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Abstract
Optimizing the workflow of a complex organization such as a hospital is a difficult task. An accurate option is to use a real-
time locating system to track locations of both patients and staff. However, privacy regulations forbid hospital management
to assess location data of their staff members. In this exploratory work, we propose a secure solution to analyze the
joined location data of patients and staff, by means of an innovative cryptographic technique called Secure Multi-Party
Computation, in which an additional entity that the staff members can trust, such as a labour union, takes care of the staff
data. The hospital, owning location data of patients, and the labour union perform a two-party protocol, in which they
securely cluster the staff members by means of the frequency of their patient facing times. We describe the secure solution
in detail, and evaluate the performance of our proof-of-concept. This work thus demonstrates the feasibility of secure
multi-party clustering in this setting.

Keywords Secure multi-party computation · Hospital · Workflow optimization · Privacy · Real-time locating system ·
Clustering · k-means

Introduction

Hospitals are highly complex organizations typically involv-
ing a toxic combination of unpredictable patient flows and
limited staffing and equipment resources. Achieving the
Quadruple Aim (which aims to simultaneously improve
Patient Experience, Population Health, Cost of Care and
Provider Well-Being [28]) under such challenging condi-
tions, often drives senior healthcare management to find
every opportunity to optimize resources within the hospital.

A common approach taken by hospitals to optimize
workflows is to hire consultants who interview and shadow
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key stakeholders and patients in order to develop an
accurate picture of how the targeted department/hospital is
functioning. A well-known drawback of such an approach
is that individuals tend to change their behavior due to
their awareness of being observed (a phenomenon known
as the Hawthorne effect [36]). In addition, such manual
observations only allow for point measurements, as it
is impossible for any group of visiting consultants to
accurately capture the operational characteristics of all key
individuals in a department at any given time. Interviews are
also unable to accurately capture data, as people often report
their perception of events rather than facts.

Some hospitals approach this problem with a data-
driven strategy. This involves going through the time-
stamps entered in various hospital IT systems, e.g.
in Electronic Health Record (EHR) systems, Staffing
Information Systems, Laboratory Information systems, etc.
While this is a better strategy than simply depending on
manual observations, the data entered into hospital IT
systems is highly susceptible to data quality issues [9, 24,
34]. Optimizing hospital workflows based on such noisy
data can lead to erroneous outcomes [37].

One option is to use a Real-Time Locating System
(RTLS) to help address the problem of inaccurate time-
stamps. An RTLS consists of tags that can be placed on
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patients, staff and assets. The tags allow the locations of all
tagged entities to be tracked at high spatial and temporal
(e.g. every few seconds) resolution throughout the defined
area of interest (e.g. within a hospital department). The real-
time streaming data can also be used to automatically and
accurately label many events. For example, a tagged patient
would allow the system to accurately label when a patient
has moved into a particular exam room. Similarly, a tagged
nurse could be used to determine how many times the nurse
has moved back and forth between two rooms of interest.
Patient and staff location information can then be combined
and plugged into certain common data mining algorithms
(e.g. k-means clustering, sequential pattern analysis, or
market basket analysis) to analyze the utilization patterns of
various hospital rooms and to highlight any abnormalities
that might exist. Such information can subsequently be used
to identify bottlenecks and thus optimize workflows.

Under current hospital practices, hospitals routinely
monitor staffing logs which describe which members of
staff are on duty at any point in time; such information
is critical for running a hospital. However, fine-grained
location data of staff members is not currently considered
routine in hospitals. Moreover, location data is considered as
personal data in Europe under the newly established GDPR.
This means that it is essential for a hospital to be completely
transparent about what data is collected about individuals
and gather permission from them prior to collecting and
using the data; on the other hand, in order to perform
effective and accurate workflow analysis based on location
data, it is essential to have a high degree of participation
from staff members. With hospital boards under constant
pressure to improve productivity, sharing real-time location
data of staff members with higher management could be
considered to be a step too far. Such fear could greatly
limit the number of participants who agree to sharing their
location information. Moreover, privacy regulations such as
GDPR, when it comes to dealing with patient records, mean
that hospitals are not allowed to send any data beyond their
physical boundaries.

A traditional approach in this case would be for the
hospital to hire a trusted third party that collects all RTLS
data, and outputs the clustering results. This party would be
obliged, by contract and law only, not to disclose the RTLS
data. However, the especially sensitive type of data involved
would require expensive security measures. Furthermore,
having all data at one single place increases the risk of
information leakage. This makes it highly challenging to
perform any kind of workflow optimization by analyzing
these separate patient and staff RTLS data streams jointly.

