellet debris, and protein concentration of the 
supernatant was quantified by BCA assay. 20 micrograms 
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of total protein was then combined with reducing agent 
and LDS buffer and heated to 90°C for 5 minutes to 
denature the proteins. Samples were loaded onto a 10% 
bis-tris gel (NuPAGE, cat# NP0301BOX) and run at 130 V 
for 45 minutes using 1X MES-SDS as the running buffer. 
Blot transfer was conducted using PVDF membranes 
and NuPAGE transfer buffer containing 20% methanol 
at 30V for 90 minutes at 4°C. Transferred proteins were 
visualized on the membrane using Ponceau S stain, and 
membranes were cut using a razor blade. Membranes were 
then blocked for 1 hr at room temperature using blocking 
buffer consisting of 100 mL TBST and 3 g nonfat dry 
milk, and then washed 3X 5 min with 1X TBST. Solutions 
of primary antibodies were then prepared in antibody 
dilution buffer (2.5 mL 4% BSA, 250 microliters 0.5% 
NaAzide, 7.5 mL TBST). Antibodies used in this analysis 
include a SDHC polyclonal IgG antibody raised in rabbit 
(Santa Cruz Biotechnology, cat# sc-67256 (M-169), 1:500 
dilution), a SDHB polyclonal IgG antibody raised in rabbit 
(Invitrogen cat# PA5-21587, 1:1000 dilution), and actin 
polyclonal IgG antibody raised in rabbit (Sigma, cat# 
A2066, 1:500 dilution). The next day, primary antibody 
solutions were removed and membranes were washed 3X 
5 minutes with TBST at room temperature. Membranes 
were then incubated with secondary antibody (1:10,000 
dilution of anti-rabbit HRP antibody into blocking buffer) 
for 1 hr at room temperature. Membranes were then 
washed 3X 5 min with TBST, and then incubated with 
ECL Western blot substrate for 5 min at room temperature 
prior to imaging substrate fluorescence on the Typhoon 
fluorimeter. Band intensities of digital images were 
quantified using ImageQuant software, normalizing 
LDHA and PCX levels to ACTB.

TCA cycle metabolomics

Isolated cell pellets from the described time-course 
experimental design underwent targeted analysis of 
TCA cycle metabolites by GC-MS in the Mayo Clinic 
Metabolomics Core Facility. Quantified metabolite values 
were normalized to total protein abundance prior to 
downstream analysis and data visualization. The described 
analysis was performed in triplicate for each time point 
and cell line. 

Doubling time quantitation

Cell population doubling time for experimental 
and control iMEF lines was assessed as a function of 
time following induction of Sdhc gene rearrangement 
with doxycycline. The method of quantifying doubling 
time involved capturing several sets of images of marked 
positions on a T75 cell culture flask using a phase contrast 
microscope, with ~24 h time difference between image 
sets. For each set of images, the number of cells in the 
respective images was determined by automated detection 

of cell outlines in CellProfiler [34]. Cell population 
doubling time was calculated using the quantified cell 
numbers at the two time points and known time interval 
between measurements using the equation,
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where n1 and n2 are the cell numbers quantified at times 
t1 and t2, respectively. For each time point and cell line, 
this calculation was repeated for at least four pre-marked 
imaging fields. Results are presented as mean and standard 
deviation of the obtained measurements.

RNA-seq gene expression analysis

Cell pellets for Sdhc fl/fl and Sdhc fl/+ iMEF 
lines collected over the time series experiment were 
subjected to RNA extraction using the Qiagen RNeasy 
kit. Purified RNA was the submitted to the Mayo Clinic 
Medical Genome Facility for indexing and preparation 
of deep sequencing libraries using the Illumina TruSeq 
mRNA v2 kit, followed by deep sequencing on a 
HiSeq 4000 instrument, multiplexing 8 samples per 
lane and performing 100 sequencing cycles. Following 
sequencing, reads belonging to individual experiments 
were deconvoluted on the basis of unique sequence 
barcodes. Deconvoluted sequence read data for individual 
experiments are available from the NCBI sequence read 
archive (SRA) under identifier SRP117182. 

Paired end sequence reads were then aligned to the 
mm9 mouse reference genome using the Bowtie fast read 
aligner [28] and the Mayo Clinic Research Computing 
Facility Beowulf-style Linux cluster. SAM files were then 
converted to BAM file format using SAMtools [37], and 
FPKM quantitation of individual transcript abundance was 
performed using R package systemPipeR [38], available 
through the Bioconductor project. The resulting processed 
gene expression datasets are available via NCBI Gene 
Expression Omnibus (GEO) under entry GSE103662.