In order to address this problem, this exploratory
paper demonstrates how Secure Multi-Party Computation
(shortened as MPC) can be used to allow data mining
algorithms, such as k-means clustering, to be performed

on two separate RTLS data streams: one generated by
tagged patients, and the other by tagged hospital staff, while
maintaining the privacy of all individuals. The location
information of patients will only be made accessible to the
hospital, while the location information of staff members
will only be accessible to the staff members themselves,
or to the labour union that represents them; labour unions,
having the goal to represent the interests of all staff
members of the hospital, are effectively the only body
that can collectively act on behalf of all the nurses in a
hospital.1 By splitting sensitive location information into
two parts (patients and staff), each part being handled by a
suitable independent party (hospital and labour union), we
avoid any party gaining location information that they are
not supposed to learn. Such a scheme allows the hospital
to derive insights using both patient and staff RTLS data
streams, without having access to individual location data
streams of its staff members. The labour union makes
secondary use of location data of its members (i.e., the
hospital staff) impossible.

More concretely, we show the feasibility of this approach
with a demonstrator that clusters nurses based on their
patient facing time. This is motivated by the fact that
hospital departments generally have some expectations in
terms of how they should operate: for instance, in a hospital
ward, patients typically arrive from different parts of the
hospital with medical conditions of various type and of
various degree of seriousness. As a consequence, nurses
may be given different tasks and be requested to assist
patients of a given ‘type’, where a type can indicate the
medical condition of a patient or its seriousness. Clustering
nurses, i.e. assigning them to separate sets based on the
frequency and duration of interactions with patients of
different types, can assist hospitals in determining whether
nurses are indeed behaving as expected. Unexpected
behavior may be a sign of sub-optimal workflow (e.g.,
signaling how other tasks prevent nurses from focusing
on the assigned patients), and may thus lead to further
investigation on the part of the hospital. For the proof-
of-concept described in this article, we focused on k-
means clustering, due to its popularity and its relative
conceptual simplicity; k-means clustering is commonly
used, for instance, when performing workflow analysis [23,
29, 35].

We stress the fact that the usage of RTLS in this setting
is still in its infancy, and precise requirements are thus
yet to be determined; in particular, it is still unclear at

1We make the remark that our solution can also accommodate for the
case of several labour unions, up to a natural extension of the steps
described in “Constructing the table” and “Secure table construction”.
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this point which data analysis algorithm can give the best
insight in hospital workflow. We believe that the solution we
present could also potentially help in clarifying needs and
goals for an RTLS-based hospital workflow analysis, with
k-means clustering of nurses based on patient facing times
constituting a first use-case.

In the remainder of this section, we introduce the concept
of secure multi-party computation, and give an overview of
related work. In “Details of the computation” the details of all
computational steps are explained, and in “Secure solution”
it is shown how these could be performed securely. The perfor-
mance results are shown in “Implementation and results”,
and we end with the conclusions.

Securemulti-party computation

The idea of MPC is that different mutually-distrusting
parties compute the output of a certain function or
computation, depending on private inputs of each party,
without actually revealing information on their inputs. MPC
has been introduced by Yao in the 1980s [39], and has led
to a new flourishing research area yielding secure solutions
for a large number of applications. Although efficiency
was often a bottleneck, various implementation frameworks
for MPC have appeared, especially during recent years,
incorporating the latest technical accelerations, bringing
applications towards practice [25].

To illustrate how the seemingly impossible requirements
of MPC can be met, we briefly discuss a paradigm for
constructing MPC protocols, which is widely used by the
most recent generation of MPC frameworks. This paradigm
is referred to as share-compute-reveal, and works in three
phases: first, the input data is ‘secret-shared’ between the
different parties, then a secure computation of the function
is performed, and finally the output is revealed to the
authorized party. All sensitive (intermediate) values are
secret-shared, which means that each party obtains a non-
revealing part of the data, called share, and the actual secret
can only be obtained after combining all shares.2 Therefore,
the data is secure as long as not all parties collude, and
the parties can securely compute the desired function with
sensitive information. Once the output has been securely
computed, the parties can jointly reveal it; this means
that the output of the computation is the only information
learned by the parties.

Various applications of MPC in the medical domain
have been presented, e.g., privacy-preserving data mining
for joint data analysis between hospitals [26], branching

2Thus ‘sharing’ is here by no means a synonym of ‘revealing’:
secret-sharing can actually be seen as a strong form of distributed
encryption.

programs for privacy-preserving classification of medical
ElectroCardioGram signals [7], and also secure disclosure
of patient data for disease surveillance [20], R-based
healthcare statistics [15], and privacy-preserving genome-
wide association studies [11].

Related work

The potential benefits derived from using real-time locating
systems in hospitals and other healthcare facilities have
been presented in several papers [6, 8, 19, 30]. The
security and privacy implications of pervasive data analysis
techniques for healthcare, moreover, are widely discussed
in the scientific community; see e.g. [1, 2] for some surveys
on the topic.

To the best of our knowledge, this is the first paper
that studies the usage of MPC for secure hospital
optimization. However, other privacy-preserving techniques
for healthcare data analysis have been presented in [32],
and several MPC techniques for secure data analysis, and
clustering in particular, have been presented in the past
few years [3, 4, 10, 14, 21, 22, 27]. These MPC-based
works differ from our approach in that they are set in
the so-called ‘honest-but-curious’ model, where security is
only guaranteed as long as parties follow the instructions
of the protocol, while our solution is also secure in the
‘malicious’ model where one (or several) parties deviate
from the instructions of the protocol.

Another important difference is that previous works on
secure clustering assume that data is partitioned between
parties, either horizontally (meaning that different data
points will be owned by different parties) or vertically
(meaning that each party only holds specific attributes of
any data point). Our assumptions and requirements are
different, as the data to be clustered is sensitive information
that should remain hidden from both parties; a securely-
distributed version of it — or, formally, a secret-shared
version of it — is thus constructed in a first step of
our solution (cf. “Secure solution” for details). Although
showing the feasibility of secure clustering for hospital
optimization is the main contribution of this manuscript, we
thus believe the secure-clustering protocol itself to be of
independent interest.

Unlike some of the related work mentioned above,
we use secret sharing instead of (additive) homomor-
phic encryption. The main disadvantage of homomorphic
encryption is that it leads to big overheads, because cipher
texts need to be large for security reasons, which induces
considerable computational efforts, and large amounts of
communication. On the other hand, secret shares can be
much shorter, and secure frameworks based on them (see
“The MPC framework of our choice: SPDZ”) have been
recently developed, which are quite efficient.
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Details of the computation

In this section we give a precise description of the algorithm
that we wish to compute. We stress the fact that what is
described here is the ‘plaintext’, or ‘unsafe’ computation,
where privacy-sensitive data of patients and staff members
is used. We show in “Secure solution” how to securely
compute the functionality described in this section.

As informally described in the introduction, the input
of the clustering algorithm is given by the RTLS data,
which gives a snapshot of the hospital every few seconds,
identifying where each patient and each staff member is at
a given moment. The algorithm uses this input to cluster
nurses according to the frequency and length of interactions
with patients (the so-called nurse-patient facing time).
Focusing on this concrete use-case, we will henceforth
speak of ‘nurses’ instead of more generic ‘staff members’.

In order to realize this functionality, we developed a two-
step algorithm: first, we construct a table that combines
the RTLS data from the hospital and the labour union, and
secondly, k-means clustering is applied to this table.

We describe the two parts of the computation in more
detail in the following sections. The parameters used in the
computation are listed in Table 1.

Constructing the table

Since the hospital and the labour union each own a part of
the RTLS data, which is needed to determine and compare
the behaviour of the nurses, the first step of the computation
is to combine these data. The outcome of this step is a table
that associates each nurse to an array, indicating frequency

Table 1 Parameters

Parameter Description

Nn number of nurses

Np number of patients

Nptype number of patient types

nID nurse ID

tagID tag ID

zID zone ID

time time record

tagRole person role tag

nP set of nurse periods

pP set of patient periods

st starting time of a period

et end time of a period

Ntimebins number of time bins

TB array with time bin boundaries

ov overlap between interaction periods

ovbin time bin indicator of overlapping periods

Table 2 Structure of raw RTLS data

Tag Role Time stamp Zone

tagID1 tagRole1 time1 zID1

tagID2 tagRole2 time2 zID2

. . . . . . . . . . . .

and length of her/his interactions with patients, which can
be used as input for a clustering algorithm.

As mentioned in the introduction, both the hospital and
the labour union receive RTLS data, which consists of a
series of rows formatted as defined in Table 2.