RRBS analysis of genome-wide DNA methylation 
patterns

Cell pellets for Sdhc fl/fl and Sdhc fl/wt iMEF lines 
collected over the time series experiment were subjected 
to DNA extraction using the Qiagen Blood and Tissue kit. 
Purified genomic DNA was then submitted to the Mayo 
Clinic Medical Genome Facility for subsequent bisulfite 
conversion, indexing and preparation of paired-end deep 
sequencing libraries, followed by deep sequencing on 
a HiSeq 4000 instrument, multiplexing 8 samples per 
lane and performing 100 sequencing cycles. Following 
sequencing, reads belonging to individual experiments 
were deconvoluted on the basis of unique sequence 
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barcodes. Deconvoluted sequence read data for individual 
experiments are available from the NCBI sequence read 
archive (SRA) under identifier SRP117088. 

Sequence reads were then aligned to the mm10 
mouse reference genome using the Bismark bisulfite read 
mapper [39] and the Mayo Clinic Research Computing 
Facility Beowulf-style Linux cluster. Methylation calling 
was performed using the Bismark methylation extractor 
utility, and CpG context-specific methylation status 
of individual sites was extracted using the Bismark 
bismark2bedGraph utility.  

Bismark .COV files were then used in downstream 
filtering and analysis performed in R using the package 
RnBeads [40]. In brief, the data was filtered to remove 
sex chromosomes, CpG sites with exceptionally high 
coverage, CpG sites with no methylation information, and 
CpG sites having exceptionally low standard deviation 
in beta value across samples. Differential methylation 
analysis at the CpG site level was performed in RnBeads, 
grouping all Sdhc fl/wt samples into the control group, and 
including Sdhc fl/fl samples, except for the day 0 sample, 
in the experimental group. Beta values for individual 
CpG sites, as well as averaged beta values for CpG sites 
mapping to annotated GpG islands and promoters (1.5 kb  
upstream and 500 bp downstream of annotated TSS) 
were exported for downstream exploratory analysis. 
The resulting processed DNA methylation datasets are 
available via NCBI Gene Expression Omnibus (GEO) 
under entry GSE103609. 

Average differences in site-specific, CpG island-
specific, and promoter-specific methylation beta values 
were calculated by subtracting the methylation values 
of the Sdhc fl/wt iMEF line (control) from the Sdhc fl/fl 
iMEF line (experimental).

Correlative analysis of iMEF DNA methylation 
patterns with imCCs and human PPGL tumors

Processed Bismark .COV files describing DNA 
methylation change in SDHB-loss immortalized mouse 
chromaffin cells (imCCs) were downloaded from NCBI 
GEO entry GSE43298. This dataset has been described 
previously [33]. Data were handled in RnBeads using 
the same methods as used to process iMEF RRBS data 
to produce methylation beta value quantitations. Average 
differences in promoter-specific methylation beta values 
were calculated by subtracting the mean methylation 
values of the SDHB-wt imCC line (control) from the 
SDHB-loss imCC line (experimental).

Datasets measuring DNA methylation in biopsied 
human PPGL tumors via Illumina HumanMethylation450 
BeadChip were obtained from ArrayExpress under entry 
E-GEOD-43298. This dataset has also been described 
previously [33]. Average beta values for SDHx tumors and 
all other tumors were calculated in R. Average differences 

in promoter-specific methylation beta values were 
calculated by subtracting the mean methylation values 
the CpG island nearest to a given TSS of the non-SDHx 
PPGL tumors (control) from the SDHx PPGL tumors 
(experimental).

Correlative analysis of methylation differences 
observed in SDHC-loss iMEFs, SDHB-loss imCCs, 
and SDHx-attributable PPGL tumors was performed in 
R.  Analysis of functional term enrichment in subset of 
genes observed to have promoter hypermethylation (beta 
difference > 0.05) across all three contexts was performed 
using the DAVID functional annotation database [31].