The tag tagID is the unique identifier assigned to each
tag, while the role tagRole defines whether the tag belongs
to a nurse or a patient; as stated in the introduction, what is
crucial for the privacy of our solution is that the hospital will
receive only rows with tag roles for patients, and the labour
union will receive only rows with tag role ‘nurse’.

The tag role also serves another goal, namely, it differ-
entiates between various patient types. Indeed, patients are
divided into Nptype ‘types’, according to the nature and
severity of their medical condition; types could thus denote,
for instance, terminally ill patients, or patients suffering
from a heart attack. Each row of the table means that the
individual with tag tagID was in a zone with identifier zID
at time time, where tagRole gives additional information on
the individual (role and patient type, if applicable).

As a preliminary step, both the hospital and the labour
union locally pre-process their RTLS data. The goal of
this pre-processing is to obtain for each nurse (resp.
patient) what we call his/her period data, where periods are
continuous stretches of time where the nurse (resp. patient)
remained in one zone. Formally, period data is formatted
as in Table 3, where each row means that a nurse (resp.
patient) with tag tagID, and with tag role tagRole, remained
in zone zID from time st to time et. In general, there will be
several rows with the same tagID, since patients and nurses
move around the hospital, and the table of the hospital
(resp. labour union) will only contain rows corresponding
to patients (resp. nurses), as they only have access to RTLS
data of this type.

Following this pre-processing, the hospital and the labour
union collaborate with each other in order to obtain a shared

Table 3 Structure of individual pre-processed RTLS data

Tag Start time End time Zone Role

tagID1 st1 et1 zID1 tagRole1

tagID2 st2 et2 zID2 tagRole2

. . . . . . . . . . . . . . .
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table, which assigns to each nurse an array indicating how
many interactions of a given length the nurse had with
patients of given type (cf. Table 4).

Notice that for simplicity, Table 4 only shows two patient
types (‘A’ and ‘B’); entries denoted by � are aggregates,
indicating how many times the nurse nIDi was in the same
zone as a patient of the specified type (‘A’ or ‘B’) for a
period of time within the specified ‘time-bin’ (less than 10
seconds, between 10 and 30, and so on).

Algorithm 1 specifies how to compute Table 4 from the
two tables of patient/nurse data owned by the hospital and
the labour union. In Algorithm 1, pP indicates the number
of patient periods, i.e., the number of rows of the table
owned by the hospital (cf. Table 3). For each i = 1, . . . , pP,
we denote the i-th row of the table owned by the hospital
by (. . . , sti , eti , zIDi , . . . ), and similarly for the nurse data
owned by the labour union.

K-means clustering

The computation described above associates each nurse to
an array of non-negative integers, where each entry specifies
how many interactions of a given length the nurse had with
patients of given types (cf. Table 4).

Clustering, a branch of unsupervised machine learning,
offers a way to extract valuable information from this data:
informally speaking, it allows us to find a partition of the
set of nurses into disjoint sets, or clusters, in such a way
that ‘similar’ nurses (i.e., with a ‘similar’ associated array)

belong to the same cluster, while ‘dissimilar’ nurses belong
to different clusters.

We focus on k-means clustering, widely used due to its
relative simplicity and applicability to large data sets [33].
The k-means algorithm works as follows: denote by y(i) ∈
R

m (where m = Ntimebins · Nptype) the vector, or
data point, associated with the i-th nurse for every i =
1, . . . ,Nn, and let S denote the list (y(1), . . . , y(Nn)) (i.e., the
list consisting of the rows of Table 4). While various notions
of similarity between data points can be defined, k-means
clustering typically assumes that a distance d is defined over
the vector space the data points belong to; we assume for
simplicity that d is the Euclidean distance, which is the most
common case in k-means clustering.

Formally, the goal of k-means clustering is to find a
partition (S1, . . . ,Sk) of the list S of data points, i.e.,
S = S1 � · · · � Sk , so as to minimize the quantity∑k

j=1
∑

y∈Sj
d(y, μj )

2, where μj denotes the arithmetic
mean of the points belonging to the j -th cluster.

Exact k-means clustering is, in fact, an NP-hard
problem [33]; for this reason, an approximate iterative
algorithm sometimes called Lloyd’s algorithm, presented
below in Algorithm 2, is typically used instead. This
algorithm is so ubiquitous that it is often referred to as the
k-means clustering algorithm, a convention that we will also
adopt.