Generation and characterization of stable LDHA 
and PCX knockdown lines

The lentiviral non-targeted TRC1and1.5 shRNA and 
shRNA plasmids against LDHA and PCX were purchased 
from Sigma-Aldrich. Clone names for LDHA knock-
down constructs were NM_010699.1-1484s1c1 (LDHA8), 
NM_010699,1-434s1c1 (LDHA9), NM_010699,1-
537s1c1 (LDHA10), NM_010699.1-603s1c1 (LDHA11), 
and NM_010699.1-822s1c1 (LDHA12). Clone names 
for PCX knock-down constructs were NM_008797.1-
1057s1c1 (PCX13), NM_008797.1-1456s1c1 (PCX14), 
NM_008797.1-190s1c1 (PCX15), NM_008797.1-2986s1c1 
(PCX16), and NM_008797.1-3805s1c1 (PCX17). To 
generate stable knockdown LDHA and PCX cell lines, 
lentiviral infections were carried out as previously described 
[20]. Transduced cells were incubated with medium 
containing 35 µg/mL puromycin (selection medium) for 48 
h before being used for further experiments. Loss of LDHA 
and PCX were confirmed via Western blot analysis. 

Cell lysis and protein digestion

SDH WT and KO cells were lysed with buffer 
containing 9M urea in PBS (pH 7.2), 50 mM nicotinamide, 
25 mM sodium butyrate and HALT protease inhibitor 
cocktail (Thermo Fisher). Proteins were reduced with  
5 mM TCEP and alkylated with 5 mM iodoacetamide as 
previously described [41]. Equal amounts of heavy- and 
light-labeled proteins were mixed and then diluted by 
six-fold with PBS. Proteins were digested with trypsin 
(enzyme to substrate ratio 1:50, w/w) overnight at room 
temperature. Proteins were digested again with trypsin 
(enzyme to substrate ratio 1:100, w/w) for three h at room 
temperature to complete digestion. Peptide desalting was 
performed with the Sep-pack C18 cartridge (Waters) 
according to manufacturer’s directions.

SCX fractionation

Peptides were pre-fractionated and desalted 
according to a previously described method [42]. For pre-
fractionation, peptides were loaded into stage-tips packed 
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with Empore Cation Exchange-SR membranes (3 M). 
The membrane was washed with 0.1% formic acid and 
the peptides were successively eluted with six buffers 
containing 20% acetonitrile (v/v), 0.1% formic acid (v/v) 
with concentrations of 50, 75, 125, 200, 300 and 500 mM 
NH4OAc. The peptides from each fraction were collected 
and desalted with C18 Stage-tips and subsequently dried 
in a Speed-Vac (Thermo Fisher).

LC-MS/MS measurement

Desalted peptides were resolubilized with HPLC 
buffer A (0.1% formic acid, v/v) and loaded onto a self-
prepared C18 column (15 cm × 75 µm, ReproSil-Pur Basic 
C18, 2.5 µm, Dr. Maisch GmbH). Peptides were analyzed 
with a Proxeon Easy nLC 1000 Nano-UPLC system and 
an Orbitrap Fusion mass spectrometer (Thermo Fisher). 
Peptides were separated with a 56-min linear gradient of 
5–30% acetonitrile (v/v) in 0.1% formic acid (v/v) with a 
200 nL/min flow rate. Full MS was acquired at a resolution 
of 60,000 and covered a mass range of m/z 300–1500. The 
MS data were acquired in a data-dependent manner, giving 
priority to the most intense precursor ions. Precursor ions 
were fragmented with collision dissociation (CID) with 
35% collision energy for ion trap detection.

Raw proteomic data processing

Raw MS/MS spectra data was processed by 
MaxQuant (v 1.4.1.2) for protein quantification against 
the Uniprot mouse database (downloaded on 2013/09/27 
with a total of 43310 sequences). The fixed cysteine 
carbamidomethylation modification and the variable 
modifications of methionine oxidation and protein 
N-terminal acetylation were specified. The proteolytic 
enzyme, trypsin, was selected, permitting a two missing 
cleavages. Multiplicity was set to two. R6 and K6 were 
specified as heavy amino acid labels with a maximum 
of three labeled amino acids per peptide. Default values 
were included for the rest of the search parameters. The 
precursor ion and fragment ion mass tolerance was set at 
4.5 ppm and 0.5 Da respectively. The database search was 
filtered to achieve a 1% False Discovery Rate (FDR) at 
peptide, protein and modified site level. The minimum 
Andromeda score for modified peptides was set at 40. The 
mass spectrometry proteomics data have been deposited 
to the ProteomeXchange Consortium via the PRIDE [43] 
partner repository with the dataset identifier PXD007874.