The output of Algorithm 2 does not encompass the centroid
values: this is due to our MPC-motivated approach, since
the centroids may reveal sensitive information. We also
remark that the description of Algorithm 2 only provides
a skeleton of the actual k-means algorithm, as it does not
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Table 4 Nurse-patient facing
times Patient Type A Patient Type B

nID 0-10 10-30 30-60 >60 0-10 10-30 30-60 >60

nID1 � � � � � � � �

nID2 � � � � � � � �

. . . . . . . . . . . . . . . . . . . . . . . . . . .

specify how to sample the initial centroids, and does not
handle some degenerate cases which make the algorithm ill-
defined (notably, it implicitly assumes that clusters are never
empty). Several approaches are possible to fill these gaps
and obtain a fully-fledged specification of k-means; in the
following section, we will detail the solution of our choice,
highlighting the reasons that led us to select them.

Secure solution

In order to develop a secure solution, we make use of
MPC schemes based on so-called secret sharing techniques.
The owner of each entry x of Table 3 uploads this entry
as a secret, shared between the hospital and the labour
union. We denote the resulting secret-shared value by 〈x〉;
such a secret-shared value consists of two shares, x1 and
x2, held by the hospital and the labour union respectively.
The fundamental property of this secret-sharing process is
that a single share xi gives no information whatsoever on
the original value x, but the two parties can cooperate to
perform computations on secret-shared data and, if required,
jointly reconstruct the value of a secret-shared element.

The secret-sharing-based framework of our choice,
SPDZ (cf. “The MPC framework of our choice: SPDZ”),
ensures that our solution is secure under the assumption
that the involved parties are restricted to polynomial-time
computation, and safeguards the privacy of each party’s
input and the correctness of the result even if one of the
parties actively cheats and does not follow the instructions
of the protocol.3

In our setting (cf. “Details of the computation”), the
secure computation on the secret-shared data consists of two
parts, each being explained in more detail further on:

A. A secure computation of the table consisting of facing
times frequencies per nurse (see Table 4).

B. A secure clustering of the nurses, based on this table.

Prior to the secure computation of the table, both parties
need to locally transform their RTLS data into a series of time

3In this case, however, it is not guaranteed that the honest party will
obtain output: they might only detect that cheating occurred, and have
at that point no other option than to abort the protocol.

intervals per zone (see also “Constructing the table”), as
illustrated in Table 3. Since this does not require combining
data of patients and nurses, there is no security issue: parties
can perform this processing locally, and we therefore do not
further discuss this preliminary step.

Secure table construction

The input of the first step of the computation is given by a
secure variant of Table 3, where all entries have been secret-
shared between the two parties. In order to obtain a table of
nurse-patient facing times, we need to translate Algorithm 1
to the encrypted domain — namely, we need to specify how
all steps of Algorithm 1 can be performed on secret-shared
data.

As a first step, we discuss the translation to the encrypted
domain of basic operations:

Sum and multiplication: these can be directly computed
on secret-shared inputs by secret-sharing based MPC
protocols [12]. The same also holds with addition and
sum between a secret-shared input and a public constant.

Secure comparison: securely checking whether a < b for
secret-shared values 〈a〉 and 〈b〉 can be performed by any
secure comparison protocol [12], given the above basic
operations. We do not describe here how this is exactly
performed by an MPC protocol, and denote the output of
a secure comparison as follows:

〈(a ?
< b)〉, where (a

?
< b) =

{
1 , if a < b,

0 , otherwise.

Similarly, one can securely compute a secret-shared bit

〈(a ?≥ b)〉 that expresses whether a ≥ b, or not.
Minimum and maximum computation: given a secret-

sharing of ε = (a
?
< b), the minimum (resp. maximum)

between two secret-shared values a and b can be readily
computed by means of the above operations:

〈min(a, b)〉 = 〈a〉 · 〈ε〉 + 〈b〉 · (1 − 〈ε〉) ,

and similarly for the secure maximum function.
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With these building blocks in place, Algorithm 1 can be
translated to the secure domain; the overall description can
be found in Algorithm 3.

Secure k−means clustering

After the above step has been performed, we thus obtain
a (secret-shared) table that associates to each nurse a
secret-shared data point (vector)

〈
y(i)

〉
expressing how many

interaction periods of a given length, and with a patient of
given type, the i-th nurse had.

To perform secure k-means clustering over secret-shared
data, we construct a membership matrixM ∈ N

Nn×k , where
Mij = 1, if the i-th data point belongs to the j -th cluster,
and Mij = 0, otherwise. The idea is then to keep M secret-
shared, and only to reveal it at the last step of the clustering
algorithm.