Testing synthetic lethal interaction of SDHC with 
LDHA and PCX

Confocal microscopy images from LDHA and PCX 
knockdown experiments were assessed in replicates on day 
9 post doxycycline initiation. CellEvent caspase 3/7 activity 
detection reagent (catalog number C10423, from Invitrogen; 

final 5 µM caspase reagent) was added to the media in the 
well of a 96-well plate. The plate was incubated for 30 min 
at 37°C. Media were aspirated and 3.7% formaldehyde 
solution was added to the wells. The plate was incubated at 
room temperature for 15 min. Formaldehyde solution was 
aspirated and DAPI solution (catalog number 10236276001, 
10 mg; final 5 µg/mL) was added to the wells. The images 
were obtained with a confocal microscope. Quantitation 
of per cell mean caspase substrate activation was derived 
from CellProfiler automated image analysis. Quantitation 
of percent of total apoptotic cells in LDHA and PCX knock-
down experiments was compared by Chi-Sq test to detect 
statistical significance. 

Generation of stable SDHC-loss iMEF lines

Following induction of Sdhc gene rearrangement in 
Sdhc fl/fl and Sdhc fl/wt iMEF lines for 5 d, cells were 
diluted into DMEM containing penicillin/streptomycin 
antibiotics (0.5 mg/mL), non-essential amino acids 
(100 micromolar each of glycine, alanine, asparagine, 
aspartic acid, glutamic acid, proline, and serine), sodium 
pyruvate (1 mM), and HEPES buffer (10 mM), and then 
seeded into 96 well plates at a low density so as to achieve 
single cells per well. Plates were then incubated at 37°C 
for 2 weeks prior to visually screening wells to identify 
clonal populations of cells. Clones were then progressively 
expanded into 12-well plates and T25 flasks, using the 
same media. Small numbers of cells from each clone 
were subjected to DNA extraction and PCR analysis of 
Sdhc gene rearrangement status. Clones demonstrating 
homogenous Sdhc rearrangement were subsequently 
expanded and used in chemical inhibitor assays.

Testing effects of LDHA chemical inhibitors in 
SDHC-loss iMEF lines

For drug studies testing metabolic vulnerability 
of LDH inhibition, 13.5E6 cells from stable SDHC loss 
and control iMEF lines were plated into wells of a 96 
well plate in 100 microliters of phenol red-free DMEM 
media containing penicillin/streptomycin antibiotics 
(0.5 mg/mL), non-essential amino acids (100 µM each 
of glycine, alanine, asparagine, aspartic acid, glutamic 
acid, proline, and serine), sodium pyruvate (1 mM), and 
HEPES buffer (10 mM). Cells were allowed to adhere 
to the plate overnight prior to drug exposure. Oxamate 
was obtained from Sigma Aldrich. GNE-140 was kindly 
provided by Genentech, and has previously been described 
[35]. Oxamate was dissolved in water and GNE-140 was 
dissolved in DMSO. Drugs were then serially diluted 
and added to plates. The final concentration of DMSO in 
media of GNE-140-treated cells was 1%. Plates were then 
incubated at 37°C for 3 d, at which point 10 µL Alamar 
Blue (Thermo Fisher) cell viability reagent was added to 
each well. Plates were incubated for 36 h prior to taking 
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absorbance measurements at 570 and 600 nm. Amount of 
reduced Alamar Blue was calculated using the obtained 
absorbance measurements and the following equation, 

AR A A XRo570 570 600= − ( )
where AR570 is the amount of reduced Alamar Blue, A570 
and A600 are the absorbance measurements at 570 and 
600 nm, respectively, and Ro (0.69) is the empirically-
determined ratio of A570 and A600 absorbances for Alamar 
Blue in media with no cells. Percent difference in Alamer 
Blue reduction was then determined between drug-treated 
cells and vehicle-treated cells for each tested cell line. 
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PGL: paraganglioma; PCC: pheochromocytoma; 
PPGL: pheochromocytoma and paraganglioma; SDH: 
succinate dehydrogenase; SDHC: succinate dehydrogenase 
subunit C; SDHB: succinate dehydrogenase subunit B; 
SDHx: any succinate dehydrogenase subunit; LDH: lactate 
dehydrogenase; LDHA: lactate dehydrogenase form A; 
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