With this concept in mind, one can then transpose the
‘skeleton’ k-means Algorithm 2 to an MPC setting: the key
points of the iterative steps are presented below.

Distance computation: since sums and multiplications
can be directly computed, we can securely compute the
(secret-shared) value
〈
d2

(
y(i), c(j)

)〉
=

∑

�=1,...,m

(〈
y(i)
�

〉
−

〈
c(j)

�

〉)2

for each nurse y(i) and each cluster (with centroid) c(j).
Cluster assignment: by making use of a secure-

comparison subroutine as described in the previous
sub-section, we can compute for any y(i), c(j), c(j ′) the
following secret-shared value:

〈
ξ(i, j, j ′)

〉 :=
〈(

d2
(
y(i), c(j ′)

) ?≥ d2
(
y(i), c(j)

))〉

We can then set
〈
Mij

〉 = ∏k
j ′=1

〈
ξ(i, j, j ′)

〉
.

Centroid update: Assuming the selected MPC protocol
has a built-in secure integer-division subroutine (for
fixed- or floating-point numbers), we can securely
compute the value

〈
c(j)

〉
=

∑Nn
i=1

〈
Mij

〉 · 〈y(i)
〉

〈∑Nn
i=1 Mij

〉

for all j = 1, . . . , k.
At the end of this section, we show how to avoid this

expensive subroutine, and only use basic operations and
comparisons instead.

In order to obtain a fully-fledged secure k-means
algorithm, however, we had to address the following
remaining points:

1. A method to sample the k initial centroids needs to be
specified;

2. The algorithm does not prevent assignment of a data
point to several clusters. It would be preferable to assign
each point to one cluster only;

(2020) 44: 8Journal of Medical Systems Page 7 of 12 8



3. If a cluster becomes empty, then the algorithm is ill-
defined, as it attempts to perform a division by |Sj | =∑

i Mij = 0. A method to prevent this should be
specified;

4. A routine that checks whether the algorithm has
converged (i.e., whether the cluster assignment did not
change at the last iteration) should be specified.

We now describe our solution to the above issues.
Furthermore, we show how we can avoid expensive fixed-
or floating-point computation and restrict ourselves to more
efficient integer arithmetic.

Sampling initial centroids Various methods are used in
standard k-means clustering to sample the initial centroids,
often selecting them among the data points via a randomized
choice method. While more involved techniques such as k-
means++ [5] can guarantee faster convergence and/or better
cluster quality, we opt for a simpler method, which can very
efficiently be implemented in a secure way, and which is
sufficient for our goal of showing the feasibility of an MPC
solution. We thus select the initial centroids by sampling k

elements among the data points; this random sampling can
be executed, for instance, by the hospital, who should be in
charge of the decision of the relevant clustering parameters,
given that it is the entity interested in the workflow
analysis.

Avoidingmultiple assignment As we noticed above, if for a
given data point y(i) there are two centroids c(j1), c(j2) such
that d(y(i), c(j1)) = d(y(i), c(j2)) = minj (d(y(i), c(j))),
then the algorithm sets Mij1 = Mij2 = 1. It would instead
be desirable to assign y(i) to a unique cluster. In order to
do this, we simply assign y(i) to the cluster with the lowest
index; this can be done securely by setting Mij = 0, if
Mij ≤ Mij ′ for some j ′ < j , which can be done via a
secure-comparison subroutine.

Handling empty clusters As highlighted above, Algo-
rithm 2 is not guaranteed to be well-defined. Namely, if a
cluster becomes empty, the algorithm will attempt to divide
by 0 upon computing the new centroid corresponding to
that cluster. Once again, several methods are used in (non-
secure) k-means clustering to address this problem. Most
of these methods take action in case an empty cluster is
detected, for instance by assigning a given data point to an
empty cluster. This is arguably a sub-optimal approach in
secure k-means, since it either requires revealing intermedi-
ate cluster assignments (which could undermine the security
of our solution), or it can lead to increased complexity by
checking in a secure way whether there is an empty clus-
ter. We adopt an alternative approach, described in [31]:

simply add each centroid to its corresponding cluster. As
shown in [31], the convergence time of the algorithm is only
slightly increased with this method.

Adding a convergence check As a general rule, the k-means
algorithm is supposed to stop only after it has converged,
i.e., once the cluster assignments (and centroid values)
no longer change. Such a check can be performed in an
(almost) oblivious way by means of secure equality; we
stress the fact that this is a relatively expensive check, and
we thus prefer not to execute it after every iteration of
the algorithm. A better alternative is to only run it after
the last iteration, or, alternatively, after any fixed number
of iterations. In our simulations, we made use of the first
alternative.

Altogether, the above sub-routines yield a complete spec-
ification of a circuit modeling secure k-means clustering.

Improving Efficiency with Integer-Only Computation An
important remark to improve the efficiency of our solution
is that the data points y(1), . . . , y(Nn) of nurse-patient
interaction periods are vectors with integer-only entries. We
can exploit this fact designing a centroid-update routine
that only makes use of secure integer arithmetic (instead
of fixed- or floating-point), significantly improving the
efficiency of secure k-means clustering. Notice that integer
arithmetic can be readily simulated by choosing a large
enough integer M and then embedding Z ∩ [−M, M]
into a prime field Fp for any p > 2M; in contrast,
simulating fixed- and floating-point arithmetic in a finite
field is a more involved and computationally-expensive
process.

First of all, since y(i) ∈ N
m for all i, then each centroid

c will be of the form (x1/w, . . . , xm/w), where xi , w ∈ N.
Thus for any two centroids c = (x1/w, . . . , xm/w), c̃ =
(x̃1/w̃, . . . , x̃m/w̃) and any point y, we have that d2 (y, c) ≤
d2

(
y, c̃

)
, if and only if, the following holds:

∑

i

(
yi − xi

w

)2 ≤
∑

i

(

yi − x̃i

w̃

)2

⇐⇒
∑

i

(
x2
i

w2
− 2

xi

w
yi

)

≤
∑

i

(
x̃2
i

w̃2
− 2

x̃i

w̃
yi

)

⇐⇒ w̃2
∑

i

(
x2
i − 2wxiyi

)
≤ w2

∑

i

(
x̃2
i − 2w̃x̃iyi

)
.

This means that the distance-comparison of the k-means
algorithm can be performed with simple integer arithmetic,
instead of fixed- or floating-point arithmetic.

The above steps thus form a fully-fledged and efficient
secure k-means clustering algorithm, which we believe to
be of independent interest as well.
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Implementation and results

We describe in this section our implementation of the secure
solution of “Secure solution”, and present some evaluation
of its performance.

TheMPC framework of our choice: SPDZ

We chose to use SPDZ [17, 18], a recent secret-sharing-
based MPC platform of celebrated efficiency. A software
suite for UNIX systems based on the SPDZ platform is
publicly available [13, 16];4 we used this suite to implement
our secure solution for workflow analysis.

SPDZ has built-in functionalities for secure comparison,
and can thus be used to implement the building blocks
described in “Secure table construction”. SPDZ needs to
produce some raw material in a pre-computation phase in
order to securely evaluate these functionalities; however,
this pre-computation is independent of the actual function
to be computed and of the secret inputs, and can thus
be executed on idle time between the two parties. For
this reason, we neglect pre-processing when measuring the
performance of our solution.

Set-up

In order to test the efficiency of the algorithms we
developed, we ran several simulations on two physically-
separated machines, representing the hospital and the labour
union, respectively. Both machines were equipped with of
a 3.5 GHz Intel i7-7567U CPU and 32 GB of RAM, and
were connected to each other via a 1 Gbit/s wired network.
Furthermore, the SPDZ protocol has been instantiated with
40-bit statistical security, 128-bit computational security
and a 64-bit prime field.

Performance results

Several simulations were run in order to measure the
efficiency and scalability of both phases of our secure
solution in the above set-up. We sampled artificial data for
these simulations, made to resemble a realistic size of a
hospital department and realistic behavior of nurses [38]: we
considered a fixed number of 15 zones and a total study time
of one hour, in which tracking information was produced
every 4 seconds. We assumed that nurses remain in the same
zone for up to 120 seconds, while patients can remain in the
same zone for the entire hour. Accordingly, we considered

4Support for the SPDZ-2 implementation is being discontinued;
development has shifted to the SCALE-MAMBA platform, which is
also based on the SPDZ protocol.

4 time bins, namely 0-to-10 seconds, 10-to-30 seconds,
30-to-60 seconds, and more than 60 seconds.

We measured the elapsed computation time and the
communication cost while varying either the number of
patient types (3, 5, 10), considering a fixed number of 7
patients per patient type, or the number of nurses (5, 12, 30,
60, 120). We also investigated the effect of increasing the
total number of clusters, considering 2, 5 and 10 clusters,
while fixing at 5 the number of iterations of the k-means
clustering protocol.

We measure the computation time of the two phases
of the secure protocol separately. It is clear from Figs. 1
and 2 that the first phase, the database construction, is
more computationally-intensive than the second phase, the
k-means clustering (with 5 iterations). Notice that the
computational cost of the second phase increases linearly in
the number of iterations.

In Fig. 1 we varied the number of nurses, while fixing
at 5 the number of patient types. We observe that the
computation time of the first phase grows linearly in the
number of nurses; this matches our expectations, since
theoretically the complexity of this phase scales linearly
with the number of nurse time periods, which in turn grows
linearly with the number of nurses in our simulations. Also
notice that the computation time of this phase is independent
of the number of clusters, as this number only plays a
role in the second phase of the protocol. Further, for each
experiment, the total number of patient time periods varies,
as for each experiment new artificial data is generated; this
explains the slight variation in the timing results of the
first phase. Furthermore, the timing results indicate that the

Fig. 1 Computation time (5 iterations), varying the number of nurses
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Fig. 2 Computation time (5 iterations), varying the number of patients

computation time of the second phase scales linearly in the
number of clusters and in the number of nurses.

In Fig. 2 we varied the number of patient types, keeping
the number of nurses fixed at 60. We note that the
computation time of the first phase grows linearly with the
total number of patients, again slightly fluctuating due to
the fact that the total number of time periods (of patients
and nurses) slightly varies per experiment. The computation
time of the second phase scales linearly in the number of
clusters and in the number of patient types.

Table 5 provides an overall view of the scalability of our
solution, showing running time and total size of the data
exchanged between the two parties, for a fixed choice of 5
clusters and for increasing numbers of nurses and patients.

Notice that by inspecting the pseudo-code of our
solution, it is readily seen that the observed linearity in
the timing results is as expected. Finally, we note that
the benchmarks described in this section are obtained
with an implementation that still has plenty of room for
efficiency improvement. Future development on this aspects

could, for instance, benefit from further parallelization
within both phases of the protocol, use of high-performance
computing machines, or implementation in low-level, very
fast programming languages such as C.

Conclusion

We proposed a novel approach to analyze the joined location
data of patients and staff in a hospital, by means of an
innovative cryptographic technique called Secure Multi-
Party Computation. In a joint protocol, the hospital and the
labour union securely cluster the staff members by means of
the frequency of their patient facing times.

In the first step, a table is securely constructed that
contains for each nurse a secret frequency distribution of his,
or her, patient facing times. In the second step, this table is
used to cluster the nurses into similar groups. Although this
secure k-means clustering algorithm is used for optimizing
the workflow in a hospital, it could be used in many different
domains where sensitive data needs to be clustered.

We described the secure protocol in detail, and evaluated
its performance, thereby demonstrating the feasibility of our
approach: it takes less than half an hour to securely cluster
120 nurses, who take care of 35 patients in 15 different
zones, given location data of one hour and a tracking
frequency of 4 seconds. While speed was not a factor of
capital importance for our solution, given that data analysis
does not need to be performed in real time, we believe that
the good performance obtained by our protocol paves the
way for more advanced data analysis techniques to optimize
the workflow in a hospital.

Towards a fully operational deployment, however, some
points need to be addressed. Notably, our solution was not
tested on real data, given that even obtaining retrospective
data would require individual consent from the involved
staff members and patients; for operational deployment,
however, this step will be necessary, in order to properly
assess the impact of the data analysis. Moreover, while k-
means clustering was a natural choice for a demonstrator
due to its ubiquity and relative conceptual simplicity,
several other machine-learning techniques could be securely

Table 5 Runtime (seconds)
and exchanged data
(megabytes), 5 clusters

7 nurses 12 nurses 30 nurses 60 nurses 120 nurses

21 patients time: 108 time: 160 time: 310 time: 564 time: 1072

comm.: 47 comm.: 95 comm.: 233 comm.: 499 comm.: 964

35 patients time: 154 time: 212 time: 422 time: 816 time: 1677

comm.: 90 comm.: 143 comm.: 335 comm.: 677 comm.: 1496

70 patients time: 241 time: 384 time: 768 time: 1530 time: 2912

comm.: 166 comm.: 297 comm.: 657 comm.: 1338 comm.: 2657
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implemented with our approach. This means that an
appropriate evaluation and comparison of the various
possibilities will have to be performed.
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